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Poisson–Boltzmann electrostatics is a well established model in
biophysics; however, its application to large-scale biomolecular
processes such as protein–protein encounter is still limited by the
efficiency and memory constraints of existing numerical tech-
niques. In this article, we present an efficient and accurate scheme
that incorporates recently developed numerical techniques to
enhance our computational ability. In particular, a boundary inte-
gral equation approach is applied to discretize the linearized
Poisson–Boltzmann equation; the resulting integral formulas are
well conditioned and are extended to systems with arbitrary
numbers of biomolecules. The solution process is accelerated by
Krylov subspace methods and a new version of the fast multipole
method. In addition to the electrostatic energy, fast calculations of
the forces and torques are made possible by using an interpolation
procedure. Numerical experiments show that the implemented
algorithm is asymptotically optimal O(N) in both CPU time and
required memory, and application to the acetylcholinesterase–
fasciculin complex is illustrated.

boundary integral equation � new version fast multipole method �
Poisson–Boltzmann electrostatics � stress tensor and force

In recent years, because of the rapid advances in biotechnology,
both the temporal and spatial scales of biomolecular studies

have been increased significantly: from single molecules to
interacting molecular networks in a cell, and from the static
molecular structures at different resolutions to the dynamical
interactions in biophysical processes. In these studies, the elec-
trostatics modeled by the well established Poisson–Boltzmann
(PB) equation has been shown to play an important role under
physiological solution conditions. Therefore, its accurate and
efficient numerical treatment becomes extremely important,
especially in the study of large-scale dynamical processes such as
protein–protein association and dissociation in which the PB
equation has to be solved repetitively during a simulation.

Traditional numerical schemes for PB electrostatics include the
finite difference methods, where difference approximations are
used on structured grids, and finite element methods in which
arbitrarily shaped biomolecules are discretized by using elements
and the associated basis functions. The resulting algebraic systems
for both are commonly solved by using multigrid or domain
decomposition accelerations for optimal efficiency. However, as
the grid number (and thus the storage, number of operations, and
condition number of the system) increases proportionally to the
volume size, finite difference and finite element methods become
less efficient and accurate for systems with large spatial sizes, e.g.,
as encountered in protein association and dissociation. Alternative
methods include the boundary element method (BEM) and the
boundary integral equation (BIE) method. In these methods, only
the surfaces of the molecules are discretized; hence, the number of
unknowns is greatly reduced. Unfortunately, in earlier versions of
BEM, the matrix is stored explicitly and the resulting dense linear
system is solved by using Gauss elimination, so that O(N2) storage
and O(N3) operations are required, where N is the number of nodes
defined on the surface to discretize the integrals. Even with the
acceleration afforded by Krylov subspace methods, direct evalua-

tion of the N(N � 1)/2 pairs of interactions still requires prohibitive
O(N2) operations.

In the last 20 years, novel numerical algorithms have been
developed to accelerate the calculation of this N-body problem
from the original O(N2) direct method to the O(N log N)
hierarchical ‘‘tree code’’- (1, 2) and fast Fourier transform-based
algorithms (3, 4), and later to the asymptotically optimal O(N)
fast multipole method (FMM) (5), and eventually to a new
version FMM with an optimized prefactor (6). For the PB
equation, however, only the original FMM- and fast Fourier
transform-based techniques have been introduced into the
BEM/BIE formulations. Numerical experiments show that the
original FMM (5), although asymptotically optimal, is less
efficient for problem sizes of current interest when compared
with the tree code- and fast Fourier transform-based O(N log N)
techniques, because of the huge prefactor in O(N).

In this article, we present an efficient algorithm to further
accelerate the solution of the PB equation. By proper coupling of
single and double layer potentials as discussed by Rokhlin (7), we
derive an integral equation formulation for systems with an arbi-
trary number of domains (molecules). Similar formulations have
been used for single-domain problems by Juffer et al. (8), Liang and
Subramaniam (9), and Boschitsch et al. (10). Compared with
‘‘direct’’ formulations, the condition number of our system does not
increase with the number of unknowns, hence the number of
iterations in the Krylov subspace-based methods is bounded. For
the matrix vector multiplications in each iteration, we use the new
version FMM developed for the screened Coulombic interaction by
J.H. and his collaborators (11). Compared with the original FMM,
the plane wave expansion-based diagonal translation operators
dramatically reduce the prefactor in the O(N) new version FMM,
especially in three dimensions where a break-even point of �600 for
6-digit precision is numerically observed.

Whereas most previous PB electrostatics algorithms have mainly
focused on the energy calculations, calculations of the PB forces and
torques are also essential in many cases such as in dynamics
simulations. In this algorithm, we introduce an O(N) interpolation
scheme in the postprocessing stage for calculating the forces and
torques. This scheme improves previous O(N2) results based on
BEM (12, 13).

Results
Computational Performance. To assess the accuracy of the algo-
rithm, we first consider a spherical cavity of radius 50 Å with one
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positive charge located at its center, and compare the numerical
solutions with the analytical ones. The surface is discretized at
various resolution levels (from 320 to 81,920 elements) by
recursively subdividing an icosahedron. Numerical results show
that the relative error of the calculated electrostatic potentials
decreases with increased number of elements, from �8% (320
boundary elements) to �0.3% (81,920 boundary elements).

As for the efficiency, we noticed that regardless of the surface
resolution, the generalized minimal residual (GMRES) iteration
steps never exceed 10, which numerically confirms that the
derivative BEM formulation is well conditioned. Furthermore,
in each iteration, we compare the new version of FMM with
direct method for different resolutions (up to 81,920 boundary
elements). Numerical results in Fig. 1 show that the CPU time
(on a Dell dual 2.0-GHz P4 desktop with 2 GB of memory) for
the new version of FMM scales linearly with the number of
boundary elements with correlation coefficient 0.984, and qua-
dratically for the direct integration method with correlation
coefficient 0.999. For a system with 81,920 surface elements, the
O(N) new version FMM is �40 times faster than the direct
method.

The memory requirements of our method are tested on large
biomolecular systems. Numerical experiments show that the
overall memory requirement scales linearly with the number of
surface elements. Compared with existing finite difference and
finite element schemes, orders of magnitude reduction in mem-
ory usage has been observed in simulations of the nicotinic
acetylcholine receptor (30,385 atoms; PDB ID code 2BG9) with
194,428 elements and 97,119 vertices. In our algorithm, we
noticed that the majority of computer memory is allocated to
store the neighboring list and the corresponding near-field
coefficients, the size of which mainly relies on the total number
of boundary elements and the level of box subdivision. Depend-
ing on a tradeoff between memory and speed, at each iterative
step these coefficients can either be saved as in a memory-
intensive mode or be discarded as in a memory-saving mode. In
a nonadaptive FMM case, the number of neighboring boxes of
a box (therefore any vertex located within this box) is 27. If we
further assume that the maximum number of elements per box
at the finest level is s, then it is easy to see that the number of
near-field elements for each vertex can normally be up-bounded
by a fixed number 27s. Hence, the size of neighboring list is also
up-bounded by 27sN; this and the fact that there are at most 2N/s
boxes in the tree structure lead to O(N) overall memory usage.

To further illustrate the performance of our fast BIE technique
on protein electrostatic calculations, we computed the electrostatic

solvation energies of fasciculinII, a 68-residue protein, and com-
pared the algorithm performance with the multigrid finite differ-
ence algorithm, as implemented in the widely used software APBS
(14). We want to mention that the two program codes employ very
different algorithms and data structures; hence, an exact compar-
ison between them would be difficult. Also, APBS is designed
primarily for massively parallel computing, it has an integrated
mesh generation routine, and it solves the PB equations twice to
obtain the solvation energy. Nevertheless, the preliminary results
given below show that present algorithm provides better speed and
memory performance than the current version of APBS. For APBS
calculations, when using a 161 � 129 � 161 grid with grid spacing
of 0.25 Å, the computed electrostatic solvation energy is �525.5
kcal/mol, and the calculation takes 250.8 sec of total CPU time and
742.8 megabytes of memory on our desktop machine. When using
a finer grid of 225 � 161 � 225, the total CPU time is increased to
599.9 sec, memory increased to 1,784.6 megabytes, and the total
solvation energy is �522.8 kcal/mol. For our calculation to achieve
the same level of accuracy, the surface mesh was generated with
vertex density of 3 Å�2, which results in a total of 21,430 triangular
elements and 10,717 vertices. In this case, the computed solvation
energy is �522.0 kcal/mol, and the calculation takes 129 sec
requiring only 90 megabytes of memory if running in a memory-
saving mode, whereas the job completes in 44 sec requiring 486
megabytes of memory if running in a memory-intensive mode.

Protein–Protein Interaction of the Acetylcholinesterase (AChE) and
FasciculinII (Fas2). Many experimental and theoretical studies have
established that electrostatic interactions dominate the AChE–Fas2
binding process and increase the binding rate by about two orders
of magnitude (15, 16). However, in the initial Brownian dynamics
(BD) simulations of AChE–Fas2 encounter, the methods for
solving electrostatics are not rigorous in the sense that the polar-
ization and electrostatic desolvation effects are neglected to reduce
the computational cost. Using these approximate methods, the
calculated encounter rates tend to be overestimated especially at
high ionic concentration. Elcock and coworkers (16) pointed out
this deficiency and used an effective charge approximation to
calculate the electrostatic desolvation and observed improved
results. In seeking to demonstrate the importance of these desol-
vation effects, we calculate each electrostatic energy component for
a series of structures at different separation distances between
AChE and Fas2. These structures are generated by displacing Fas2
away from the binding site, along a preselected direction with
possibly the least clashes. For the purpose of demonstration, we also
calculate the forces and torques on Fas2 molecule that are essential
for running BD simulations.

Fig. 2a shows the mutually polarized electrostatic potentials
mapped to the molecular surfaces of AChE and Fas2 at a �14
Å displacement of Fas2. Not surprisingly, the potential surfaces
exhibit qualitative electrostatic complementarity at the binding
interface. Fig. 2b shows the electrostatic interaction energy and
electrostatic desolvation profiles for the AChE–Fas2 complex as
a function of separation distances. Although the data at short
range may not be quantitatively accurate because of the atom
clashes (which arise from the manually rigid-body unbinding
procedure) when AChE and Fas2 are close in (from �1.0 Å to
5.0 Å), Fig. 2b shows some interesting results that cannot be
expected from previous approximate models. Clearly, the elec-
trostatic interaction energy (black line) is favorable for binding
at separations further than 5 Å but becomes increasingly positive
at closer separations. The long-range electrostatic attraction is
the dominant driving force for the Fas2–AChE binding, which
accounts for the observed electrostatic enhancement of the
binding rate in experiments. However, given the fact that the
AChE–Fas2 complex has a high binding affinity, the unfavorably
large positive electrostatic energies at closer distances seem to be
surprising. We speculate that this will likely be balanced by the

Fig. 1. Log–log plot of CPU time vs. the number of elements for the
calculation on a sphere case.
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nonpolar interactions. If we take a simple model by adding the
surface term Unonpolar � ��S, � � 0.058 kcal�mol�1�Å�2 (17), to
account for the nonpolar contributions, the total binding energy
profile (the cyan line in Fig. 2b) will show favorable interactions
for the AChE–Fas2 complex.

The origin of the large unfavorable electrostatic interaction at
closer separations can be attributed to the electrostatic desol-
vation, an effect due to the unfavorable exclusion of the high
dielectric solvent around one protein when the other one
approaches (16). The green and red lines in Fig. 2b show the
electrostatic desolvation energies of AChE and Fas2, respec-
tively. When AChE and Fas2 stay close, there are large desol-
vation penalties, but the electrostatic desolvation energies de-
crease rapidly when two molecules are separated by �5 Å or
further.

Another interesting observation is that the full electrostatic
interaction profile shows a minimum at the distance of �5 Å (Fig.
2b). This feature, however, disappears in the calculation without
considering the mutual polarization and desolvation contributions
(blue line in Fig. 2b). Therefore, it is a result from the competition
between the long-range attractive (Coulombic) and short-range
repulsive (desolvation) electrostatic interactions.

The present BEM gives the full PB interaction energy that
inherently takes into account both the desolvation and polar-
ization contributions from the two proteins. Although the con-
ventional electrostatic calculations as in the UHBD package (18)
are capable of including these two contributions, because of the
computational cost, these effects are typically approximated or
neglected when used for BD simulations. In these simulations,
the reaction field of only one molecule (usually protein of larger
size) is computed and then acts on the set of atomic charges of
the other one. The blue line in Fig. 2b shows the interaction
energies obtained with this type of calculation. Whereas it is in
good agreement with the full PB energies at large separations
(�8 Å), it deviates greatly at short distances, which emphasizes
the importance of using more rigorous PB electrostatics in
simulating the AChE–Fas2 encounter process.

We show some early results on the force and torque calcula-
tions in Fig. 2c. As mentioned above, there exist slight atom
clashes between Fas2 and AChE for some structures at short
separations. The forces and torques turn out to be more sensitive
to these atom clashes than the energy calculation, which exhibit
significant fluctuations at short ranges below 5 Å (data not
shown). Nevertheless, for electrostatically steered, diffusion-
controlled reactions, commitment to reaction typically occurs at
surface-to-surface distances on the order of the Debye length
(�10 Å for physiological ionic strength) (16), so that even the
current treatment of solvation should yield valuable applications.
As shown in Fig. 2c, across the whole separation range, the forces
along x and y directions are close to zero, while the z component
varies from �1.0 to �0.65 kcal�mol�1�Å�1. Since the direction of
the Fas2 displacement is close to the z axis (�0.4, 0.2, 0.89), the
force results are consistent with the energy calculations and also
suggest that this direction may be close to one of the real
association pathways within this spatial range. Fig. 2c also shows
torque calculation in all three x, y, and z directions. Those
significant values suggest that, if the electrostatics is the domi-
nant interaction at these separations, the present molecular
orientations will be adjusted along this association pathway.

Discussion and Conclusions
In this article, an efficient algorithm with optimal computational
complexity is presented for the numerical solution of the lin-
earized PB electrostatics. In addition, since coupled with a new
version of FMM, the prefactor also has been significantly
reduced. The algorithm uses a BIE formulation with unknowns
defined only on the surface and is accelerated by the new version
of FMM and Krylov subspace methods. The algorithm enables

Fig. 2. Electrostatics of AChE–Fas2. (a) Surface potential map of AChE and Fas2
at separation of 14 Å. The two green arrows indicated as F and M show the force
(0.10, �0.03, �0.69) and torque (�0.35, �1.03, �2.8), respectively, which are
scaled for visualization. (b) The interaction energy profiles as functions of sepa-
rations along a predefined unbinding direction. U, total electrostatic interaction;
U0, electrostatic interaction energy without consideration of the ligand polar-
ization and desolvation effects as the typical treatment in UHBD; Ud-AChE and
Ud-Fas2, electrostatic desolvation energies due to AChE and Fas2 cavities, respec-
tively; Unonpolar, nonpolar contribution from a simple surface term. (c) The x, y, z
components of forces, and torques acting on Fas2 as functions of the separation
distances along a predefined unbinding direction.
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the computational study of relatively large biological systems
(approximately hundreds of thousands atoms) on a personal
computer and has been applied to the simulation of AChE and
Fas2 protein–protein interactions.

In terms of the full PB electrostatic calculation among two or
more solute molecules, the BEM-based method has several
advantages over some widely used numerical approaches, e.g.,
using 2D surface mesh instead of 3D volume mesh, using natural
(physical) instead of artificial boundary conditions, and conve-
nient force calculations as demonstrated in this article. These
features make the present BEM approach a very appealing
choice for PB electrostatics calculation in dynamics simulations.
Our new algorithm shows several folds speedup relative to some
widely used solvers and should have even better performance for
larger system or far-separated molecular systems.

Unfortunately, BD and all-atom molecular dynamics simula-
tions with full PB calculation for large systems still exceed the
presently available computer capability. For a typical BD tra-
jectory with tens of million steps, the one-step PB solution needs
to be completed within no more than a few seconds to meet the
total wall-clock time constraint. Based on this estimation, the
present BEM solver is still about one order slower. To overcome
this hurdle, several techniques are being pursued to further
increase the efficiency of the present algorithm for BD simula-
tion, such as using adaptive fast multipole method and curvilin-
ear BEM. For molecular dynamics simulations, still other
speedup techniques can be pursued, including (i) parallelization
of the present code and (ii) a new multiscale time stepping
method that utilizes the efficiency of our algorithm for electro-
statics calculations. For i, previous studies show that the BIE
method and new version of FMM have excellent scalability for
parallel computation; and for ii, as different temporal scales are
readily available in the FMM structures, larger time step sizes
can be used for the slowly varying far field interactions repre-
sented by the local and multipole expansions, and smaller step
sizes for the rapid local interactions. Given all these improve-
ments, the BEM-based PB electrostatics will become truly
practical for its application to BD and/or molecular dynamics
simulations. In addition, the present fast BIE framework can be
readily extended to solving other equations, such as the diffusion
equations arising from the study of ion permeation and ligand
diffusion processes.

Methods
BIE Formulations. When Green’s second identity is applied, tra-
ditional BIEs for the linearized PB equations for a single domain
(molecule) take the form

1
2

�p
int � �

S

PV �Gpt

�� t
int

�n
�

�Gpt

�n
� t

int� dSt

�
1

D int
�
k

qkGpk, p � S , [1]

1
2

�p
ext � �

S

PV ��upt

�� t
ext

�n
�

�upt

�n
� t

ext� dSt, p � S , [2]

where �p
int is the interior potential at surface position p of the

molecular domain �, S � �� is its boundary, i.e., solvent-
accessible surface, �p

ext is the exterior potential at position p, Dint
is the interior dielectric constant, qk is the kth source point
charge of the molecule, � is the reciprocal of the Debye–Hückel
screening length determined by the ionic strength of the solu-
tion, n is the outward normal vector, t is an arbitrary point on the
boundary, and PV represents the principal value integral to avoid

the singular point when t 3 p in the integral equations. In the
formulas,

Gpt �
1

4��rt � rp�

and

upt �
exp(���r t � rp�)

4� �r t � rp�

are the fundamental solutions of the corresponding Poisson and
PB equations, respectively. These equations can be easily ex-
tended to multidomain systems in which Eq. 1 is enforced for
each individual domain and the integration domain in Eq. 2
includes the collection of all boundaries.

To complete the system, the solutions in the interior (Eq. 1)
and exterior (Eq. 2) are matched by the boundary conditions �int

� �ext and

Dint

��int

�n
� Dext

��ext

�n
,

where Dext is the exterior dielectric constant. Using these con-
ditions, we can define f � �ext and

h �
��ext

�n

as the new unknowns and recover other quantities using bound-
ary integrals of f and h. Unfortunately, theoretical analysis shows
that the corresponding equation system for f and h is in general
a Fredholm integral equation of the first kind and hence ill
conditioned, i.e., when solved iteratively by using Krylov sub-
space methods, the number of iterations increases with the
number of unknowns, and the resulting algorithm becomes
inefficient for large systems. Instead of this ‘‘direct formulation,’’
in our method, we adapt a technique introduced by Rokhlin (7)
where the single- and double-layer potentials are combined to
derive an optimized second kind Fredholm integral equation.
Similar techniques have been used by Juffer et al. (8) and others
in engineering computations (19–21); however, most of them
focus on single-molecule cases. In the following, we present a
well conditioned derivative BIE formulation (second kind Fred-
holm equation) for multiple biomolecule systems, in which j �
1, . . . , J represents the separated molecules:
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�
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J �
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, p � Si,

i � 1, . . . , J . [4]

As our formulas have the same integrands on different domain
surfaces, FMM calculation is convenient and the same as in the
single-molecule case. Also, because of the small number of
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iterations for convergence, the solution of an arbitrary system is
directly obtained by solving the PB equations only once, which
differs from previous ‘‘perturbation’’ scheme for two-domain
systems (12, 22).

New Version Fast Multipole Method. When Eqs. 3 and 4 are
discretized, the resulting linear system is well conditioned and
can be solved efficiently by using Krylov subspace methods. As
the number of iterations is bounded, the most time-consuming
part becomes the convolution type matrix vector multiplication
in each iteration. In this section, we discuss how this can be
accelerated by the new version FMM.

The fundamental observation in the multipole expansion-
based methods is that the numerical rank of the far field
interactions is relatively low and hence can be approximated by
P terms (depending on the prescribed accuracy) of the so-called
‘‘multipole expansion’’

�	R� ,
,�
 � �
i�1

N

qi�
1

�R� � �� �

 �

n�0

P �
m��n

m�n

M n
m

Y n
m	
,�


�R� �n�1 , [5]

where Yn
m are the spherical harmonics and Mn

m are the multipole
coefficients. For arbitrary distribution of particles (meshes), a
hierarchical oct-tree (in 3D) is generated so that each particle is
associated with different boxes at different levels, and a divide-
and-conquer strategy is applied to account for the far-field
interactions at each level in the tree structure. In the ‘‘tree code’’
developed by Appel (1) and Barnes and Hut (2), as each particle
interacts with 189 boxes in its ‘‘interaction list’’ through P terms
of multipole expansions at each level and there are O(log N)
levels, the total amount of operations is �189 P2N log N. The
tree code was later improved by Greengard and Rokhlin (5). In
their original FMM, local expansions (under a different coor-
dinate system)

�	R� ,
,�
 � �
i�1

N

qi�
1

�R� � �� �

 �

n�0

P �
m��n

m�n

Ln
m�R� �nYn

m	
, �


[6]

are introduced to accumulate information from the multipole
expansions in the interaction list where Ln

m are local expansion
coefficients. As the particles only interact with boxes and other
particles at the finest level, and information at higher levels is
transferred by using a combination of multipole and local
expansions as explained in Fig. 3, the original FMM is asymp-
totically optimal O(N). However, because the multipole to local
translation requires prohibitive 189P4 operations for each box,

the huge prefactor makes the original FMM less competitive
with the tree code and other fast Fourier transform-based
methods.

In 1997, a new version of FMM was introduced by Greengard
and Rokhlin (6) for the Laplace equation. Compared with the
original FMM, a plane wave expansion-based diagonal transla-
tion operator is introduced, and the original 189P4 operations
were reduced to 40P2 � 2P3. In our algorithm, we adapt the new
version of FMM for the screened Coulomb interactions (corre-
sponding to the linearized PB kernel) developed by J.H. and his
collaborators (11). Preliminary numerical experiments show that
the overall break-even point of the new version FMM becomes
600 with 6-digit accuracy, and �400 for 3-digit accuracy. How-
ever, the new version FMM is more complicated than the
original FMM in programming and theory, and we are unaware
of any previous implementations for the linearized PB equation.

Krylov Subspace Methods and Mesh Generation. In our algorithm, a
parallel iterative methods package for systems of linear equa-
tions PIM23 (23) is used. Several iterative schemes are available
in the package including the GMRES method, biconjugate
gradients stabilized (BiCGStab) method, and transpose-free
quasi-minimal residual (TFQMR) algorithm. Preliminary nu-
merical experiments show that the GMRES method converges
faster than other methods, which agrees with existing analyses.
Because the memory required by the GMRES method increases
linearly with the iteration number k, and the number of multi-
plications scales like 1

2
k2N, for large k, the GMRES procedure

becomes very expensive and requires excessive memory storage.
For these reasons, instead of a full orthogonalization procedure,
GMRES can be restarted every k0 steps where k0 � N is some
fixed integer parameter. The restarted version is often denoted
as GMRES(k0).

To discretize the BIEs, a triangular mesh is generated by using
the package MSMS (24), and zero and extremely small area
elements are modified by a mesh-checking procedure in our
algorithm. A typical mesh is shown in Fig. 2 (top right).

Force and Torque Calculations. In addition to energy calculation, an
improved procedure is implemented to calculate the force and
torque. Compared with previous O(N2) schemes (12, 13), the
complexity of the new procedure is O(N). In the calculation, the
full stress tensor on the boundary including contributions from
conventional Maxwell stress tensor as well as the ionic pressure
is given by (25)

Tij � DextEiEj �
1
2

DextE2� ij �
1
2

Dext�
2�2�ij, [7]

Fig. 3. Schematic showing the source points �� and evaluation point R� in the
new version FMM. In BEM implementation, the source points are centered at
the surface triangular elements.

Fig. 4. The prism constructed on a triangular element. The shadowed
triangle is one of the boundary elements, n1, n2, and n3 are three unit normal
vectors at the three nodes, and  is a parameter to describe the third-
dimensional position of the prism.
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where E is the electrostatic field and �ij the Kronecker delta
function. For the gradient of the potential, an interpolation
scheme is used to construct a trivariate function in the vicinity
of the molecular surface. For each triangular element on the
surface, we construct a small three-sided prism as shown in Fig.
4. In the prism, the potential is linearly interpolated, and the total
PB force F and torque M acting on each molecule are calculated
by integrations of F � �ST(x)�dS(x) and M � �Src(x) �
[T(x)�dS(x)], where rc(x) represents a vector from the center of
mass of the target molecule to the surface point x, and the dot
and cross-vector multiplications are applied to the vector and
tensor quantities.

System Set-Up. For all calculations, the AMBER atomic charges
and radii were assigned for protein atoms. A probe radius of 1.5
Å was used to define the dielectric interface. The relative

dielectric constants were taken as 2.0 for solute and 80.0 for
solvent.

In the protein–protein interaction calculations, the ion con-
centration was set to 50 mM, which is equivalent to a Debye–
Hückel screening length of 13.8 Å. The meshes were generated
at a density of 1.0 Å�2. A single mesh was generated if the two
molecular surfaces were separated by �3 Å, whereas for the
further separations the system was treated as two separate
domains with two sets of meshes.
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