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Abstract: A patch representation differing from the traditional treatments in the boundary element

method (BEM) is presented, which we call the constant “node patch” method. Its application to

solving the Poisson-Boltzmann equation (PBE) demonstrates considerable improvement in

speed compared with the constant element and linear element methods. In addition, for the

node-based BEMs, we propose an efficient interpolation method for the calculation of the

electrostatic stress tensor and PB force on the solvated molecular surface. This force calculation

is simply an O(N) algorithm (N is the number of elements). Moreover, our calculations also

show that the geometric factor correction in the boundary integral equations significantly increases

the accuracy of the potential solution on the boundary, and thereby the PB force calculation.

1. Introduction
In the 20 years since the first boundary element method
(BEM) paper on continuum electrostatics of biological
systems,1 computational scientists have made extensive
contributions to the methodological generalization, optimiza-
tion, and performance improvements in this area. These
works include the extension from solving the Poisson
equation (PE) and the linear Poisson-Boltzmann equation
(PBE),2,3 to solving the nonlinear PBE,4-6 from the single
molecule case to that of two or more molecules,7-9 the
implementation of accelerating techniques,9-16 studies on the
conditioning of the produced linear system,9,14,17the method
for rigorous force calculations,8,9,18 and applications to
molecular mechanics or dynamics simulation.19-22 However,
the practical utility of BEM is still very limited in biological
electrostatic studies, though it has been widely recognized
in engineering applications. Despite its high accuracy of
solution and the reduction of system degrees of freedom

relative to other numerical approaches such as the finite
difference and finite element methods, BEM has its own
difficulties: challenges of mesh generation for biomolecules,
singular and hypersingular surface integrals, and numerous
integral operations. The main hurdle to its practical usage is
the speed. We recently made progress on this by using a
new version of the fast multipole method (FMM)9 to achieve
a CPU performance comparable or even superior to that of
some other numerical methods. This work also focuses on
the speed improvement. Two typical low-order BEMs are
the constant element method (unknowns are constant in each
element) and the linear element method (unknowns are
located at the nodes of an element). In this work, we construct
a boundary “patch” (or element) differing from the normal
facet patch (e.g., triangular element) based on the same mesh
and also make a constant unknown approximation in this
patch. We call this the constant “node patch” method and
demonstrate that this method allows considerable acceleration
of the BEM calculation and maintains a similar calculation
accuracy. In addition, the details of a fast interpolation
method are given for the PB force calculation for the node-
based BEMs including the linear element methods and our
node patch method. This interpolation method is simply of
order N and much faster than our previousO(N2) algo-

* Corresponding author phone: 858-822-0168; fax: 858-534-
4974; e-mail: blu@mccammon.ucsd.edu.

† Howard Hughes Medical Institute.
‡ Center for Theoretical Biological Physics.
§ Department of Chemistry and Biochemistry.
| Department of Pharmacology.

1134 J. Chem. Theory Comput.2007,3, 1134-1142

10.1021/ct700001x CCC: $37.00 © 2007 American Chemical Society
Published on Web 04/05/2007



rithms.8,18Finally, we also show that the geometric correction
to the normal boundary integral equation (nBIE) leads to a
much more accurate potential solution, and thereby a much
more accurate force calculation.

2. Boundary Integral Equation
2.1. Normal Boundary Integral Equation. In the widely
used BEMs to solve the PBE (see refs 2 and 7), the
electrostatic potential is expressed as a boundary integral
form

whereφp
int is the potential at positionp inside the molecular

domainΩ, qk is thekth source point charge of the molecule,
S) ∂Ω is its boundary, e.g., solvent-accessible surface,φp

ext

is the potential at positionp outside domainΩ, Dint (Dext) is
the interior (exterior) dielectric constant, andn is the outward
normal vector at the integral pointt. G and u are the
fundamental solutions of the PE and the PBE, respectively,
whererpq denotes the distance between two pointsp andq

andκ is the reciprocal of the Debye-Hückel screening length
determined by the ionic strength of the solution.

When pointp approaches surfaceS, and the boundary
conditionsφint ) φext and Dint(3φint‚n) ) Dext(3φext‚n) are
considered, eqs 1 and 2 become a set of self-consistent
boundary integral equations (denoted as nBIEs)

where PV denotes the principal value integral to avoid the
singular point whent f p in the integral equations,f ) φext,
h ) 3φext‚n, andε ) Dext/Dint.

In our former work,8 we extended this form to an
interacting system with an arbitrary number of molecules
and gave a set of corresponding iterative equations for force
calculation.

2.2. Geometric Modification.For a nonsmooth boundary
as represented by a practically discretized mesh, the following
rigorous BIEs can be obtained whenp approaches the
boundary using a limiting process from the original eqs 1
and 2:

where the coefficient constantRp is dependent on the local
surface geometry of the nodep. For a smooth surface,Rp is
1/2. For a vertex of a polyhedron, which is not a smooth point
of the surface, the coefficientRp is equal toAp/4π, whereAp

is the interior solid angle at the node. The constant1/2 is as
usually used in the previous BEM PB works, but this work
will show that the use of the geometry-dependent coefficient
does make a significant improvement in the PB solution,
especially the potentials on the surface and the PB force on
the molecule. For a mesh with flat elements, the interior solid
angle at nodep can be calculated by the following formula:
wherenp is the total number of neighboring elements ofp,

and the interior dihedral angleâi at an attachedith edge
formed by two neighboring faces with normal vectors, for
example,n1 and n2, respectively, satisfiesâi ) arccos(-
n1‚n2).

There are only weak and strong singular integrals appear-
ing in the above equations, which can be analytically treated
by using coordinate transformation and series expan-
sion.18,23,24

2.3. Derivative Boundary Integral Formulation. By
linearly combining the derivative forms of eqs 5 and 6, the
derivative BIEs (dBIEs) can be obtained:3

wheren is the unit normal vector at pointt andn0 is the unit
normal vector at pointp.

The dBIEs lead to a well-conditioned system of algebraic
equations. These dBIEs have been extended to systems with
arbitrary numbers of biomolecules, and the solution has been
accelerated with an efficient FMM in our former work.9

For a discretized mesh that is not smooth in numerical
realization, the geometric correction for dBIEs has not been
well-implemented in the BEM PB solver, though we have
demonstrated the success of applying hypersingular integra-
tion techniques to calculate the gradient of potential on the
surface as a postprocessing procedure.18 The direct evaluation
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of all the singular integrals and the other terms such as the
additional free terms that appear in the geometrically
modified BIEs have been theoretically studied.24,25 The
implementation including both the free-term modification and
the hypersingular integration techniques for the derivative
BEM (dBEM) PB solver has not been demonstrated and is
beyond the scope of this work.

3. A Constant “Node Patch” Method
One of the methods often used in BEM is that the unknowns
f or h on an element (face) are treated as constants. Therefore,
the number of unknowns is equal to the number of elements.
This is the lowest-order BEM method, the so-called “constant
element” approach. This treatment is convenient for numer-
ical implementation. Another widely used treatment is the
linear element method, in whichf andh at a position in an
element are obtained by linear interpolation from the values
(unknowns) on the three nodes (for a triangular element).
Therefore, the number of unknowns is equal to the number
of nodes and is almost half of the number of elements for a
triangulated surface (according to Euler’s formula for a
polyhedron). The disadvantage of a node-based method is
the introduction of additional complexities in numerical
implementation. The advantage is that it can achieve better
accuracy of the solution and seems to gain higher compu-
tational speed because the number of unknowns is reduced
by about half.

In either kind of the BEMs, most operations are the far-
field integrations. When an element patch∆Si (also denoted
as its area) is far from the evaluation pointp, in the constant
element treatment, the boundary integrals on this patch are
approximated as

whereni is the unit normal vector of theith element and the
ith position is taken as the element center. In the above
formulas, constant approximations off andh are used, which
is the meaning of “constant element” treatment, and the
values of functionG and its derivative are also approximated
as constants on the integral patch because of the far-field
approximation. For near-patch integration, a normal quadra-
ture method is used. Similar treatments apply to the integra-
tions for the kernelu and its derivative, as well as for the
other second-derivative terms if the dBIEs are used.

Here, we construct a patch around each node, instead of
directly using the facet patch (element), and suppose thatf
andh are constants on this new “node patch”. We call this
the constant “node patch” treatment. A simple way to
construct these new patches is illustrated in Figure 1 in which
an example “node patch” at theith node that has five
neighboring elements is constructed. All the centroids{Ol,
l ) 1, ..., 5} of the five adjacent triangles and the midpoints
{Cl, l ) 1, ..., 5} of the attached five edges are listed, and
then the area formed by{O1,C1,O2,C2,...O5,C5,O1} is the new
patch that we want. Therefore, there is one-third of the area

of each neighboring triangle occupied by the “node patch”
∆Si. The other patches are similarly constructed. All the node
patches connect and cover the whole surface. Now, the far-
field integrals on the new patch∆Si become

where, supposing all neighboring elements ofith node form
a set{L},

wherenl is the unit normal vector of thelth neighboring
element,∆Sl is the area of thelth adjacent triangular element,
and∆Si

b here should also be considered as a vector. As in
the constant element treatment, for near-patch integration, a
normal quadrature method is used. Similar treatments apply
to the integrations for the kernelu and its derivative, as well
as for the other second-derivative terms if the dBIEs are used.

There are three main advantages of this “node patch”
treatment in the BEM. First, as aforementioned, the un-
knowns are reduced by almost half relative to the constant
element method, and the computational time on solving the
resulting linear system in each iteration step or in direct
matrix inversion is also reduced by the same factor. The only
additional computation is a preprocessing of some geometric
coefficients∆Si

a and∆Si
b as in eqs 16 and 17, which can be

saved for repeated usage in the iterative solving procedure.
The CPU cost of this preprocessing represents a negligible
portion of the whole PBE solution time. However, this time
reduction (by about half) due to reduced unknowns in our
constant node patch method does not hold in the normal
linear element approach, though the number of unknowns

∫∆Si
Gptht dS= hiGpi∆Si (12)

∫∆Si

∂Gpt

∂n
ft dS= fi∇Gpi‚ni∆Si (13)

Figure 1. “Node” patch constructed on a triangular mesh. O
and n are the centroid and normal vector of an element,
repsectively, and C is the middle point of an edge.
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is the same as the number of nodes. The reason is that there
are more additional numerical operations (interpolations and
quadratures) for the integration on every element. Therefore,
in the iterative solving procedure, though the unknowns in
the linear element approach are reduced by about half, the
total computational time is not reduced much. If direct matrix
inversion is used, time saving is expected due to the fact
that the linear system size is reduced and all the matrix
coefficients are just calculated once; however, the iterative
method has to be used for any sizable biological system.

Thus, compared with the constant element method, the
constant “node patch” method can save considerable com-
putational time. This will also be demonstrated in numerical
tests. And because both methods use similar assumptions
(constantf and h in a patch), and are based on the same
mesh resolution, there is no loss in the accuracy of the
solution. It is worth noting that the linear element treatment
that uses linear interpolation to getf andh in a patch instead
of using a constant approximation should achieve relatively
higher computational accuracy.

The second advantage, which is not so explicit, lies in the
case when it is necessary to store the matrix coefficients from
the “near points” (local list) integration. The local list is
typically given by cutoff criteria or the FMM local neighbor-
box list output if FMM is implemented. It is found that,
relative to the linear element method, our constant “node
patch” method tremendously saves time searching and
locating the local list in order to store the calculated
coefficients in a practical matrix storage format, for example,
the Harwell-Boeing sparse matrix format (HB),26 or modi-
fied sparse column (row) format. In the linear element
treatment, the CPU cost for this part is large enough to be
comparable with the whole PBE solution time. The BEM
mesh is a kind of unstructured mesh. In the linear element
method, each matrix coefficient relates to a node pair (the
unknowns are located at nodes), while the local list is
normally given as an element list because the integrations
are performed on each element and need the nodal value
interpolations. Therefore, the node pair information needs
to be searched from the element list. Another fact to be
considered is that each node is normally shared by several
elements; therefore, each matrix coefficient corresponding
to a node pair has contributions from the integrations on all
the connected elements. Due to these reasons, storing the
calculated coefficients (from geometric integrals) requires
complex embedded loops to search in both element and node
indices to locate the position in the storage frame. For
example, four embedded loops in our original implementation
are required for the whole matrix storage, which makes the
coefficient saving not obviously more efficient than the direct
matrix-vector multiplication calculation in every iteration
step. However, for our node patch method, or similarly the
constant element approach, the local list is also a node list;
therefore, the location in the sparse matrix of the coefficient
corresponding to each local point is straightforward by
counting the local nodes and looking at their indices. This
can finally save CPU time in the whole iterative solution
procedure.

The third advantage, as with other node-based methods
such as the linear element method, is that it is convenient to
compute the potential and its gradient (not only the normal
derivative) at any position near or on the molecular surface
for stress and force calculation through an interpolation
method. As shown in the following section, a simple linear
interpolation can be performed in a constructed prism, where
only the potentialf and its normal derivativeh on the nodes
are required. It might be more complicated to calculate the
gradient of potential at an arbitrary surface point in the
constant element method.

4. Interpolation Method for Calculation of the
Gradient of the Potential
Our previous work8,18 introduced two rigorous methods, a
variational approach and a hypersingular integral method,
for the PB force calculation. Both are orderN2 algorithms.
Here, we’ll introduce an interpolation method that is simply
of orderN. In an ionic solution, the full stress tensor on the
boundary should include an additional term accounting for
the ionic pressure besides the conventional Maxwell stress
tensor.27 It is

whereE is the electrostatic field andδij is the Kroneckerδ
function. Therefore, to obtain the boundary stress tensor, the
derivative of the potential, that is, the negative ofE on the
boundary, should be known.

To get the gradient of the potential on the surface, a
potential function in the vicinity of the molecular surface
can be constructed using an interpolation method. From the
potential data on the nodes of a triangulated surface, we can
construct aC1 or C2 modeled potential field on the surface,
for example, by using piecewise trivariate polynomials that
are defined on a three-dimensional triangulation called the
simplicial hull and defined over the domain surface.28

Because, in our case, we not only know the potential values
but also know their normal derivatives on the nodes, a more
efficient and simple way can be taken to construct the
approximated potential functions on the surface by using both
the potential and its normal derivative values. The idea is to
construct a small three-sided prism attached on each trian-
gular element on the surface in which a piecewise interpo-
lated function is defined. The prism is defined by the
triangular element and the three normal vectors on the nodes
as shown in Figure 2.

A concern that has to be tackled is that the normal vector
V at a node (vertex) on a surface mesh is not defined due to
the discontinuity. Hence, the calculation or assignment of
this normal vector is not trivial. The normal vector at the
node is also required in the node-based dBEMs including
the node patch dBEM presented in this work, because the
vector n0 at the pointp appears in the dBIEs 10 and 11.
Several averaging methods may be used, such as direct
averaging from the neighbor facet normals, neighbor angle
weighting, neighbor facet area weighting, or using weights
from facet normals and supposing adjacent vertices are
inscribed in a sphere.29 If the mesh is generated from software

Tij ) DextEiEj - 1
2
DextE

2δij - 1
2
Dextκ

2
φ

2δij (18)
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such as MSMS30 that can output the normal vectors, the data
can be directly used and need not be calculated again. We
have tested these methods for vertex normal calculations for
both spherical cavity and protein cases. Preliminary results
seem to show that no one method is superiorly accurate and
preferred. The overall PB solutions obtained with different
normal vector definitions do not differ much except for some
points where the local geometry is very uneven, and the final
energy calculations are close to each other. Here, the simplest
way is adopted to calculate the normal vector:

whereni is the normal vector of the adjacentith element of
nodep andc is a factor used to normalize the unit vector
Vp.

Any point in a triangle can be described using two
parameters (parametric coordinates), for example, (ê, η). On
the normal direction, we use another parameterλ to locate
the position. For example, a point on the normal direction
of nodei has coordinatesXi(λ) ) Xi + λVi, i ) 1-3, where
Xi is the position ofith node andVi is its unit normal vector.
It is easy to see thatXi(0) ) Xi. And the potential value at
Xi(λ) can be approximated asfi(λ) ) fi + λhi whenλ is small
enough. Here, it is supposed that the potential derivative in
the normal directionVi at the ith node is equal to the PB
solutionhi. We’ll discuss this later. Then, for the sameλ at
three nodes, the three points{X1(λ), X2(λ), X3(λ)} form a
new parametric triangle layer. Therefore, the position and
function values at any point in this layer can be interpolated
using the parametric coordinates (ê, η, λ) as

wherefi denotes the potential at theith node, andhi denotes
its derivative in the normal directionVi. The trivariate
function f(ê,η,λ) is then constructed to model the potential
in the vicinity of the surface element. Whenλ ) 0, the
triangle layer is reduced to the surface element. All the prisms
connect and cover the whole molecular surface without

overlap. The interpolated function is piecewiseC1 continuous
on the whole molecular surface; therefore, the gradient can
be calculated everywhere. Because we only want to calculate
the potential gradient on the molecular surface,λ ) 0, this
makes the approximation of the interpolation (smallλ) on
the normal direction acceptable. The gradient of the potential
at any point (ê, η, λ ) 0) on the surface can be obtained
from the following relationship:

whereJ is the coordinate transformation matrix from (ê, η,
λ) to (x, y, z) at λ ) 0. These function derivatives are the
required fields in eq 18.

Now, the Maxwell tensorT can be calculated using eq
18, and the PB forceF and torqueM acting on a molecule
are calculated by integrations

whererc(x) is a vector from the center of mass of the target
molecule to the surface pointx and the dot and cross vector
multiplication are applied to the vector and tensor quantities.

It is worth it to note that this force calculation procedure
can be further improved. As stated above, the PB solution
hi is also taken as the potential derivative in the node normal
directionVi, which is a rough approximation. In the BEM
formula, h should be considered as the projection of the
potential gradient in the surface normal direction at each
quadrature (integration) point. Therefore, a better approxima-
tion is that the valuehi at nodei is the projection of the
potential gradient (not known) at the node in the adjacent
element normal direction (all the projections on the adjacent
elements equal the samehi due to the linear element
treatment). Normally, the projection of the potential gradient
on the node normal vectorVi may deviate from the valuehi

to some extent, which is dependent on the mesh geometry.
Therefore, the potential gradient at each node, denoted as
HB i, can be fitted from the above consideration. We calculate
the value and direction of eachHB i through minimizing the
quantity

where{L} is the collection of the adjacent elements of the
ith node. And it is found from the above interpolation
procedure that the prism construction actually only needs
an (arbitrary) vector, not necessarily the normal vector, and
the directional derivative on this vector at each node.
Therefore, the interpolation procedure for force calculation
based on the set{HB i} is similar to that on the set{Vi, hi}
and should lead to better results, especially for very irregular
mesh geometry.

5. Results and Discussion
5.1. Performance Comparison of Different Patch Treat-
ments. In the iterative PBE solver, the surface integration

Figure 2. Prism constructed on a triangular element. The
shadowed triangle is one of the boundary elements; V1, V2,
and V3 are three unit normal vectors at the three nodes; and
λ is a parameter to describe the third dimension of the prism.

cVp ) ∑
adjacent faces

ni (19)

X(ê,η,λ) ) (1 - ê - η)(X1 + λV1) +
ê(X2 + λV2) + η(X3 + λV3) (20)

f(ê,η,λ) ) (1 - ê - η)(f1 + λh1) + ê(f2 + λh2) +
η(f3 + λh3) (21)

(fxfyfz) ) J -1(fêfηfλ)0
) (22)

F ) ∫S T(x) dS(x) (23)

M ) ∫S rc(x) × [T(x) dS(x)] (24)

∑
l∈{L}

(HB i‚nl - hi)
2 (25)
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is performed during each iterative step (implicit matrix-
vector multiplication). To accelerate the speed and also
consider the memory requirement, some matrix coefficients
related to the local integration (corresponding to a sparse
matrix) are saved, while the far-field integrations are directly
calculated. The task for the coefficient saving includes two
main parts: coefficient computation and its position place-
ment in a practical matrix-saving format. A compressed
sparse column format is used in the current code (similar to
HB format). When the local matrix coefficients are saved,
the main work in each GMRES iteration step is the far-field
integration. This part can be accelerated by the already
implemented FMM.9

Table 1 provides a comparison of the calculation speed
and accuracy between the constant node patch and the linear
element BEMs. Calculations are made for both a spherical
cavity case and a protein case. As an example, Figure 3
shows the surface mesh and potential of the protein molecule
(fasciculinII) calculated using the current node patch method.
It is found that in all the cases the CPU time costs in the
GMRES iterations of both BEMs are very close. Because
we just use one quadrature point in the linear element
method, that is, equivalent to the constant element treatment,
for far-element integration, this only makes a small difference
in the calculation speed (when FMM is used) compared with
the constant node patch treatment. However, there is much
difference in the sparse matrix-saving step between the two
approaches, and it is also found that this is basically the origin
of the difference of the total CPU times for the PBE solution
by the two BEMs. It is worth it to point out that in the linear
element method the most time-consuming step lies in the
position placement of the matrix coefficients to be stored,
which is much more expensive than the coefficient calcula-
tion operations. The CPU time cost of this step is comparable
with the total time cost of the PBE solution. As mentioned
in the method section, the reason is that in the linear element
method both the (unstructured) node and element indices are
required to search for the coefficient storage positions, and

we have to use several embedded search loops in the code
to reach these. In the constant node patch method, on the
other hand, each calculated coefficient to be saved only
corresponds to one node in the local node list; therefore, the
position location is straightforwardly indicated by the node
index itself. This significantly saves CPU time and becomes
practical if some matrix coefficients need to be stored.

The accuracies of both potential solution and energy
calculation are also well-maintained in the node patch
method. In the sphere case, the solution error with the
constant node patch approximation is stable (nearly stays at
a same value), which is reasonable, while the error varies
over a range with the linear element method due to different
shapes of the triangular elements on the sphere. In addition,
the constant element method is also tested and shows lower
accuracy than the linear element method as discussed above.
For example, for the above sphere case with a 642 node
mesh, the constant element method results in an energy of
-84.9 kcal/mol. And the speed is also much slower than
our constant node patch method (data not shown here).

5.2. Effects of the Geometric Factor Modification.We
check the effects on the PBE solution of using the geometric
correction coefficientRp instead of1/2 in the left-hand side
of the BIEs 7 and 8. The test is performed on a single sphere
model, in which a unit positive charge is positioned at the
center of a unit sphere (radius of 1 Å). The relative interior
and exterior dielectric constants are set as 2 and 80,
respectively. The ionic concentration is 0. Table 2 shows
the BEM solution values obtained with the normal BIEs with
coefficient1/2, and with the geometry-dependent coefficients
on the first five nodes of the mesh. The analytical values
are also shown as references.

It is found that the normal BEM (nBEM, based on the
nBIEs) gives a solution on the nodes with around∼8%
relative errors, while the geometrically corrected BEM makes
surprising improvements in the potential solutionf, with less
than 0.05% relative error. However, the normal derivative
of the potential,h, is not improved. This may be due to the
fact that in the left-hand sides of both eqs 7 and 8 the
geometric correction only explicitly couples withf. This
indicates that the geometric correction on the dBIE may
improve the accuracy of bothf andh, which will be studied
in the future work related to the aforementioned free terms
and hypersingular integrals that appear in the dBIE.

5.3. Force Calculations.For a test model, we calculate
the electrostatic interaction forces between two spherical
molecules and compare with those computed by our previous
methods.8,18 We choose two point charges in a vacuum, in
which each charge is surrounded by a unit sphere discretized
by 320 flat triangular elements (162 nodes). Both charges
are put on thex axis, so that the nonzero force component
is along thex direction; that is,Fx, and the other two
componentsFy and Fz are zero in theory. Figure 4 shows
the forces along thex direction Fx as a function of the
distance between the two point charges calculated using the
present interpolation method, a hypersingular integral method,
the variational approach, and the analytical formula. It is
found that the interpolation method based on the PB solution
with geometric correction in the nBIEs is the most accurate

Table 1. Performance Comparison of the Constant Node
Patch (First Line) and Linear Element (Second Line)
Approachesa

CPU time dissection
mesh size
(vertices

and faces)
coeff

saving GMRES total
Esolvation

(kcal/mol)
error in fi

(%)
error in
hi (%)

162, 340 0.01 0.07 0.10 -82.3 9.1 2.8
0.11 0.08 0.20 -84.7 8.0∼9.3 3.6∼6.5

642, 1280 0.08 0.37 0.51 -81.3 4.5 1.3
0.42 0.40 0.83 -82.7 3.6∼5.0 1.4∼3.3

4841, 9678 0.88 9.39 11.49 -544.3
13.17 10.07 26.23 -554.8

7525, 15046 6.38 11.90 20.05 -531.5
33.53 12.33 50.49 -537.8

a Both calculations use the derivative BIE forms, and seven
quadrature points are taken for each local element integration in the
linear element method. The first two meshes are for spherical cavity
calculations, the last two meshes for a protein (fasciculinII). Protein
surface mesh is generated using the program MSMS.30 As a
reference, the exact Born solvation energy Esolvation of a unit spherical
cavity is -80.9 kcal/mol, and the protein solvation energy is decreased
to -522.0 kcal/mol when higher resolution mesh is used.
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one among three approaches, and the calculated forcesFx

nearly overlap with the analytical results over the whole
distance range. However, if the force interpolation is based
on the normal BIE solution without geometric correction,
then the results are not so accurate as those of the other two
methods (see the blue dot line in Figure 4). This means that
the accuracy of the interpolation method heavily depends
on the solution accuracy of the PBE.

The superior advantage of the interpolation method for
force calculation is its calculation efficiency. In the above
test case, in which 30 calculation points (distances) were
selected, the CPU time on an Intel Pentium IV (2 GH) for
the whole nBEM calculation is 28.3 s for the variational

approach, 23.0 s for the hypersingular integral method, and
12.0 s for the present interpolation method. Moreover, as
shown in the method description, the CPU time spent on
the force calculation is simply proportional to the number
of boundary elements of the target molecule.

6. Conclusions
New boundary patches around each node in the BEM are
simply constructed on the basis of the usual triangulated
mesh. This kind of BEM can be considered as a compromise
of the traditional constant element method (constant node
patch now) and the linear element method (unknowns located
at nodes) and draws upon the advantages of both methods:

Figure 3. Surface mesh and potential map of fasciculinII. The mesh wireframe is colored from red to blue to represent the
potential increasing from negative to positive values. The figure is generated using VMD31 by running a tcl script

Table 2. The BEM Solution at the First Five Nodes on a Unit Spherical Surfacea,b

node index x y z fanaly hanaly fN (err%) hN (err%) fM (err%) hM (err%)

1 0.000 0.000 1.000 4.150 -4.150 4.485 -4.202 4.150 -4.202
(8.077) (1.272) (0.002) (1.258)

2 0.273 0.000 0.962 4.150 -4.150 4.499 -4.200 4.150 -4.203
(8.406) (1.208) (0.004) (1.272)

3 0.084 0.260 0.962 4.150 -4.150 4.500 -4.192 4.150 -4.196
(8.444) (1.022) (-0.001) (1.131)

4 0.526 0.000 0.851 4.148 -4.146 4.518 -4.174 4.147 -4.186
(8.924) (0.668) (-0.027) (0.950)

5 0.362 0.263 0.894 4.151 -4.152 4.527 -4.219 4.152 -4.233
(9.054) (1.616) (0.023) (1.945)

a fN and hN are the potential and its normal derivative, respectively, obtained with the normal BIE, and fM and hM are from the geometrically
modified BIE. fanaly and hanaly are the corresponding analytical values. The errors (shown in the parentheses) are relative to the analytical results
and in percentages. The corresponding units are in angstroms, moles, and kilocalories. b Calculations use the normal BIE form on a surface
mesh with 162 nodes and 320 elements.
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reduction of the unknowns, simplified numerical complexity,
and convenience for coefficient storage. Because the same
mesh resolution is still kept, the calculation accuracy is not
lost, and our numerical results on both sphere and protein
cases also demonstrate this.

In addition, we describe an efficient interpolation approach
for force calculation that is proper for any kind of node-
based BEM. This is simply of orderN with a small prefactor.
The accuracy of force calculation by this approach is
determined by the accuracy of the PBE solution,f and h.
Our calculations also show that the geometry factor correc-
tion in BIE can significantly improve the accuracy of
potential solution on the surface, thereby improving the
accuracy of force calculation using the interpolation ap-
proach.

The code will be made available by the authors.
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