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An effective and fast minimization approach is proposed
for the prediction of protein folding, in which the `relative
entropy' is used as a minimization function and the off-
lattice model is used. In this approach, we only use the
information of distances between the consecutive Ca
atoms along the peptide chain and a generalized form of
the contact potential for 20 types of amino acids. Tests of
the algorithm are performed on the real proteins. The
root mean square deviations of the structures of eight
folded target proteins versus the native structures are in a
reasonable range. In principle, this method is an improve-
ment on the energy minimization approach.
Keywords: minimization/off-lattice model/protein folding
prediction/relative entropy

Introduction

Recently, there has been a great deal of interest in studying the
prediction of tertiary structure of proteins or protein folding,
using theoretical models. Some good prediction results [with
root mean square deviation (r.m.s.d.) values ranging from 3 to
7.5 AÊ for small proteins] can be obtained by using methods
such as threading based on information on known structure
(Moult et al., 1999; Venclovas et al., 1999). However, it is well
established that for small proteins the information contained in
the amino acid sequence is suf®cient to determine the folded
structure, which is the structure with minimum free energy
(An®nsen, 1973). Thus, the native structure is dictated by the
physical interactions between amino acids in the sequence.
Generally, some direct methods, such as the Monte Carlo
method, molecular dynamics or other methods, so called
ab initio methods, are used to minimize the system's energy
(Hinds and Levitt, 1994; Shakhnovich, 1994; Huang et al.,
1999; Lee et al., 1999; Zhou and Karplus, 1999). However, in
the usual minimization method the entropy effect is not taken
into account and the predicted structure does not necessarily
correspond to the state with the lowest free energy. Here, we
propose a new and simple algorithm for protein folding
calculations using the off-lattice model, in which a new
minimization function called `relative entropy' (de®ned below)
is used other than the system's Hamiltonian. In the off-lattice
model, the folding prediction mainly deals with the tendency of
the protein backbone. In this approach, we have only used the
distances between the consecutive Ca atoms along the peptide

chain and a generalized form of the contact potential for 20
types of amino acids. Unlike the traditional energy minimiza-
tion methods (Mumenthaler and Braun, 1995; Sun et al., 1995)
starting from a rigid or semi-rigid secondary structure element
and then assembling it into a compact structure, in our
prediction procedure we tried to start from a nearly random
initial conformation. Tests of the algorithm on real proteins
were carried out. The consensus results are of generally good
quality, yielding eight sample predictions with r.m.s.d.s in the
range 3.9±6.8 AÊ from their native structures. The relation
between free energy and the methodology is discussed.

Theory and computational method

Assume that H(s,r) is the Hamiltonian of a protein molecule
with the sequence S = (s1, s2, ¼, sn) and con®guration
r � �~r1;~r2; : : :;~rn�, where~ri is the position coordinate of the Ca
atom of the ith amino acid residue. Instead of directly
minimizing the system Hamiltonian, the quantity called
`relative entropy' G minimized here is de®ned as

G�f~rig� �
X
fsig

Pa ln�Pa=P0� �1�

where Pa and P0 mean different probabilities. For a given
con®guration r = {ri}, the probability P0 that the molecule
adopts sequence S = {si} is written as

P0 � 1

Z0

eÿbH�s;r�

Z0 �
X
fsig

ebH�s;r� �2�

The probability Pa that the molecule has a specially assigned
sequence (the target sequence) Sa = {si

a} is de®ned as

Pa � 1

Za
ebH�s;r�Y

i

dsi;s
a
i
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X
fsig

eÿbH�s;r�Y
i

dsi;s
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From the de®nition, it is easily shown that the `relative
entropy' G > 0. Obviously, the measure G has minimum value
when P0 = Pa. The property of G determines that it is a measure
to evaluate the difference between the distribution functions P0

of random sequence and the distribution Pa with the specially
assigned sequence in sequence space. Thus, the difference
between the distributions P0 and Pa is not directly evaluated by
P0 ± Pa, but by the mean of the difference of their logarithms.
When the protein conformation closes to the native structure
adopted by the given sequence, the difference, in the sense of
measure G, between the distribution P0 and the distribution Pa
tends to be small. This is because on the native conformation of
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the given sequence Sa, P0 has a very large value at least on this
sequence Sa from the evolutionary point of view, which results
in a small value of G. Our aim is to ®nd a `good' distribution
function P0 closest to Pa through minimizing G, rather than a
minimum energy or free energy of the system through energy
minimization. Therefore, the folding prediction can be done by
searching the conformational space to ®nd an optimal structure
f~rig for a sequence {si

a} through minimizing G. The gradient
descent algorithm for minimization can be expressed as

d~ri

dt
� ÿh

@G
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� ÿh
X
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ln
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where h is an adjustable parameter with a value between 0 and
1 for controlling the convergence speed and the subscript i
denotes the ith Ca atom. As shown in Equation 4, the measure
G substitutes the system's potential <H>a used in energy
minimization.

Moreover, using the de®nition of Pa in Equation 3, it is
found that the spatial derivative
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is zero, because the last two terms in the brackets are equal
owing to the limitation of the Kronecker delta functions. Then,
using P0 and Pa de®ned in Equations 2 and 3, Equation 4 can
be reduced to

d~ri

dt
� ÿh

X
fsig

ÿPa

P0

@

@~ri

eÿbH�s;r�P
fsig

eÿbH�s;r�

264
375

8><>:
9>=>;

� ÿhb <
@H

@~ri

>a ÿ < @H

@~ri

>0

� �
�5�

where the second term in the brackets, < @H
@~ri
>0, is a mean

value that is independent of the amino acid sequence,
but dependent on conformation space {ri}.

A simple Hamiltonian of protein system using the type of the
contact potential is written as

H � 1

2

X
i; j 6� i

U�si; sj�A�~ri ÿ~rj� �6�

where A�~ri ÿ~rj� denotes the contact strength depending on the
distance rij between the ith and jth residues, U(si,sj) is the
contact potential between residues si and sj. For a real protein,
we have chosen a simple form of U(si,sj) given by Li et al. (Li
et al., 1997), who showed that a simple equation could be used
as a good approximation of Miyazawa and Jernigan's 20320
potential matrix elements (Miyazawa and Jernigan, 1985,
1996), which are statistically deduced pairwise interaction
potential energies among the 20 types of amino acids:

U�si; sj� � c2qiqj � c1�qi � qj� � c0 �7�
where the subscripts i and j label the 20 amino acid residues
and the three coef®cients are set to c0 = ±1.38, c1 = 5.08 and

c2 = ±7.40, in units of RT, the gas constant times room
temperature. Each si corresponds to a value qi [see Table I in
Wang and Lee (Wang and Lee, 2000)].

Using Equations 5 and 6, the ®nal numerical iteration
equation can be deduced from Equation 4 as
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where the superscript k represents the kth iteration, b = 1/RT
and <U(si,sj)>0 denotes the average contact potential with
respect to the probability distribution P0. In order to search the
con®gurations in real space, a continuous form of the function
A�~ri ÿ~rj� [denoted A(rij) for simplicity] is adopted in our work:

A�rij� � 1��������
2np
p eÿ�r

2
ijÿd2�=2n � e ÿs2

r2
ij

� s4

r4
ij

 !
�9�

where d is a value around the contact distance between residues
(it is set to 6.0 AÊ ) and n, e and s are adjustable parameters. The
distance between the connective residues is constrained by the
SHAKE algorithm as a bond (Ryckaert et al., 1977), and
therefore the interaction between any two connective residues
is skipped. The ®rst exponential term in Equation 9 can be
considered as a continuous approximate form of a delta
function, which vanishes quickly when rij > d. This term
together with the U(si,sj) factor counts for the major driving
force of protein folding: hydrophobic and hydrophilic inter-
actions, in which the d value (6.0 AÊ ) just corresponds to the
contact distance. The second term in Equation 9 can be
considered as an additional term used to prevent some residues,
such as hydrophobic residues, from moving closely. In this
work, a van der Waals-like potential is used, which has a
smoother distance dependence than the ordinary van der Waals
function. This term results in a potential barrier at a small
contact distance between two residues around 2 AÊ .

In order for a sequence to fold into a stable native structure,
it is reasonable to suggest that the native state has an energy
that is much lower than the energies of the bulk of misfolded
states, especially of the denatured states (Shakhnovich and
Gutin, 1993; Deutsch and Kurosky, 1996; Shakhnovich, 1998).
It also holds that there is a large energy gap between the energy
of the ground state and the average energy of all possible
conformations. As treated below, the average energy of a
protein is considered to be approximately equal to that of the
denatured state, because the conformational space is mainly
occupied by the denatured states. The average energy is related
to the term <U(si,sj)>0 in Equation 8. Because the energy of the
native state is less than the average, minimizing the quantity in
Equation 8 is likely to result in a large energy gap. In addition,
our method is essentially to ®nd a structure with higher
occupation probability, and therefore the predicted structure
should correspond to the conformation with nearly the lowest
free energy. With some modi®cations of this minimization
function, it is just the form of the difference in free energy used
in the work on reverse protein folding (Deutsch and Kurosky,
1996). Our method is nearly identical with those used in the
learning theory of `neural networks', the distinction being that
the probability functions are Gibbs distributions in this work.

A dif®cult task is to estimate the value of the term <U(si,sj)>0

in Equation 8. It can be estimated from the mean ®eld theory.
However, in order to test our computational approach, we
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prefer to estimate <U(si,sj)>0 by a more simpli®ed approach.
Because the conformational space is mainly occupied by the
denatured or misfolded states, the mean energy <H>0 can be
considered as the mean energy of denatured states, which can
be estimated by calculating the energy of the denatured state of
the given sequence. <H>0, the ensemble average of H(s,r) over
the sequence S, is expressed as

< H >0� 1

2

X
i

X
j 6� i

< U�si; sj� >0 A�rij�

� N�N ÿ 1�
2

< U�si; sj� >0
ÄA �10�

where <U(si,sj)>0 can be assumed to be a constant independent
of si, sj for simplicity and AÄ denotes the average of A(rij).

The energy of the native state for the given sequence sa =
{si

a} can be divided into two parts:

Ha � 1
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i;j 6� i
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i
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where the second term corresponds to the long-range inter-
action. The denatured state energy Ha is estimated by
neglecting all long sequence-range interactions, all those
terms whose sequence separation is >1 and taking some
average distance between residues. From the above, <H>0 can
be taken into account as the denatured state energy Ha, hence
Equation 10 can be written as
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2
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where we used two de®nitions,
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Obviously, U can be calculated from the given sequence. Thus,

hU�si; sj�i0 �
A

ÄA

2

N
U � km

2

N
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where we de®ne an adjustable parameter km = A/AÄ to avoid
calculating AÄ and A directly. Now <U(si,sj)>0 can be estimated
from the given sequence under a condition of an adjustable
parameter km.

Equation 8 shows that our approach differs from the energy
minimization method by the additional term <U(si,sj)>0. The
appearance of this term gives our approach close similarity to
other work (Deutsch and Kurosky, 1996) using free energy as a
minimization function.

In all performance tests, we set h in Equation 4 equal to 0.13
and the temperature T = 1. To decide simply on the values of
the unknown parameters n, e and s, the approach was ®rst
tested on bovine pancreatic trypsin inhibitor (BPTI). We
adjusted the three parameters to achieve the most accurate
prediction result and they were ®nally set as n = 360 AÊ 2, e =
0.17 and s = 1.35 AÊ . The parameter km was assigned a value of
7.2 for our target proteins. The iteration of our algorithm was
considered to be convergent when the positional difference
between two consecutive iterations for each bead was
<0.001 AÊ . Therefore, the tolerance for SHAKE was set to
0.001 AÊ . It should be noted that when the initial bond length
deviated too far from the constrained length, a harmonic
potential was used to constrain the bond length ®rst, followed
by the SHAKE constraint method. For a more ef®cient
conformational search, simulated annealing was adopted.

Results and discussion

A simple representation was adopted as the popular off-lattice
model, in which a residue was reduced to a bead and its
coordinate was in the position of the Ca atom of the residue.
Eight small proteins were selected as the tested targets from the
Protein Data Bank (PDB) (1bpi, 1fcl, 1ejg, 1a7f, 1kde, 1stu,
1e68 and 1ubq), in which 1a7f has two chains A and B. Each
protein was fully denatured as coil to be the initial structure in
the folding process, in which the secondary structures and the
disul®de bonds in their native structures are obviously broken.
The prediction results and the properties of these proteins are
given in Table I. It is found that the r.m.s.d. data are in the
range of recently reported results for ab initio protein fold
prediction (Reva et al., 1998; Bonneau et al., 2001). A value of
~6 AÊ for the r.m.s.d. has been suggested as a target value for a
small protein (Reva et al., 1998). The improvement in accuracy
of folding prediction is in effect in current ab initio protein
folding; however, the correct protein folding is still very
dif®cult, especially for folding prediction with a very
simpli®ed model, simple residue contact potential and with
minimum statistical information on known protein structures
(Osguthorpe, 2000). As a comparison, the CASP3 meeting
indicated that the absolute accuracy of all ab initio methods is
still low compared with solving the structure experimentally,
with over 90% of predictions for the `hard' targets having a
global r.m.s.d. for Ca >10 AÊ (Orengo et al., 1999).

In our work, the representation of native fold does not
depend on known structural information about the target, such

Table I. Properties of the proteins and the results of folding predictions

PDB code No. of
residues

NC of native
conformation

NC (and r.m.s.d.)
of initial
conformation

NC (and r.m.s.d.)
of ®nal
conformation

1bpi 58 180 0 (16.4) 92 (6.8)
1fcl 56 179 0 (10.0) 96 (5.6)
1ejg 46 144 0 (10.3) 76 (5.2)
1a7f 50 141 0 (18.6) 94 (3.9)
1kde 65 215 6 (20.5) 124 (6.3)
1stu 68 257 11 (17.3) 133 (6.7)
1e68 70 236 0 (19.8) 162 (4.0)
1ubq 76 229 18 (15.6) 135 (5.5)

NC is the number of native contacts. The distance criterion for contact of
two residues is 7.5 AÊ . The values of r.m.s.d. (AÊ ) were obtained from the
structures versus the native structures of the PDB.
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as the native secondary structure, disul®de bonds and the radius
of gyration, except for the distance between any two sequential
Ca atoms, which varies slightly around 3.8 AÊ . Figure 1a±d
show the native and ®nal folded structures of 1bpi and 1ejg.
The native structures are taken from X-ray structures. Their
initial structures before folding are coils without any secondary
structure. However, for the peptide 1bpi as seen in Figure 1a
and b, the folded structure obviously restores two helices
located at two ends and the part sheets that are held in the
native structure. For the case of 1ejg (see Figure 1c and d), two
segments at the left side of the folded structure are partial
helical, and are just helices in the native structure. Therefore,
some native secondary structures can be obtained and kept in
the folded structure in our folding calculation.

Of our eight target proteins, 1bpi, 1a7f and 1ejg each have
three disul®de bonds and the others have no disul®de bonds.
Here is an example of the changes in distance between the
disul®de-bonded cysteines in the folding process of 1a7f. The
A7±B7, A20±B19 and A6±A11 distances are 4.8, 6.3 and 5.5 AÊ

in the crystal structures and increase to 35.7, 34.0 and 18.2 AÊ in

their initial structure and ®nally become 6.6, 7.4 and 12.4 AÊ in
their corresponding folded structures, respectively. When the
disul®de bonds are constrained, the accuracy of prediction can
be improved.

The feature of our approach lies in the additional term of the
mean contact potential <U(si,sj)>0 in Equation 8. Its value is
fairly small and generally much less than the U(sa

i,sa
j) for the

small proteins. This additional term imposes obvious effects on
the predicted results and the convergence speed for real
proteins. A comparison between the performances of the two
algorithms with and without the term was made for 1ejg and
1bpi. For 1ejg, the algorithm with this term converges after
2257 iteration steps and produces 76 native contacts with an
r.m.s.d. of 5.2 AÊ (144 contacts in total in the native structure).
However, the algorithm without the mean potential term of
Equation 8 converges after 3673 iteration steps and produces
71 native contacts with an r.m.s.d. of 5.9 AÊ . For 1bpi, the
algorithm with the mean potential term converges after 2728
iteration steps and produces 92 native contacts with an r.m.s.d.
of 6.8 AÊ (180 contacts in total in the native structure).

Fig. 1. (a) The native structure of 1bpi; (b) the ®nal folded structure of 1bpi; (c) the native structure of 1ejg; (d) the ®nal folded structure of 1ejg.
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However, the algorithm without the term converges after 4390
iteration steps and produces 91 native contacts with an r.m.s.d.
of 7.0 AÊ . In most cases, the algorithm with the mean potential
results in an increase in the native contacts and therefore the
prediction accuracy. The previous minimization method aims
to ®nd a structure with the minimum energy. However, the
essence of our method is to search the conformational space
with a Boltzmann distribution, namely, to ®nd a structure with
a maximum occupying probability. This treatment is able to be
more consistent with the argument that the native state of a
protein does not just stay on the state with the minimum
energy; rather, it corresponds to the state with the lowest free
energy.

However, as in other minimization methods, there is still a
common problem in this method that the predicted result is
dependent on the initial conformation. The folded structure can
be trapped in the state with the local energy minimum. Table II
lists the predicted results for 1bpi with the different initial
conformations. Generally, the larger the deviation of the initial
conformation from the native conformation, the worse the
prediction accuracy will become. To reveal further the
difference between our relative entropy minimization method
and energy minimization method, the contact potentials of each
folded structure are also shown in Table II. It is interesting that
the better predicted conformation (with smaller r.m.s.d.) does
not necessarily have the lower potential. This indicates that the
energy minimization method might fail to determine the native
conformation of a protein. The fact that this method tends to
select the folded conformation with lower r.m.s.d., instead of
with a lower potential, implies that the entropy effect plays an
important role in the determination of the native conformation
of a protein. The relative entropy of each folded structure is not
given in Table II, because the calculation cannot be achieved
directly from our minimization method. Generally, the calcu-
lation of relative entropy de®ned in this work needs very
expensive sampling in conformational space for real proteins,
which is not the aim of our work. In fact, the advantage of this
method in practice is just that the calculation of entropy or free
energy is avoided and the degrees of freedom in sequence
space are averaged out.

Conclusions

We have presented a new and ef®cient algorithm for protein
folding, which essentially searches the conformation space
obeying a Boltzmann distribution to ®nd a conformation on
which the probability P0 is close to Pa of a given sequence. As

a reasonable result, the found conformation is near the native
structure of the given sequence. This approach is based entirely
on physical principles and is fundamentally different from
other structure prediction methods that employ homology
modeling, threading and statistical comparisons with the
known crystal structures. Moreover, this method only adopts
a simple, generalized contact potential that does not include
angle, torsion and other forms of potential (Lee et al., 1999). As
a result, this method just predicts the frame of the protein
backbone, and the conformation obtained does not contain the
detailed structure and image of some parts of the native
structure. An additional van der Waals-like potential is
required in our method. This term is effective in the short
range and actually acts as a repulsion force on closely located
residues. Of course, other function forms can replace this term.
However, as suggested elsewhere (Li et al., 1997), Equation 7
underestimates the attractions between positively and nega-
tively charged amino acids and in contact between both Cys
residues. In addition, owing to the statistical nature of
Miyazawa and Jernigan's matrix, certain features of inter-
residue interactions (such as orientational dependence of the
interaction, side-chain packing, etc.) are averaged out. Speci®c
features may be necessary for building a more realistic
potential for protein folding. In principle, this approach can
be applied as a uniform frame for both folding and inverse
folding of proteins (Wang et al., 1999). With some changes in
the de®nition of P0 and Pa, in which the sum on {si} space is
changed on r space, Equation 1 can lead to the algorithm for the
reverse folding problem (Wang et al., 1999).
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Table II. Results of folding predictions on 1bpi with different initial
conformations

R.m.s.d. of
initial conformation

R.m.s.d. of folded
conformation

NC of folded
conformation

Total contact
potential of
folded structure

12.6 6.4 91 ±286
13.3 6.6 89 ±277
15.4 7.1 87 ±325
16.5 6.9 90 ±295
17.1 7.4 85 ±269
19.3 7.9 83 ±294
22.3 8.1 82 ±346

NC is the number of native contacts. The values of r.m.s.d. (AÊ ) were
obtained from the corresponding structures versus the native structures of the
PDB. The contact potentials are in units of RT (see the text).
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