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Abstract: The entropic cost due to the loss of translational and rotational (T–R) degree of freedom
upon binding has been well recognized for several decades. Tightly bound ligands have higher
entropic costs than loosely bound ligands. Quantifying the ligand’s residual T–R motions after
binding, however, is not an easy task. We describe an approach that uses a reduced Hessian matrix
to estimate the contributions due to translational and rotational degrees of freedom to entropy
change upon molecular binding. The calculations use a harmonic model for the bound state but only
include the T–R degrees of freedom. This approximation significantly speeds up entropy calcula-
tions because only 6 3 6 matrices need to be treated, which makes it easier to be used in computer-
aided drug design for studying many ligands. The methodological connection with other methods is
discussed as well. We tested this approximation by applying it to study the binding of ATP, peptide
inhibitor (PKI), and several bound water molecules to protein kinase A (PKA). These ligands span
a wide range in size. The model gave reasonable estimates of the residual T–R entropy of bound
ligands or water molecules. The residual T–R entropy demonstrated a wide range of values, e.g., 4 to
16 cal/K �mol for the bound water molecules of PKA. # 2005 Wiley Periodicals, Inc. Biopolymers

79: 277–285, 2005
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INTRODUCTION

The association and dissociation of molecules are

important and frequent biological events that regulate

signal transduction and other biological processes.

The binding free energy provides a useful indicator

of the extent of an association or dissociation process.

Thus, significant efforts have been devoted to the

development of methods for calculating free energy

changes. The paper by Gilson et al.,1 for example,

gives a thorough review on the theoretical framework

for carrying out binding affinity calculations. An

important component in calculating an absolute free

energy of binding is the estimation of contributions

from the loss in translational–rotational (T–R) de-

grees of freedom (see, for example, Refs. 2–8). The

loss of T–R entropy is due to the restriction of overall

translational and rotational motions of the binding

molecule in the complex relative to the freely moving

state in solution. A rough approximation is to assume

a complete loss of the T–R degrees of freedom of the

ligand but this approximation does not work too well

as recognized in Refs. 2–8. However, it is difficult to

measure the T–R entropy contributions to binding

and theoretical estimates vary by more than an order

of magnitude.9

In principle, one can estimate the entropy of a

ligand–receptor complex by including all of the intra-

molecular degrees of freedom of the complex using

models such as normal mode analysis.5,10,11 Quasi-

harmonic models have also been introduced to take

some anharmonicity into account.8,12–17 In the quasi-

harmonic models, one uses coordinate fluctuation

covariance matrices obtained from molecular dynam-

ics (MD) simulations to construct effective force con-

stant matrices for harmonic analysis. Several forms

of this approach have also been recently discussed.18

The harmonic and quasiharmonic approaches both

require the diagonalization of large Hessian matrices

of dimension 3N � 3N where N is the number of

atoms in a molecule or molecular complex. The CPU

time and memory requirements for such calculations

grow rapidly with N. Therefore, it is a common ap-

proximation to include only a subset of atoms (e.g., �
carbons) to facilitate such calculations. Because the

major contributions of the entropy come from the

lowest frequency modes, a further approximation that

can significantly speed up calculations is to assume

both the receptor and the ligand are completely rigid

and use their relative motion in the complex to esti-

mate the residual T–R entropy after binding. This is

somewhat similar to the separation of T–R motions

from the internal motion in Swanson et al.17 and only

requires six degree of freedom to describe. Because

these motions are rather restricted in the complex, a

normal or quasinormal mode analysis can be carried

out, albeit in a reduced six-dimensional space in the

relative T–R degrees of freedom. This approximation

significantly speeds up calculations because only

small 6 � 6 matrices need to be treated. Therefore,

many more entropy calculations can be done quickly,

which is useful for computer-aided drug design and

for protein–ligand/protein–protein docking. In this

article, we derive formulae for calculating entropy

changes using this approximation and discuss the

methodological connection with several other har-

monic and quasiharmonic methods. Finally, we eval-

uate this approach by applying it to study the binding

of ATP, the peptide inhibitor PKI, and several bound

water molecules to protein kinase A (PKA).

THEORYAND METHOD

When two molecules bind, the overall T–R motions of the

component molecules become restricted. Here, we focus on

deriving equations for estimating the entropy loss resulting

from converting two freely translating and rotating mole-

cules into a complex with highly restricted relative motion.

We assume that solvation effects can be taken into account

by a suitable implicit solvent model so that only the solute

degrees of freedom are treated explicitly. To simplify the

equations, we first include explicitly only the T–R motion

of the ligand. We will consider the contributions from the

motion of the receptor later. The motion of the rigid ligand

can be described by three translational and three rotational

degrees of freedom. We start with the reduced classical

molecular partition function for the ligand defined in the six

relative T–R degrees of freedom:

Z ¼ 1

h6

Z
dp6 dq6 exp ð��H ðp; qÞÞ ð1Þ

where h is the Planck constant, � ¼ (kT)–1, k is the Boltz-

mann constant, T is the absolute temperature, H is the Ham-

iltonian describing the motion of the ligand, and q and p are

the coordinates and their conjugate momenta, respectively.

Here, we use three Cartesian coordinates at the center of

mass of the ligand to describe its translational motion and

three angular coordinates to describe its rotational motion

about three axes passing through its center of mass. Also, H
¼ Ek þ U, where Ek is the kinetic energy and U is the inter-

action potential of the ligand with its receptor. The interac-

tion potential is zero when the ligand is not bound to the

receptor. If one uses the three principal axes of inertia of the

ligand as rotation axes, the kinetic energy can be written as

Ek ¼ 1

2m
p2x þ p2y þ p2z

� �
þ 1

2lx
l2x þ

1

2ly
l2y þ

1

2lz
l2z ð2Þ

where px, py, pz and lx, ly, lz are the x, y, z components

of the linear and angular momenta respectively, Ix, Iy, and
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Iz are the principal moments of inertia, and m is the

mass of the ligand. Now, the integration on the six

momenta space contributes a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ6 m3IxIyIz=�6

q
to the partition function so that

Z ¼ 1

v

Z
dq6 exp ��U q6

� �� � ð3Þ

where

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h12�6

ð2�Þ6 m3 IxIyIz

s
ð4Þ

If one takes lx, ly, and lz to be the three generalized

momenta, the corresponding generalized coordinates are

the three angles ’, �, and  , describing the rotation of the

ligand around the three principal axes. In this treatment, the

volume element dq6 in the integration is simply

dxdydzd’d�d .
When the ligand is unbound, U is zero and the configu-

rational integral of Eq. (3) can be evaluated analytically to

give

Zfree ¼ 1

v
8�2V
� � ð5Þ

where the subscript free is used to denote the unbound state.
The integral over the angles gives a contribution of 8�2 in
the full rotational space, and the integral over the transla-

tional coordinates gives a factor V that is 1660 Å3 per mole-

cule in the standard state of 1 M (1 mol/L).

On the other hand, the integral cannot be evaluated ana-

lytically in the bound form and needs to be computed

numerically. Since the T–R motion of the ligand in the

complex is quite restricted, approximations similar to those

in a normal mode analysis can be used. One can expand U

about a local energy minimum and keep up to second-order

terms, noting that the first derivatives of U are zero:

U ¼ U0 þ 1

2
�qT D�q ð6Þ

where U0 is the interaction energy at the local minimum,

Dq is the small displacement vector of the six coordinates

relative to the receptor, and D is the second derivative

matrix with elements Dij ¼ @2U/@qi@qj, which in fact is a

reduced Hessian matrix. Because U0 is a constant, it can be

moved out of the integral. The remaining configurational

integral is quadratic. The Hessian matrix can be diagonal-

ized by an orthogonal transformation to get the six normal

modes. These restricted translational and rotational modes

have softer frequencies than the intramolecular modes and

therefore account for a large part of the residual entropy. If

kT >> h! where ! is one of the six vibrational frequencies,

one can treat these modes classically. Since the overall

molecular motion is relatively restricted, which implies the

exponential factor of the integral decreases rapidly as the

coordinates deviate from their equilibrium value, it is a

good approximation to set the limits of integration from

negative to positive infinity. The integral can then be com-

puted analytically so that Eq. (3) becomes

Z ¼ expð��U0Þ
v

ffiffiffiffiffiffi
2�

p� �6
ðkTÞ3 detðDÞ12 ð7Þ

where det(D) is the determinant of the Hessian matrix D.
The free energy of the complex can then be written as

F ¼ �kT ln Z ¼ U0 þ kT

2
ln
detðDÞðh�Þ12
m3 IxIyIz

ð8Þ

where h ¼ h/2�. Because F ¼ E – TS, where E is the energy

and S is the entropy, comparing Eq. (8) with the corre-

sponding expression for classical harmonic oscillators, E
¼ U0 þ 6kT, yields

S ¼ � k

2
ln
detðDÞðh�Þ12
m3 IxIyIz

þ 6k ð9Þ

6kT results from the average harmonic potential and kinetic

energy in the six degrees of freedom. For comparison, the

absolute T–R entropy of the ligand in the free state Sfree
obtained from Eq. (5) is

Sfree ¼ � k

2
ln

h12ð2��Þ6
m3 IxIyIz 8�2Vð Þ2 þ 3k ð10Þ

The factor 3kT results from the kinetic energy terms of the

free ligand. Using Eqs. (5) and (8), the free energy change

of the binding process can be written as

�F ¼ �kT ln
Z

Zfree
¼ U0 � kT ln

detðDÞ�1
2ð2�Þ3

8�2V�3
ð11Þ

From Eqs. (9) and (10), the entropy change upon binding is

then

�S ¼ k ln
detðDÞ�1

2ð2�Þ3
8�2V�3

þ 3k ð12Þ

And the entropy difference between two docked conforma-

tions, 1 and 2, can be obtained with the following expres-

sion:

��S ¼ �S2 ��S1 ¼ S2 � S1 ¼ � k

2
ln
detðD2Þ
detðD1Þ ð13Þ

So far, we have not written out the receptor coordinates

explicitly. However, including these coordinates does not

affect the formula for calculating entropy changes, although

it affects the expression for calculating the absolute entro-

pies of the unbound species and the complex, as we now

show.

When the receptor coordinates are also considered ex-

plicitly, we have 12 instead of 6 degrees of freedom. Using

similar arguments as before, the integral over all the momenta

now gives a factor of v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h24 �12

ð2�Þ12ðmAmBÞ3 IAxIAyIAzIBxIByIBz

q
,

where A and B denote molecule A and molecule B, respec-

tively. In the remaining configurational integral, we have

three more Cartesian coordinates to describe the transla-
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tional motion and three more rotational angles to describe

the rotational motion of the receptor in addition to the six

degrees of freedom that we used earlier to describe the T–R

motion of the ligand. Since the interaction potential is only

dependent upon the relative position between the two mole-

cules and this interaction has already been taken into

account in the above treatment, the contributions from the

receptor can simply be obtained by integrating over its six

degrees of freedom in the configurational integral in a field-

free environment. For the complex, the integration yields a

factor of 8�2VAB where VAB is the volume of a solution of

the complex AB in the standard state. Combining this with

the previous treatment of the ligand gives the following

expression for the free energy of the complex:

F ¼ �kT ln Z ¼ U0

þ kT

2
ln

detðDÞh24 �18ð2�Þ12
mAmBð Þ3IAxIAyIAzIBxIByIBz 8�2VABð Þ2

ð14Þ

When the free energies of the free molecules A and B are

subtracted to obtain a free energy change, the following for-

mula results:

�F ¼ U0 � kT ln
detðDÞ�1

2ð2�Þ3VAB

8�2VAVB�3
ð15Þ

where VA and VB are the volume of the solutions containing

species A and B, respectively. VA, VB, and VAB can be also

expressed as the inverse of the concentration of each spe-

cies if, as we have assumed, the size of the molecules can

be negligible compared to the volume of the solution in the

concerned state. Therefore, for the case that A and B have

the same concentrations, VA, VB, and VAB are the same, and

then Eq. (15) becomes Eq. (11). If the volumes of the three

solutions are different, especially for different concentra-

tions of A, B, and AB, one can take them into account by

using Eq. (15) directly instead of Eq. (11). The formulae

derived above show that the main part that needs to be com-

puted numerically is the determinant of the Hessian matrix,

which describes the curvature of the potential well at a local

minimum and should be positive in general. This deter-

mines within the harmonic approximation the residual

entropy after binding.

Comparisons with Other Methods

Our approach can be extended to approximately take anhar-

monic effects into account by using similar arguments as in

quasiharmonic calculations except that we only focus on

the lowest-frequency restricted T–R modes and assume

them to be uncoupled to the intramolecular modes. Thus,

our formulae can still be compared to those obtained for

quasiharmonic analysis. The quasiharmonic method

assumes that the fluctuation of the atomic coordinates Dx
around their equilibrium positions can be described by mul-

tivariable Gaussian distributions:12

Pð�xÞ / exp � 1

2
�xT ��1

ij

� �
�x

� �
ð16Þ

where �ij is the positional fluctuation covariance matrix.

Comparing this with Eq. (6), one can find the relation

��1
ij ¼ � Dij

� � ð17Þ

This relation has also been derived based on linear response

theory.19,20 One can obtain similar formulae in various qua-

siharmonic models by substituting Eq. (17) into Eq.

(9).14,15,18 For example, Schlitter’s formula14 can be written

as

S ¼ k

2
ln det

kTe2

h2
M�þ 1

� �
ð18Þ

where e ¼ exp(1) is the Euler number, and M and 1 are the

mass and unit matrices, respectively. This is similar to our

Eq. (9) except that the mass matrix is replaced by a six by

six matrix containing masses and moment of inertia, and

there is an extra unit matrix in the Schlitter formula. The

unit matrix in Eq. (18) results from a heuristic treatment of

quantum oscillators. This suggests that we can include

quantum effects by adding a similar unit matrix to our for-

mulae. This unit matrix also does not show up in Andri-

cioaei and Karplus’ classical expression for the entropy.18

The constant Euler number e in Schlitter’s formula is also

present in our formula; it comes from the kinetic energy

term [see Eqs. (9) and (12)]. However, this term cancels out

in calculating entropy changes DDS (see Eq. 12).
One may add intramolecular contributions within the

approximation of negligible couplings between restricted

T–R degrees of freedom and intramolecular motion. Here,

the Hessian matrix can be divided into parts corresponding

to different types of motions in the complex and the free

molecules. Thus, the free energy can be estimated from

�F ¼ U0 � kT

ln
detðDÞ det Dibnd

A

� �
det Dibnd

B

� �� 	�1
2ð2�Þ3VAB

det Difree
A

� �
det Difree

Bð Þ� 	�1
28�2VAVB�3

ð19Þ

If one substitutes each Hessian matrix by kT��1, where � is

the corresponding covariance matrix, Eq. (19) becomes

similar to Eqs. (5) and (12) in the work of Luo and Sharp15

except for a few differences. In Luo and Sharp’s work, ori-

entational motion is assumed to be isotropic about the axes

’ and  but quasiharmonic over small magnitudes of �.
Finkelstein and Janin’s treatment of T–R entropy loss upon

binding4 was even simpler. They also assumed that the

probability distribution of the T–R motion was uniform

within their allowed range; this is equivalent to setting the

exponential term to unity in the integrals of Eq. (3). On the

other hand, our treatment uses a more realistic Boltzmann

distribution.

280 Lu and Wong



System Preparation

Calculating the entropy of binding from Eqs. (8)–(12)

requires computation of the Hessian matrix. We first car-

ried out energy minimization to locate the local energy

minimum of a complex structure. The calculation of the

second derivative matrix with respect to the three transla-

tional degrees of freedom is trivial. The formulae for cal-

culating the elements of the second derivative matrix with

respect to the three rotational degrees of freedom are sum-

marized in the Appendix. The interaction potential

between two molecules in a complex included electro-

static and van der Waals contributions obtained by using

the AMBER force field.21 A distance-dependent dielectric

function (" ¼ rij) was used in the electrostatic calculations

to approximate solvent screening effects.

The calculations were applied to study PKA, which is

one of the most studied protein kinases. The crystal struc-

ture (pdb code: 1ATP) of the C subunit of PKA was

selected. This structure contains ATP, a peptide inhibitor

(PKI), two Mn ions (changed to Mg ions in the calculation

to mimic the reactant state before phosphoryl transfer), and

bound crystal water molecules. The charges of the phos-

phorylated residues were obtained by using Gaussian (6-31

þ G* basis set) together with the RESP method imple-

mented in AMBER. The polyphosphate parameters for

ATP were from the work of Meagher et al.22 developed for

the AMBER force field. We took ATP, PKI, and 11 bound

crystal water molecules as the ligand in the T–R entropy

calculations and the rest of the system as the receptor.

Seven of the selected 11 water molecules were conserved

water molecules found in all the crystal structures (with or

without substrates or their analogs) described in Shaltiel

et al.23 The other four nonconserved water molecules were

selected for comparison; they were more loosely bound.

The standard state of ATP and PKI was taken to be 1 M and

that for water was 55.6 M. The calculation was based on

structures obtained by carrying out 5000 steps of conju-

gate–gradient energy minimization. For comparison, we

also carried out quasiharmonic-like analysis by using

results from a MD simulation of the complex. In setting up

the MD simulation, the system was first relaxed by energy

minimization, followed by heating from 0 to 300 K in 20

ps. The system was then equilibrated for 100 ps at 300 K

followed by 500 ps of production run to generate a trajec-

tory (snapshots saved every 1 ps) for structural fluctuation

analysis, which was used in the quasiharmonic calculations.

During the simulation, the nonbonded cut-off distance was

set to 9.0 Å, and SHAKE24 was used to constrain bonds

involving hydrogen atoms.

RESULTS AND DISCUSSION

T–R Entropy, Frequencies, and
Fluctuations

The entropy and other property calculation results are

listed in Table I.

Equations (9) and (12) were used to calculate the

residual T–R entropy, S, and entropy change upon

binding, DS. To estimate the rigidity of binding, the

formula 1
4
�iA

2
i ¼ 1

2
kT, where � as the eigenvalue of

the Hessian matrix, is used to get the vibrational

Table I Translational–Rotational Entropies at 300 K and Other Properties of Ligandsa

Ligand

Mass

(amu) S DS(cal/k �mol) DScouple At Ar

Frequency

range (cm�1)

ATP 503 16.1 �57.4 1.4 0.035 0.011 123–259

PKI 2194 27.6 �60.0 1.3 0.043 0.049 61–138

Bound water

a 18 8.1 �22.2 0.5 0.18 0.22 153–816

bb 18 7.2 �23.4 0.3 0.15 0.21 128–655

c 18 10.2 �20.1 0.3 0.25 0.24 63–636

d 18 4.0 �26.3 0.1 0.11 0.19 163–827

e1 18 7.4 �22.9 0.2 0.14 0.28 175–845

e2 18 4.5 �25.8 0.1 0.11 0.22 195–824

f 18 6.8 �23.5 0.1 0.15 0.21 170–752

471 18 15.6 �14.7 0.6 0.36 0.55 113–600

459 18 16.5 �13.8 0.2 0.34 0.57 51–375

523 18 11.6 �18.7 0.1 0.26 0.26 56–587

412 18 12.2 �18.1 0.1 0.24 1.99 51–375

a S, residual translational–rotational entropy of ligand; DS, entropy change upon binding; DScouple, the Con-
tribution to entropy from the translation–rotation cross-term (see text); At and Ar, the mean vibrational ampli-

tudes (see text) of T–R Motion; and the frequency range of the T–R modes shown by the lowest and highest

wave number.
b Reference data obtained with a constant dielectric to avoid the negative eigenvalue in the calculation using

distance-dependent dielectric.
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(fluctuating) amplitude (Ai for the ith normal mode).

It is worth noting that it has been recognized that the

amplitude calculated from normal mode cannot be

compared directly to that obtained from MD simula-

tions;8 it only has relative meaning when comparing

different modes of motion. Table I gives the mean

translational amplitude, denoted as At and the mean

rotational amplitude, denoted as Ar over all corre-

sponding normal modes determined by the reduced

Hessian matrix for each bound molecule.

It is found that ATP gives a smaller Sfree (73.5 cal/

K �mol) and residual entropy (16.1 cal/K �mol) rela-

tive to the PKI. One reason is that ATP has less mass

(503 amu) and size than PKI (2194 amu); the other

reason is the tighter binding of ATP relative to PKI.

The amplitude in the translational (0.035 Å) and rota-

tional (0.011 radian) motion of ATP is smaller than

that of PKI (0.043 Å and 0.049 radian). This is rea-

sonable because ATP is deeply buried in the binding

pocket and surrounded by the protein, whereas PKI is

more solvent exposed.

To compare with experimental results, we also cal-

culated the entropy loss of the ATP congener inhibi-

tor balanol upon binding with PKA (complex PDB

code: 1bx6). The DS is about �51.6 cal/K �mol. If

one uses the binding energy obtained from a more

sophisticated Poisson model, �26 kcal/mol, which

includes nonpolar and electrostatic contributions

except for the loss of T–R entropy,25,26 and adds to it

the entropy change obtained here, the resulting bind-

ing free energy of �10.5 kcal/mol is very close to the

experimental result of about �10 kcal/mol.27

We also selected 11 water molecules in the crystal

structure to study their entropy of binding to PKA.

The first 7 water are conserved water molecules at the

active site in the ternary crystal structure 1ATP. The

active site consists of an extended network of interac-

tions that weave together the kinase core. The neigh-

bors of each water molecule and their properties are

presented in Table II of Shaltiel et al.23 The other 4

nonconserved water molecules (numbered according

to the PDB file) are selected for comparison. These 4

water molecules are more loosely bound. Our calcu-

lation shows that the 7 conserved water molecules

(a–f) contribute entropy ranging from 4.0 to 10.2 cal/

K �mol while the other 4 loosely bound water mole-

cules show an entropy range between 11.6 and

16.5 cal/K �mol. Such T–R entropy values and ranges

are large enough to affect binding processes and/or to

modulate the function and dynamics of the system.

Dunitz28 estimated that each firmly bound water mol-

ecule in solid hydrates contributes around or less than

10 cal/K �mol to the entropy while a weakly bound

water molecule in a protein contributes more, about

14 to 15 cal/K �mol but hardly greater than 17 cal/

K �mol. Fischer et al.29 estimated by normal mode

analysis that the entropy contributed by the librational

modes corresponding to the translational and rota-

tional motions of a water molecule was 9.4 cal/

K �mol in bovine pancreatic trypsin inhibitor (BPTI).

The standard entropy of ice at its freezing point is

9.9 cal/K �mol.28 The conserved water molecules in

PKA strongly interact with their surrounding residues

and/or cations (magnesium) and hence adopt well-

defined equilibrium positions and orientations. The

three internal vibrational modes have frequencies so

high that they have little contribution to entropy at

300 K.28 Fischer’s normal mode calculations (also

using distance-dependent dielectric) also support this

statement (see Table II in Fischer et al.29). The fre-

quencies of the T–R motion obtained with the present

model for the 7 conserved water molecules are in the

range 60 � 850 cm–1 (see Table I), very close to the

range (100 � 630 cm–1) of the six lowest frequencies

of a water molecule buried in BPTI obtained by

Fischer et al.29 using a more expensive model.

Fischer et al.’s work also showed that the three high-

est frequencies corresponding to the internal motion

were much larger (1776, 3357, and 3434 cm–1, re-

spectively) and similar to those of an isolated water

molecule (1737, 3323, and 3370 cm–1 for TIP3P

model of water). Thus, the entropy content of the

internal high frequency modes is nearly negligible

(less than 0.1 of the total entropy of a water mole-

cule). The entropy calculated by the present reduced

Hessian matrix method adequately accounts for the

entropy of a water molecule. Table I gives a range in

free energy contribution from the T–R entropy of

bound water molecules of about 3.1 kcal/mol. Ac-

cording to the residual entropy, we can sort the 7

conserved water molecules by their tightness of bind-

ing as: d, e2, f, b, e1, a, c. From the structure,23 it is

found that water molecule d (denoted as W-d and

similar for the others) interacts with the inhibitory

metal ion Mg2 (Mn in the original crystal structure),

ATP(O2G), and ATP(ribose 30OH). Both W-e2 and

W-e1 interact with Mg1, ATP, and Asp-184. With

the strong interaction with metal ions, the motion of

these water molecules is very restricted and similar to

the case of solid hydrates. W-f is found at a hydrogen

bond–forming distance from the hydroxyl group of

Tyr-330, the side chain of Glu-127, and the 20OH of

the ribose ring of ATP. W-a, b, c interact directly

with one of the conserved residues Lys-72, Glu-91,

Asp-184 at the active site cleft, respectively, in which

W-b is the most buried one. The other four noncon-

served water molecules W-471, 459, 523, and 412

show larger entropy, consistent with their loose bind-
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ing. These four water molecules reside further away

from the active site cleft and contact at most one

PKA residue.

The positional and orientational fluctuation analy-

sis from the MD simulation trajectory also shows that

the conserved water molecules have small fluctua-

tions from their average positions and orientations

relative to the four weakly bound waters. For exam-

ple, the average fluctuation in the three translational

directions ð ��xÞ of W-a is 3.72 Å, and its average

fluctuation in three rotational directions ð ���Þ is 0.36
radian. For W-e1, ��x is 2.66 Å, ��� 0.41 radian. For

W-523, ��x is 1.89 Å, ��� 1.19 radian. The most flexi-

ble water molecule, W-459, has ��x ¼ 30.04 Å, ��� ¼
1.27 radian. In fact, this water molecule moves

around freely during the simultion and the calculated

entropy of 16.5 cal/K �mol approaches the standard

entropy (16.7 cal/K �mol at 298 K) of liquid water.28

The ligand ATP or PKI has 10-fold smaller positional

and orientational fluctuations than the water mole-

cules. These large ligand molecules are more difficult

to move or rotate inside the protein. However, it is

found that the fluctuation obtained with MD simula-

tion is generally larger than that calculated from the

Hessian matrix both for the water molecules and the

ligands. Therefore, the entropy loss calculated with

the quasiharmonic approximation [Eq. (18)] is gener-

ally larger than that calculated by using the harmonic

potential approximation. This was also shown in the

analysis of MD results by Lazaridis et al.8 This is due

to the more extensive conformational sampling by

their MD simulation and also comes from the anhar-

monicity of the potential surface of intermolecular

interaction. The fluctuations of some water molecules

obtained by the Hessian matrix method did not match

those from MD simulation too well. For example,

W-f showed small residual T–R entropy in our model

but large fluctuation in the MD simulation. This is

because the residual T–R entropy calculations did not

include the contributions from the protein. For exam-

ple, the neighboring residue Tyr-330 of W-f is

located near the C terminal ‘‘tail’’, Glu-127 at the

linker region, and Leu-49 at the Gly-rich-loop and

these three regions are all very flexible in PKA.

A natural extension of our model is to use an

effective Hessian matrix obtained from a MD simula-

tion as in quasiharmonic analysis but these calcula-

tions are significantly more expensive to do due to

the extra costs in running MD simulations.

In the frequency analysis, we also found that the

frequencies of the T–R modes for the ligands ATP

and PKI distributed in a narrow range, indicating that

the entropy contributions from translation were not

far from rotation. On the other hand, for the small

water molecules, the frequency ranges were much

wider and generally had higher frequencies compared

to the larger ligands.

Coupling Between Translation
and Rotation

We also calculated the effects due to the coupling

between the translational and rotational motion by

including the cross-terms between the rotational and

translational motion in the Hessian matrix. If the cou-

pling effects are negligible, the cross-terms between

the translational and rotational motion can be

ignored. Accordingly, the 6 � 6 Hessian matrix can

be divided into two 3 � 3 matrices, one correspond-

ing to the translational motion and the other to the

rotational one. Denoting the entropy obtained by the

latter method as Sdecouple, the entropy difference

resulting from the coupling effects can be calculated

as DScouple ¼ S – DSdecouple. These contributions are

listed in Table I. One can see that the coupling effects

are small, of the order of 0–1.5 cal/K �mol and less

than 10% of the residual T–R entropy. Therefore, the

coupling between the translational and rotational

motions is normally weak, especially for the small

bound water molecules. This supports treatments,

such as those in Swanson et al.’s17 work, that separate

these two types of motions. In addition, the coupling

between the translational and rotational motion in our

calculations all gave positive contributions to the

entropy of the bound form for all the cases studied

here. As a result, the coupling effects decrease the

entropy change of binding somewhat.

Dielectric Effect

The constant dielectric model was also tested in our

calculations. We found that, for ATP and PKI, the

calculated entropies differ by less than 1 cal/K �mol

from those obtained by using distance-dependent di-

electric. For water molecules, the differences are also

generally less than 2 cal/K �mol.

CONCLUSIONS

An approximate approach for estimating translational

and rotational entropy loss upon protein–ligand and

protein–protein complexation is proposed and tested

for the binding of ATP, peptide inhibitor, and bound

water molecules to protein kinase A. The calculations

gave reasonable estimates for the entropy change with

significantly less computational costs because only 6

� 6 matrices (or 3 � 3 matrices when coupling

between translational and rotational degrees of freedom
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is ignored) need to be diagonalized. This work shows

that the T–R entropy loss upon binding can vary

greatly, by tens of cal/K �mol, for different ligands or

different binding sites. For lighter small ligands, such

as water molecules, the T–R entropy was more depend-

ent on intermolecular interactions. This result contrasts

that of Finkelstein and Janin4 in which the T–R entropy

loss upon binding is always roughly half of the total T–

R entropy. Generally, for rigid tight protein–ligand

binding, our reduced Hessian approach appears to be a

good approximation. For flexible protein–ligand com-

plexation this method may underestimate the residual

T–R entropy of the ligand, because anharmonic effects

may become significant. Here, we used a relatively

simple distance-dependent dielectric model for electro-

static calculations but more sophisticated implicit-sol-

vent models such as the Generalized Born and Pois-

son–Boltzmann models can also be used. The analyses

on bound waters also suggest a potential application of

this approach to protein–protein/ligand docking or to

drug design. A tightly bound water is likely to be less

mobile and thus presents a small residual T–R entropy.

This was the case when we compared our results

between the conserved water molecules and the loosely

bound water molecules, and Yu et al.30 attempted to

address a similar question in their work. If tightly

bound water molecules indeed have small residue T–R

entropy, our reduced Hessian matrix approach could

provide a rapid means of identifying these water mole-

cules from a crystal structure. These sites are useful to

consider in designing inhibitors to target a protein. The

approach presented here can also be applied to study

molecules with multiple domains, in which one can

obtain the residual T–R entropy of each domain upon

complex formation. It can also be extended to construct

a higher dimensional, i.e., larger than 6 � 6, Hessian

matrix to study the residual entropy in multiple domain

structures.

APPENDIX

The following symbols were used: A1, A2, A3

x Cartesian coordinates of an atom of

the ligand

xc Cartesian coordinates of an atom rel-

ative to the center of mass of the

ligand

A1, A2, A3 three rotational axes, parallel to the x
(x1), y (x2), z (x3) axes, through the

center of mass of the ligand

V interaction potential between the

receptor and the ligand

V0
i the partial derivative @v/@x

V00
ij the second derivative @2v/@xi@xj
�i a rotational angle about one of the Ai

axes, i ¼ 1, 2, 3

The calculation of the first and second derivatives

of V, V0
i , and V00

ij with respect to the translational

degrees of freedom are trivial. The first derivatives

with respect to the rotation angles are calculated as

@V

@�i
¼
X X

j ¼ 1;2;3

@xj
@�i

@V

@xj

 !
¼
X X

j ¼ 1;2;3

@xcj
@�i

V0
j

 !

¼
X X

j;k ¼ 1;2;3

"ijkx
c
j V

0
k

 !
ð20Þ

where the first sum is taken over all the atoms in

the ligand. "ijk is the Levi–Cevita symbol, which

equals 1 when {ijk} is an even permutation of {123},

�1 when {ijk} is an odd permutation of {123}, and

0 otherwise. The second derivatives of V are cal-

culated as

@2V

@�i@�j
¼
X

xCi V
0
j � xCk x

C
k V

00
ij þ xCi x

C
k V

00
jk

�
þxCj x

C
k V

00
ik þ xCi x

C
j V

00
kk

�
ð21Þ

@2V

@�i@�i
¼
X

�xCj V
0
j � xCk V

0
k þ xCj x

C
j V

00
jj

�
þxCk x

C
k V

00
kk � 2xCj x

C
k V

00
jk

�
ð22Þ

where the sum is taken over all the atoms in the

ligand, and i, j, and k are any ordered set of 1, 2, and

3 but different from each other. The expression @2V
@�i@�j

indicates that the Hessian matrix is not symmetric in

general because rotation operations are not commuta-

tive. However, it is the case at a local minimum when

the torque is zero. We therefore only calculated @2V
@�i@�j

and made @2V
@�j@�i

¼ @2V
@�i@�j

.

The cross term is

@2V

@�i@xj
¼
X X

k;l ¼ 1;2;3

"iklX
c
kV

00
ij

 !
ð23Þ

and can be shown to be symmetric at a local mini-

mum.
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