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a b s t r a c t

We study a reduced Poisson–Nernst–Planck (PNP) system for a charged spherical solute
immersed in a solvent with multiple ionic or molecular species that are electrostatically
neutralized in the far field. Some of these species are assumed to be in equilibrium.
The concentrations of such species are described by the Boltzmann distributions that are
further linearized. Others are assumed to be reactive, meaning that their concentrations
vanish when in contact with the charged solute.We present both semi-analytical solutions
and numerical iterative solutions to the underlying reduced PNP system, and calculate the
reaction rate for the reactive species. We give a rigorous analysis on the convergence of
our simple iteration algorithm. Our numerical results show the strong dependence of the
reaction rates of the reactive species on the magnitude of its far field concentration as
well as on the ionic strength of all the chemical species. We also find non-monotonicity
of electrostatic potential in certain parameter regimes. The results for the reactive system
and those for the non-reactive system are compared to show the significant differences
between the two cases. Our approach provides a means of solving a PNP system which in
general does not have a closed-form solution even with a special geometrical symmetry.
Our findings can also be used to test other numerical methods in large-scale computational
modeling of electro-diffusion in biological systems.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Concentrations of ionic and molecular species are key quantities in the description of biomolecular processes at
nanometer to submicron scales. For instance, the concentrations of ligands (substrates), receptors (enzymes), and ions
regulate almost all biomolecular and cellular activities. Variations in such concentrations often result from molecular
diffusion, reaction, and production or depletion. As the random motion arising from thermal fluctuations, molecular
diffusion causes the spread of localized signals for intracellular and intercellular communications. Chemical reaction and
enzymatic regulation are also associated with the diffusion, production, and depletion of molecular species. This way,
molecular diffusion and enzyme reaction form a coupled system which is often associated with signal transduction, gene
expression, and metabolism networking.
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Biomolecular diffusion is often driven by an electric field. In such electro-diffusion, the electrostatics can strongly affect
the diffusion which in turn affects the rate of association between molecules such as the binding of a ligand to a receptor;
cf. e.g., Refs. [1,2]. The electric field in a charged biomolecular system is determined not only by target macromolecules but
also by the concentrations of all the charged species, including diffusive ions and small charged molecules.
Mean-field approximations of diffusive molecules or ions are often given by the system of Poisson–Nernst–Planck (PNP)

equations. Such a system describes properly the coupling of electrostatics and diffusion of charged chemical species. The
PNP system is a combination of Nernst–Planck equations and Poisson equation. The Nernst–Planck equations describe the
time evolution of concentrations of chemical species. They are of the form

∂ci
∂t
−∇ · [Di(∇ci + βqici∇ψ)] = 0,

where ci = ci(x, t) is the local concentration of the ith charged molecular or ionic species with charge qi at the spatial point
x at time t , Di the diffusion constant, and β the inverse thermal energy. The Poisson equation, given by

∇ · ε∇ψ = −ρ,

relates the electrostatic potentialψ and the charge densityρ that consists of both fixed andmobile charges, the latter being a
linear combination of all the concentrations ci. Here ε is the product of the dielectric coefficient and the vacuumpermittivity
ε0. (More details of these equations are given in the next section.)
In case of no chemical reaction, the steady-state Nernst–Planck equations lead to the Boltzmann distributions of

concentrations in terms of the electrostatic potential [3]. The Poisson equation then becomes the Poisson–Boltzmann
equation [4–10]. For reactive chemical species, the non-equilibrium charge distributions deviate from the Boltzmann
distribution, and the Poisson equation is needed to determine the electrostatic field. In this case, the PNP system can
then be used to calculate the reaction rate. Such calculations are important, as recent studies have shown that substrate
concentrations affect the reaction rates, a fact that is ignored in the usual Debye–Hückel limiting law [3,11].
The PNP system can be hardly solved analytically, even for the steady-state systemwith a very simple geometry. Themain

difficulty arises from the nonlinear coupling of the electrostatic potential and concentrations of chemical species. Numerical
methods for PNP systems have been developed for simple one-dimensional settings and complex three-dimensionalmodels,
and have been combined with the Brownian dynamics simulations; cf. Refs. [12–21].
In this work, we consider a reduced PNP system for diffusion of ionic or molecular species in a solution in an electric

field induced by charged molecules. The modification from the full PNP system is made by assuming that the concentration
of each non-reactive molecular species is given by the Boltzmann distribution. Such distributions are linearized, mimicking
the Debye–Hückel approximation. The concentration fields to be determined are those of reactive species. We focus on
a spherical, uniformly charged solute particle in a solvent with multiple molecular or ionic species, and only consider the
steady-state of the system.We first derive semi-analytical solutions of the underlying, reduced PNP system.We then present
a simple iterationmethod for numerically solving the systemusing our semi-analytical solution formula. The convergence of
our numerical method is proved. We further calculate numerically the equilibrium concentrations, electrostatic potential,
and the reaction rates of reactive species. We finally compare our result with that of the case of no reactive species. Our
work provides a means of solving a PNP system which in general does not have a closed-form solution even with a special
geometrical symmetry. Our findings can also be used to test other numericalmethods in large-scale computationalmodeling
of electro-diffusion in biological systems.
In Section 2,wedescribe our reduced PNP system. In Section 3,wederive the semi-analytical solution formula andpresent

our numerical scheme for obtaining the solution. In Section 4, we use our formula and scheme to calculate the electrostatic
potential, the molecular or ionic concentrations, and the reaction rates of reactive species. In Section 5, we compare our
results with the case that all the chemical species are non-reactive. Finally, in Section 6, we draw conclusions. In Appendix A,
we give details of our derivation of our semi-analytical solution formulas; in Appendix B, we prove the convergence of our
numerical scheme.

2. Model description

We first describe our reduced Poisson–Nernst–Planck (PNP) system for a general case in which some charged solutes are
immersed in a solvent. There are multiple, diffusive ionic or molecular species in the solvent. Some of them are reactive and
some are not. We then describe our reduced PNP system for a uniformly charged spherical solute in a solvent with multiple
ionic or molecular species.

2.1. The general case

Let Ω denote the entire region of an underlying solvation system. Let Ωm and Ωs denote the solute region and solvent
region, respectively. Let also Γ denote the interface that separates Ωs and Ωm, cf. Fig. 2.1. We shall use the interface Γ as
the dielectric boundary. Let εm and εs denote the dielectric constant of the solute regionΩm and that of the solvent region
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Fig. 2.1. The entire region of a solvation systemΩ is divided into the solute regionΩm and the solvent regionΩs by the dielectric boundary Γ .

Ωs, respectively. We define

ε(x) =
{
εmε0 if x ∈ Ωm,
εsε0 if x ∈ Ωs.

We assume that the solutes are charged with a fixed charge density ρf = ρf (x) distributed over the solute region Ωm.
We also assume that there areM ionic or molecular species in the solvent. We denote by ci(x) the local concentration of the
ith such chemical species at a spatial point x in the solvent regionΩs. The mobile local charge density in the solvent region
is given by

ρi(x) =
M∑
j=1

qjcj(x) for any x ∈ Ωs,

where qj = zje with zj the valence of jth species and e the elementary charge. We recall for any region D in the space that
the characteristic function χD = χD(x) is defined by χD(x) = 1 if x ∈ D and χD(x) = 0 if x 6∈ D. With the characteristic
functions χΩm and χΩs , the total charge density ρ = ρ(x) of the entire system region is then given by

ρ(x) = χΩm(x)ρf (x)+ χΩs(x)ρi(x) if x ∈ Ω

=

{
ρf (x) if x ∈ Ωm,
ρi(x) if x ∈ Ωs.

The full Poisson–Nernst–Planck (PNP) system that models the diffusive ionic or molecular species consists of the
following equations:

∂ci
∂t
= ∇ · [Di(∇ci + βqici∇ψ)] for x ∈ Ωs and t > 0, i = 1, . . . ,M, (2.1)

∇ · ε∇ψ = −ρ for x ∈ Ω and t > 0, (2.2)

together with some initial and boundary conditions. Here,ψ is the electrostatic potential. All the concentrations c1, . . . , cM
and the potentialψ can depend on time t . The parametersD1, . . . ,DM are diffusion constants.We shall only consider steady-
state solutions to this PNP system. Therefore, we set the time-derivative terms to zero and assume that all the concentrations
and the electrostatic potential are independent on time.
We assume that the boundary conditions for the entire system are given by

ci(∞) = c∞i , i = 1, . . . ,M,
ψ(∞) = 0,

in the case thatΩ = R3 is the entire space, and by

ci(x) = c∞i for x ∈ ∂Ω, i = 1, . . . ,M,
ψ(x) = 0 for x ∈ ∂Ω,

in the case that Ω is not the entire space but rather has a nonempty boundary ∂Ω , where c∞1 , . . . , c
∞

M are given positive
numbers that represent the bulk concentrations.
We assume that the firstm species (1 ≤ m < M) are reactive and the others are non-reactive. These are defined through

the boundary conditions for the concentrations on the interface Γ as follows:

ci = 0 on Γ , i = 1, . . . ,m, (2.3)
∂ci
∂n
+ βqici

∂ψ

∂n
= 0 on Γ , i = m+ 1, . . . ,M, (2.4)

where ∂/∂n denotes the normal derivative with the unit normal n pointing from the solute regionΩm to the solvent region
Ωs, cf. Fig. 2.1. The condition (2.3) means that when an ion or molecule of the ith species hits the boundary Γ , it disappears
due to chemical reaction. Notice that the flux of the ith species is defined by

Ji = −Di(∇ci + βqici∇ψ).
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Consequently, the diffusion equation and the no-flux boundary condition are given respectively by
∂ci
∂t
+∇ · Ji = 0 and Ji · n = 0,

which are exactly (2.1) and (2.4), respectively.
For the non-reactive species (m < i ≤ M), the steady-state diffusion equations, the boundary conditions, and the

corresponding no-flux boundary conditions on Γ in fact lead to the Boltzmann distributions ci(x) = c∞i e
−βqiψ(x) for any

x ∈ Ωs and all i = m + 1, . . . ,M . This means that cm+1, . . . , cM are all in equilibrium. Therefore, the only concentrations
that are unknown variables are those of reactive species c1, . . . , cm. Our steady-state PNP system becomes

∇ · (∇ci + βqici∇ψ) = 0 inΩs, i = 1, . . . ,m,
ci = 0 on Γ , i = 1, . . . ,m,
ci = c∞i on ∂Ω, i = 1, . . . ,m,

∇ · ε∇ψ = −χΩmρf − χΩs

M∑
i=m+1

qic∞i e
−βqiψ − χΩs

m∑
i=1

qici inΩ, (2.5)

ψ = 0 on ∂Ω.

We now assume the electrostatic neutrality in the far field of the solvent:
∑M
i=1 qic

∞

i = 0. With this assumption, we
obtain the small potential approximation

M∑
i=m+1

qic∞i e
−βqiψ ≈

M∑
i=m+1

qic∞i (1− βqiψ) = −
m∑
i=1

qic∞i − εsκ
2ψ,

where

κ =

√√√√√β
M∑

i=m+1
q2i c
∞

i

εs
. (2.6)

This can be viewed as a parameter of partial ionic strength. The Poisson equation (2.5) for the electrostatic potential ψ can
now be approximated by

∇ · ε∇ψ − χΩsεsκ
2ψ = −χΩmρf − χΩs

m∑
i=1

qi
(
ci − c∞i

)
inΩ.

To summarize, our reduced PNP system is
∇ · (∇ci + βqici∇ψ) = 0 inΩs, i = 1, . . . ,m, (2.7)
ci = 0 on Γ , i = 1, . . . ,m, (2.8)

ci = c∞i on ∂Ω, i = 1, . . . ,m, (2.9)

∇ · ε∇ψ − χΩsεsκ
2ψ = −χΩmρf − χΩs

m∑
i=1

qi
(
ci − c∞i

)
inΩ, (2.10)

ψ = 0 on ∂Ω. (2.11)

2.2. The case of a spherical solute

We assume now that the solute region Ωm is a sphere centered at the origin with radius a, cf. Fig. 2.2, Thus, the solute
region, the solvent region, and the solute–solvent interface are given respectively by

Ωm = {x : |x| < a}, Ωs = {x ∈ R3 : |x| > a}, Γ = {x ∈ R3 : |x| = a}.
We assume that the fixed charge density is a constant: ρf (x) = Q inΩm. We also assume as before that only the firstm

species are reactive and the others are not. From (2.7)–(2.11), we have
∇ · (∇ci + βqici∇ψ) = 0 if |x| > a, i = 1, . . . ,m, (2.12)
ci = 0 if |x| = a, i = 1, . . . ,m, (2.13)

ci(∞) = c∞i , i = 1, . . . ,m, (2.14)

∇ · ε∇ψ − χΩsεsκ
2ψ = −χΩmQ − χΩs

m∑
i=1

qi
(
ci − c∞i

)
in R3, (2.15)

ψ(∞) = 0. (2.16)
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Fig. 2.2. The geometry of a spherical solute.

We observe that Eq. (2.15) for the potential ψ is equivalent to the following equations and jump conditions [9]

∆ψ = −
Q
εm

if |x| < a, (2.17)

∆ψ − κ2ψ = −

m∑
i=1

qi
εs

(
ci − c∞i

)
if |x| > a, (2.18)

[[ψ]] = [[ε∇ψ · n]] = 0 on Γ , (2.19)

where the jump [[u]] across Γ for any function u is defined by [[u]] = u|Ωs − u|Ωm on Γ .

3. Semi-analytical and numerical solutions

In this section, we solve semi-analytically and numerically the boundary-value problem (2.12)–(2.16).

3.1. Semi-analytical solutions

Our system (2.12)–(2.16) is radially symmetric. Hence all the concentrations c1, . . . , cM and the potentialψ are functions
of r = |x|. With a series of calculations presented in Appendix A, we obtain the following semi-analytical solution

ψ(r) =


−
Q
6εm
r2 + K2 if r < a,

Ĉ1
eκr

r
+ Ĉ2

e−κr

r
−
eκr

2κr

∫ r

a
se−κsd̂(s)ds+

e−κr

2κr

∫ r

a
seκsd̂(s)ds if r > a,

(3.1)

ci(r) = c∞i

(∫
∞

a
s−2eβqiψ(s)ds

)−1
e−βqiψ(r)

∫ r

a
s−2eβqiψ(s)ds if r > a, i = 1, . . . ,m, (3.2)

where

d̂(r) =
m∑
i=1

qi
εs

[
ci(r)− c∞i

]
, (3.3)

and the integration constants are

Ĉ1 =
1
2κ

∫
∞

a
se−κsd̂(s)ds, (3.4)

Ĉ2 =
Qa3eκa

3εs(κa+ 1)
+
e2κa(κa− 1)
2κ(κa+ 1)

∫
∞

a
se−κsd̂(s)ds, (3.5)

K2 =
Qa2

6εm
+

Qa2

3εs(κa+ 1)
+

eκa

κa+ 1

∫
∞

a
se−κsd̂(s)ds. (3.6)

Notice that all these integration constants depend on the function d̂ = d̂(r) which in turn depends on all the unknown
functions c1 = c1(r), . . . , cm = cm(r). In (3.1), ψ(r) is given as a functional of c1(r), . . . , cm(r) through d̂(r) that is defined
in (3.3). In (3.2), c1(r), . . . , cm(r) are presented through the potential ψ(r).

3.2. Numerical solutions

We use the semi-analytical solution formulas (3.1)–(3.6) to find numerical solutions of c1, . . . , cm and ψ . To do so, we
first construct initial concentrations (c(0)1 , . . . , c

(0)
m ).We then use (3.1) with ci replaced by c

(0)
i (i = 1, . . . ,m) to compute

ψ (1). Next, we use (3.2) withψ replaced byψ (1) to compute c(2)1 , . . . , c
(2)
m . We repeat this process until an error tolerance is

reached. In practice, we choose a finite interval to replace [a,∞).
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Table 3.1
The L∞ errors in the convergence test.

∆r L∞ error of c1 Order L∞error of ψ Order

1 28.3950 – 0.0070 –
1/2 20.9970 0.4355 0.0036 0.9768
1/4 11.9072 0.8183 0.0018 1.0011
1/8 6.0658 0.9731 0.0009 1.0251
1/16 2.9848 1.0231 0.0004 1.0513
1/32 1.4072 1.0848 0.0002 1.1024
1/64 0.6056 1.2164 0.0001 1.2241
1/128 0.2023 1.5820 0.0000 1.5859

Algorithm.

Step 1. Choose a number A � a and discretize the interval [a, A] with a uniform grid size ∆r . Choose an error tolerance
δ > 0. Construct an initial guess:

c(0)i (r) =
c∞i (r − a)
A− a

if a ≤ r ≤ A, i = 1, . . . ,m.

Set n = 0.
Step 2. Calculateψ (n)

= ψ (n)(r) (a ≤ r ≤ A), using (3.1) (the part r > a) with c(n)i replacing ci (1 ≤ i ≤ m) and A replacing
∞, respectively.

Step 3. Calculate c(n+1)i = c(n+1)i (r) (a ≤ r ≤ A) for i = 1, . . . ,m using (3.2) with c(n+1)i replacing ci (1 ≤ i ≤ m), ψ (n)

replacing ψ , and A replacing∞, respectively.
Step 4. If

max
1≤i≤m

‖c(n+1)i − c(n)i ‖L∞(a,A)

max
1≤i≤m

‖c(n)i ‖L∞(a,A)
< δ,

then stop. Otherwise set n := n+ 1 and go to Step 2.

In all of our numerical calculations, we choose our parameters the same as or close to those in Ref. [3], mimicking some
real systems. Our main parameters are:

M = 3, m = 1, a = 1 Å, A = 100 Å, εm = 2, εs = 80, β = 1/0.59 mol/cal, (3.7)

where the temperature T = 300 K. Our tests indicate that the value A we choose is large enough so that the underlying
problem on the infinite interval (a,∞) is well approximated by that on the finite interval (a, A). Other parameters are
Q , q1, c∞1 , and κ . They will be specified later. As in Ref. [3], we introduce the parameter

I :=
1
2

3∑
1

q2i c
∞

i .

Notice that the summation is taken over all the species, rather than those of non-reactive ones as in the definition of
κ (cf. (2.6)). Clearly, when other parameters are given, the parameters I and κ determine each other. The units for the
electrostatic potential ψ is kcal/mol ewith e being the elementary charge.
We have performed a convergence test on our numerical algorithm. In this test, we choose our parameters as in (3.7) and

Q = 3/(4π) e Å−3, q1 = −e, q2 = e, q3 = −e, c∞1 = 50 mM, I = 100 mM.

In Table 3.1, we show the L∞ error and order of convergence of our numerical scheme. The L∞ error is defined to be
the ratio of the discrete maximum norm of the difference of our numerical solution and that of a reference solution
which is obtained using the same numerical method but with a very fine mesh. The order of convergence is defined to
be log2(eL∞(∆r)/eL∞(∆r/2)), where e(∆r) and e(∆r/2) are the L∞ error corresponding to the step size ∆r and that to
∆r/2, respectively. In Fig. 3.1, we show the log–log plot of the error for both the concentration c1 and the electrostatic
potential ψ . From these, we find that our numerical algorithm converges with the order of convergence close to 1 for both
the concentration c1 and the potential ψ .
We now give a convergence analysis for the general case. For convenience, let us denote c = (c1, . . . , cm) and write the

solutions (3.1) and (3.2), in the interval (a,∞), in the following operator forms, respectively:

ψ = P[c], (3.8)

c = T [ψ] = (T1[ψ], . . . , Tm[ψ]). (3.9)
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Fig. 3.1. The log–log plot of the error eL∞ (c1) and eL∞ (ψ) vs. 1/∆r . The slope of the solid line on left is 1.10 and that on right is 1.14.

This means that P[c] is the function of r > a given by (3.1) (the part for r > a), and Ti[ψ] is the function of r > a given by
(3.2). With these notations, our algorithm is then as follows: Choose c(0) ∈ (L∞(a,∞))m. Compute

ψ (k)
= P

[
c(k)
]
and c(k+1) = T

[
ψ (k)] , k = 0, 1, . . . . (3.10)

The following lemma shows that P and T1, . . . , Tm define continuous operators from respective spaces; its proof is given
in Appendix B.

Lemma 3.1. (1) If c = (c1, . . . , cm) ∈ (L∞(a,∞))m then P[c] ∈ L∞(a,∞). Moreover, P : (L∞(a,∞))m → L∞(a,∞) is
continuous.

(2) If ψ ∈ L∞(a,∞) then Ti[ψ] ∈ L∞(a,∞) for all i = 1, . . . ,m.Moreover, T [ψ] = (T1[ψ], . . . , Tm[ψ]) defines a continuous
mapping T : L∞(a,∞)→ (L∞(a,∞))m.

To state and prove our main convergence result, we need the following:

Lemma 3.2. Let â > 0 and b̂ > 0 be such that âb̂ < e−1. Let f (x) = âeb̂x for x ∈ R.

(1) There exist exactly two distinct fixed points of f in R, both being positive.
(2) Let x∗ = x∗(â, b̂) be the smaller fixed point of f . Then f (x) ≤ x∗ for any x ∈ [0, x∗].

Proof. (1) Let g(x) = f (x) − x (x ∈ R). Then g ′(x) = âb̂eb̂x − 1 and g ′′(x) = âb̂2ebx. Clearly, g ′(x) has a unique zero
xm = −(1/b̂) ln(âb̂) > 0, and g(x) attains its minimum at xm with the minimum value g(xm) = (1 + ln(âb̂))/b̂ < 0, since
âb̂ < e−1. Note that g(0) = â > 0 and g(x)→ +∞ as x→ +∞. Thus the continuous function g(x) has at least one zero
in (0, xm) and another zero in (xm,+∞). These are in fact the only zeros, since g ′′(x) > 0 for all x ∈ R. These two zeros of
g(x) are the two fixed points of f (x), both positive.
(2) If 0 ≤ x ≤ x∗ then f (x) = âeb̂x ≤ âeb̂x

∗

= f (x∗) = x∗. �

We define

â =
(
max
1≤i≤m

c∞i

)
e
β

(
max
1≤i≤m

|qi|
)[

|Q |a2
3εs(κa+1)

+
|κa−1|+2(κa+1)

2κ3a2

m∑
j=1
|qj|c∞j

]
, (3.11)

b̂ = β
(
max
1≤i≤m

c∞i

)(
max
1≤i≤m

|qi|
)( m∑

i=1

|qi|

)
|κa− 1| + 2(κa+ 1)

2κ3a2
, (3.12)

Â =
3âb̂

κ2εs max
1≤i≤m

c∞i
, (3.13)

B̂ =
b̂

max
1≤i≤m

c∞i
. (3.14)

Let x∗ = x∗(â, b̂) > 0 be the smaller fixed point of f (x) = âeb̂x as defined in Lemma 3.2.
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Proposition 3.1. Assume that ÂeB̂x∗(â,b̂) < 1. Assume also that c(0) ∈ (L∞(a,∞))m satisfies ‖c(0)‖∞ ≤ x∗. Then the sequences
{ψ (k)
}
∞

i=0 and {c
(k)
}
∞

i=0 defined in (3.10) converge in L
∞(a,∞) and (L∞(a,∞))m to the solution of (3.1) and (3.2), respectively.

The proof of this main convergence result is given in Appendix B. Here we make some remarks.
(1) In our numerical calculations that are reported in the next section, we use parameters that are compatible with those

used in Ref. [3]. For such parameters, the condition of convergence is much simplified.
(2) Our convergence condition is only sufficient. Our extensive numerical tests suggest that our iteration algorithm

converges if
∑m
i=1 q

2
i c
∞

i <
∑M
i=m+1 q

2
i c
∞

i .
(3) If our condition of convergence is not satisfied, then our algorithm may not converge. For instance, using the

parameters (3.7) and

Q = 1/π e Å−3, q1 = 2e, q2 = q3 = −e, c∞1 = c
∞

2 = c
∞

3 = 100 mM,

we find that the sequence {c(n)1 } produced by our algorithm does not converge.

4. Numerical results of concentrations, potential, and reaction rates

We now report our results of numerical calculations. We use the parameters in (3.7) and

c∞1 = 50 mM, q1 = −e, q2 = e, q3 = −e, I = 100 mM. (4.1)

Several different values of the constant charge density Q are chosen for our calculations.

4.1. Concentrations and potential

Fig. 4.1 shows our numerical solution of the electrostatic potential ψ(r) and the concentration c1(r) with Q =
3/(4π) e Å−3 and Q = −3/(4π) e Å−3, respectively. The change of the sign of Q does not affect the concentration c1(r) but
changes the sign of the electrostatic potential ψ(r). Notice that the potential is monotonic in these cases.
We now keep the same set of parameters except changing Q so that its magnitude is very small. Fig. 4.2 shows the

numerical solution of the potential ψ(r) and concentration c1(r) with Q = 0.0025 e Å−3 and Q = −0.0025 e Å−3,
respectively. We see clearly that the potential is no longer monotonic.
The non-monotonicity of potential can be seen from our semi-analytic solution formula (3.1) for the case ofM = 3 (three

ionic or molecular species) andm = 1 (one reactive species). If Q and q1 have the same sign, then there exists a range of Q
values such that the potential is non-monotonic. In fact, let us assume for example that q1 < 0 and Q < 0. By (3.1) and (3.6)
we have

ψ(a) =
Qa2

3εs(κa+ 1)
+

eκa

κa+ 1

∫
∞

a
se−κsd̂(s)ds. (4.2)

Here for the case m = 1 we have d̂(r) = (q1/εs)[ci(r) − c∞1 ]. In general, we have c1(r) ≤ c
∞

1 for all r ≥ a. If this is so,
then we have from (4.2) that ψ(a) > 0 if Q > 0 is small enough. On the other hand, we have from (3.1) and the continuity
condition (2.19) that ψ ′(a+) > 0. This means that the potential increases near a+. But ψ(+∞) = 0 by (2.16). Therefore,
the potential is not monotonic.

4.2. Reaction rates

We define the reaction rate for the ith (1 ≤ i ≤ m) reactive species to be Ri = c ′i (a)/c
∞

i . By (3.2) and a straightforward
calculation, we have Ri =

(
a2
∫
∞

a s
−2eβqiψ(s)ds

)−1.
We fix again the parameters as in (3.7) and (4.1), and set Q = 3/(4π) e Å−3. We plot in Fig. 4.3 the reaction rate vs. ionic

strength I = (1/2)
∑3
i=1 q

2
i c
∞

i for different values of the bulk concentration c
∞

1 . We also plot the reaction rate R1 vs. the bulk
concentration c∞1 in Fig. 4.4 at different levels of ionic strength. It is clear from these plots that the reaction rate decreases as
the ionic strength increases for each fixed bulk concentration c∞1 . The rate also increases with c

∞

1 increases for each fixed I .

5. Comparison with the case of no reaction

We now consider the case that all the chemical species are non-reactive, and compare the related results with those
presented in the previous section on reactive species. Non-reactive diffusive species are characterized by the non-reactive
boundary condition. In this case, the concentration of each of the species satisfies the Boltzmann distribution. Therefore, the
system reduces to partial differential equation for the electrostatic potential only, together with some side conditions. To



Author's personal copy

B. Li et al. / Physica A 389 (2010) 1329–1345 1337

0 50 100
0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100
0

10

20

30

40

50

60

0 20 40 60 80 100
–4

–3.5

–3

–2.5

–2

–1.5

–1

–0.5

0

0 20 40 60 80 100
0

10

20

30

40

50

60

r (Å) r (Å)

r (Å) r (Å)

Fig. 4.1. Numerical solution of the electrostatic potential and the concentration c1(r). Top: Q = 3/(4π) e Å
−3 . Bottom: Q = −3/(4π) e Å−3 .

make our comparison more reasonable, we linearize the concentrations ci(r) = c∞i e
−βqiψ for i = m+ 1, . . . ,M , as before.

The resulting equation and side conditions are

∆ψ = −
Q
εm

if |x| < a, (5.1)

∆ψ − κ2ψ = −

m∑
i=1

qic∞i
εs

(
e−βqiψ − 1

)
if |x| > a, (5.2)

[[ψ]] = [[ε∇ψ · n]] = 0 on Γ , (5.3)

where κ is defined in (2.6). These should be compared with (2.17)–(2.19).
As before, we obtain exactly the same formula (3.1) with constants Ĉ1, Ĉ2, K2 given by (3.4)–(3.6) but the quantity d̂(r)

should be replaced by

d̂(r) =
m∑
i=1

qic∞i
(
e−βqiψ − 1

)
.

This and (3.1) can be used to numerically compute the potential.
We test the example in Section 4 with the parameters given in (3.7) and (4.1). Fig. 5.1 shows our numerical results for

Q = −3/(4π) e Å−3. We find that for both of the reactive and non-reactive systems the potential ψ(r) is similar and
also the concentration c1(r) is similar. Here for the non-reactive case the concentration c1(r) is defined by the Boltzmann
distribution.
If we change Q from−3/(4π) e Å−3 to 3/(4π) e Å−3, then the potential also changes sign, as seen in Figure Fig. 5.2. It is

clear that the potential for the reactive case is different from that for the non-reactive case.Moreover, the concentration c1(r)
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Fig. 4.2. Numerical solution of the electrostatic potential and the concentration c1(r). The potential is non-monotone. Top: Q = 0.0025 e Å
−3 . Bottom:

Q = −0.0025 e Å−3 .

Fig. 4.3. Reaction rates R1 vs. the ionic strength I for different bulk concentrations c∞1 .

is quite different for these two cases. For the non-reactive case the concentration is very large near the dielectric boundary
r = a.
Finally in Fig. 5.3 we plot our results for Q = 0.0025 e Å−3. We see the non-monotonic behavior of the potential for the

reactive system, as predicted before, but the monotonic behavior of the non-reactive system.
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Fig. 4.4. Reaction rates R1 vs. bulk concentration c∞1 for different values of ionic strength.

r (Å)r (Å)

Fig. 5.1. Comparison of the reactive and non-reactive systems with Q = −3/(4π) e Å−3 .

r (Å) r (Å)

Fig. 5.2. Comparison of the reactive and non-reactive systems with Q = 3/(4π) e Å−3 .

6. Conclusions and discussions

Wehave studied a reduced PNP system for a spherical, uniformly charged solute immersed in a solvent.Wehave obtained
a semi-analytical solution formula which is in the form of a system of integral equations. Our simple iteration scheme based
on this formulation is shown to be convergent.
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Fig. 5.3. Comparison of the reactive and non-reactive systems with Q = 0.0025 e Å−3 .

The widely used PNP system, even in its reduced form, is hard to solve analytically or numerically. Our work, though
focused on the spherical geometry, has provided some solution method to such a system. Our analytical and numerical
results can be used to test other methods for large-scale calculations. Our convergence analysis can also be possibly
generalized to systems with a more complicated geometry.
We have numerically calculated equilibrium concentrations, electrostatic potential, and the reaction rate. Our numerical

results agree with those reported in Ref. [3]. Moreover, we have discovered a new property: when the charge Q is very small
in magnitude, the potential ψ can be non-monotonic. We have offered some explanation for this using our semi-analytical
solution formula. We also confirmed numerically that such non-monotonicity does not exist in the case for non-reactive
chemical species.
We emphasize that our detailed studies on a special case can be used to investigate other physical properties of charged

solvation systems. These include the effect of substrate concentrations to reaction that is ignored in the usual Debye–Hückel
limiting law [3,11], the effect of solvent excluded volume in a charged solvation system [8], and ionic distributions around
charged solutes that has been studied by transformed Poisson–Boltzmann relations [22]. Our approach can be also used to
study the dynamical PNP system [3].
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Appendix A

We present in this appendix details of the derivation of the semi-analytical solution formulas (3.1)–(3.6) to the system
(2.12)–(2.16). We recall the following formulas for a smooth, radially symmetric function u = u(r) with r = |x| > 0 and
x ∈ R3:

∆u(r) =
1
r2
d
dr

(
r2
du(r)
dr

)
; (A.1)

∇u(r) =
du(r)
dr
Er
r
; (A.2)

∇ ·

(
u(r)
Er
r

)
=
du(r)
dr
+
2u(r)
r

, (A.3)

where Er denotes the position vector at a point x ∈ R3 with |x| = r .
Using (A.1), we obtain from (2.17) that

1
r2
d
dr

(
r2
dψ(r)
dr

)
= −

Q
εm

if r < a.
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This leads to

ψ = −
Q
6εm
r2 − K1r−2 + K2 if r < a,

whereK1 andK2 are two constants. Since the spherical solute has a uniform (constant) charge density, the potentialψ should
be continuous inside the spherical solute region. Thus ψ(0) <∞ and hence K1 = 0. Therefore,

ψ(r) = −
Q
6εm
r2 + K2 if r < a. (A.4)

By our notation d̂(r) (cf. (3.3)) and (A.1), Eq. (2.18) becomes

1
r2
d
dr

(
r2
dψ(r)
dr

)
− κ2ψ(r) = −d̂(r), r > a. (A.5)

It is easy to verify that the corresponding homogeneous equation (i.e., the equation with −d̂(r) replaced by 0) has two
linearly independent solutions eκr/r and e−κr/r . Therefore, using the method of variation of parameters, we obtain a
particular solution to the inhomogeneous equation (A.5)

ψs(r) = −
eκr

2κr

∫ r

a
se−κsd̂(s)ds+

e−κr

2κr

∫ r

a
seκsd̂(s)ds, r > a.

Hence the general solution to (A.5) is

ψ(r) = Ĉ1
eκr

r
+ Ĉ2

e−κr

r
−
eκr

2κr

∫ r

a
se−κsd̂(s)ds+

e−κr

2κr

∫ r

a
seκsd̂(s)ds, r > a, (A.6)

where Ĉ1 and Ĉ2 are two integration constants. Notice that (3.1) is just the combination of (A.4) and (A.6).
By the boundary conditions (2.13) and (2.14), each concentration field ci = ci(r) (1 ≤ i ≤ m) is bounded on [a,∞). Thus

the function d̂ = d̂(r) is also continuous and bounded on [a,∞). Using (B.1), we find that the last term in (A.6) is bounded.
Therefore, from the boundary condition ψ(∞) = 0 (cf. (2.16)) and the first and third terms in (A.6), we must have

lim
r→∞

(
Ĉ1 −

1
2κ

∫ r

a
se−κsd̂(s)ds

)
= 0.

This implies (3.4). By the solution formulas (A.4) and (A.6), and the jump conditions (2.19) and (A.2), we have

−
Q
6εm
a2 + K2 = Ĉ1

eκa

a
+ Ĉ2

e−κa

a
,

−
Qa
3
= εsĈ1

eκa

a
(κa− 1)− εsĈ2

e−κa

a
(κa+ 1).

Solving these two equations for Ĉ2 and K2, we obtain (3.5) and (3.6).
Now we solve the boundary-value problem of diffusion equation (2.12)–(2.14). Fix iwith 1 ≤ i ≤ m. By (A.2), Eq. (2.12)

becomes

∇ ·

[(
dci(r)
dr
+ βqici(r)

dψ(r)
dr

)
Er
r

]
= 0. (A.7)

Denoting

hi(r) =
dci(r)
dr
+ βqici(r)

dψ(r)
dr

, (A.8)

we have by (A.7) and (A.3) that h′i(r)+ 2hi(r)/r = 0. Solving this linear first-order ordinary differential equation, we obtain
hi(r) = K3r−2, with K3 a constant. Therefore, this and (A.8) lead to

dci(r)
dr
+ βqi

dψ(r)
dr

ci = K3r−2.

This is also a linear first-order ordinary differential equation for ci = ci(r), and can be solved. The result is

ci(r) =
(
K3

∫ r

a
s−2eβqiψ(s)ds+ K4

)
e−βqiψ(r). (A.9)

The boundary condition ci(a) = 0 implies K4 = 0. The boundary condition ci(∞) = c∞i leads to K3 =
c∞i
(∫
∞

a r
−2eβqiψ(r)dr

)−1. This and (A.9) lead to (3.2).
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Appendix B

In this appendix, we prove Lemma 3.1 and Proposition 3.1. For convenience, we shall denote by ‖ · ‖∞ the norm of
L∞(a,∞) or (L∞(a,∞))m. We recall for any nonzero σ ∈ R that∫

seσ sds =
σ s− 1
σ 2

eσ s. (B.1)

Proof of Lemma 3.1. (1) Let c1, . . . , cm ∈ L∞(a,∞). By our definition (3.8),

P[c1, . . . , cm](r) = Ĉ1
eκr

r
+ Ĉ2

e−κr

r
−
eκr

2κr

∫ r

a
se−κsd̂(s)ds+

e−κr

2κr

∫ r

a
seκsd̂(s)ds, r > a. (B.2)

By (3.3), we have d̂ ∈ L∞(a,∞). It follows from (3.5) and (B.1), together with simple calculations, that∣∣∣∣Ĉ2 e−κrr
∣∣∣∣ ≤ |Q |a2eκa

3εs(κa+ 1)
+
|κa− 1|eκa

2κa3
‖d̂‖∞ ∀r > a.

For the last term in (B.2) we have∣∣∣∣e−κr2κr

∫ r

a
seκsd̂(s)ds

∣∣∣∣ ≤ ‖d̂‖∞ e−κr2κ
∫ r

a
eκsds =

‖d̂‖∞
2κ2

[
1− eκ(a−r)

]
≤
‖d̂‖∞
2κ2

∀r > a.

Now consider the sum of the first and third terms in (B.2). By (3.4) and (B.1), we have∣∣∣∣Ĉ1 eκrr − eκr2κr
∫ r

a
se−κsd̂(s)ds

∣∣∣∣ = ∣∣∣∣ eκr2κr
∫
∞

r
se−κsd̂(s)ds

∣∣∣∣ ≤ ‖d̂‖∞2κ3
(
1
a
+ κ

)
∀r > a.

Therefore, P[c1, . . . , cm] ∈ L∞(a,∞).
To prove the continuity of P : (L∞(a,∞))m → L∞(a,∞), we observe that P is in fact an affine operator. Therefore,

similar calculations lead to

‖P[c] − P[ĉ]‖∞ ≤ µ‖c − ĉ‖∞ ∀c, ĉ ∈ (L∞(a,∞))m,

where µ > 0 is a constant independent of c and ĉ . Hence P is continuous.
(2) Let ψ ∈ L∞(a,∞). Fix an index iwith 1 ≤ i ≤ m. We have by our definition (3.9) and (3.2) that

Ti[ψ](r) = c∞i

(∫
∞

a
s−2eβqiψ(s)ds

)−1
e−βqiψ(r)

∫ r

a
s−2eβqiψ(s)ds ∀r > a.

Clearly,

|Ti[ψ](r)| = Ti[ψ](r) ≤ c∞i e
β|qi|‖ψ‖∞ ∀r > a.

Therefore Ti[ψ] ∈ L∞(a,∞).
To prove the continuity of Ti : L∞(a,∞) → L∞(a,∞), we need only to prove that each part of Ti is continuous. Let

φ,ψ ∈ L∞(a,∞). It follows from the mean-value theorem that∣∣e−βqiφ(r) − e−βqiψ(r)∣∣ ≤ β|qi|eβ|qi|max{‖φ‖∞,‖ψ‖∞}‖φ − ψ‖∞ ∀r > a.

Similarly,∣∣∣∣∫ r

a
s−2eβqiφ(r)dr −

∫ r

a
s−2eβqiφ(r)dr

∣∣∣∣ ≤ β|qi|eβ|qi|max{‖φ‖∞,‖ψ‖∞}‖φ − ψ‖∞ ∫ r

a
s−2ds

≤
β|qi|
a
eβ|qi|max{‖φ‖∞,‖ψ‖∞}‖φ − ψ‖∞ ∀r > a.

The upper limit r can be replaced by∞ in these integrals. All these together imply that

|Ti[φ] − Ti[ψ]| ≤ µ′‖φ − ψ‖∞,

where µ′ > 0 is a constant independent of φ and ψ . Therefore, each Ti : L∞(a,∞)→ L∞(a,∞) is continuous. �

To prove Proposition 3.1, we first prove a lemma. Recall that â and b̂ are given in (3.11) and (3.12), respectively. Recall
also that x∗ = x∗(â, b̂) > 0 is the smaller fixed point of f (x) = âeb̂x as defined in Lemma 3.2. For any c(0) ∈ (L∞(a,∞))m,
we define by (3.10) that

c(k+1) = T
[
P
[
c(k)
]]
= (T ◦ P)

[
c(k)
]
, k = 0, 1, . . . . (B.3)

Lemma B.1. If ‖c(0)‖∞ ≤ x∗ then ‖c(k)‖∞ ≤ x∗ for all k = 1, 2, . . ..
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Proof. By induction, it suffices to show that, for any c ∈ (L∞(a,∞))m, ‖(T ◦ P)[c]‖∞ ≤ x∗ if ‖c‖∞ ≤ x∗. Letψ = P[c]. The
definition of P : (L∞(a,∞))m → L∞(a,∞) (cf. (3.8)) and the solution formula (3.1) imply that

ψ(r) = P[c](r)

=

(
Ĉ1
eκr

r
−
eκr

2κr

∫ r

a
se−κsd̂(s)ds

)
+ Ĉ2

e−κr

r
+
e−κr

2κr

∫ r

a
seκsd̂(s)ds

=
eκr

2κr

∫
∞

r
se−κsd̂(s)ds+

(
Qa3eκa

3εs(κa+ 1)
+
e2κa(κa− 1)
2κ(κa+ 1)

∫
∞

a
se−κsd̂(s)ds

)
e−κr

r

+
e−κr

2κr

∫ r

a
seκsd̂(s)ds ∀r > a,

where d̂(r) is defined in (3.3). By (B.1) we have∣∣∣∣ eκr2κr
∫
∞

r
se−κsd̂(s)ds

∣∣∣∣ ≤ eκr2κr ‖d̂‖∞
∫
∞

r
se−κsds =

(
1
2κ2
+

1
2κ3r

)
‖d̂‖∞ ≤

1+ κa
2κ3a

‖d̂‖∞.

Similarly, we have∣∣∣∣( Qa3eκa

3εs(κa+ 1)
+
e2κa(κa− 1)
2κ(κa+ 1)

∫
∞

a
se−κsd̂(s)ds

)
e−κr

r

∣∣∣∣ ≤ |Q |a2

3εs(κa+ 1)
+
|κa− 1|
2κ3a

‖d̂‖∞,

and ∣∣∣∣e−κr2κr

∫ r

a
seκsd̂(s)ds

∣∣∣∣ ≤ (κr − 12κ3r
−
κa− 1
2κ3r

eκ(a−r)
)
‖d̂‖∞ ≤

κa+ 1
2κ3a

‖d̂‖∞.

Combining all these and using (3.3), we obtain

|ψ(r)| ≤
|Q |a2

3εs(κa+ 1)
+
|κa− 1| + 2(κa+ 1)

2κ3a2

m∑
i=1

|qi|(‖ci‖∞ + c∞i ). (B.4)

Now the solution formula (3.2) and the definition of T : L∞(a,∞)→ (L∞(a,∞))m (3.9) imply that

|Ti[ψ](r)| = Ti[ψ](r) ≤ c∞i e
β|qi|‖ψ‖∞ ∀r > a, i = 1, . . . ,m.

This and (B.4) lead to

‖T [P[c]]‖∞ ≤ max
1≤i≤m

‖Ti[P[c]]‖∞ ≤ max
1≤i≤m

c∞i e
β|qi|‖ψ‖∞ ≤ âeb̂‖c‖∞ ≤ âeb̂x

∗

= x∗.

The proof is complete. �

Proof of Proposition 3.1. By (3.10) and Lemma 3.1, it suffices to prove that the sequence {c(k)} produced by (B.3) converges.
For each j ≥ 1 we have by the mean-value theorem for operators that

‖c(j+1) − c(j)‖∞ ≤ θj‖c(j) − c(j−1)‖∞,

where

θj = ‖D(T ◦ P)(ξ (j))‖L((L∞(a,∞))m,(L∞(a,∞))m) (B.5)

with ξ (j) a convex combination of c(j) and c(j+1). Here and below D denotes the Fréchet derivative of the corresponding
operators andL(X, Y ) denotes the space of all bounded linear operators from a Banach space X to another Banach space Y .
The existence of the Fréchet derivative for the corresponding operator is shown automatically when estimates of the norm
of such derivatives are given.
We shall prove below that the assumptions of the proposition imply that there exists a constant θ with 0 < θ < 1 such

that θj ≤ θ for all j = 1, 2, . . .. Suppose so, we then have∥∥c(j+1) − c(j)∥∥
∞
≤ θ

∥∥c(j) − c(j−1)∥∥
∞
≤ · · · ≤ θ j

∥∥c(1) − c(0)∥∥
∞
, j = 1, 2, . . . .

Consequently,∥∥c(k+p) − c(k)∥∥
∞
≤

p∑
j=1

∥∥c(k+j) − c(k+j−1)∥∥
∞

≤

(
p∑
j=1

θ k+j−1

)∥∥c(1) − c(0)∥∥
∞
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≤
θ k

1− θ

∥∥c(1) − c(0)∥∥
∞
, k, p = 1, 2, . . . .

Hence {c(k)} is a Cauchy sequence in (L∞(a,∞))m and thus it converges in (L∞(a,∞))m to some c(∞). By (3.10) and
Lemma 3.1, {ψ (k)

} then converges in L∞(a,∞) to some ψ (∞). Now it follows from (3.10) that ψ (∞)
= P[c(∞)] and

c(∞) = T [ψ (∞)
] as desired.

We now estimate the norm θj. Let c ∈ (L∞(a,∞))m. By the Chain Rule for Fréchet derivatives, we have

‖D(T ◦ P)[c]‖L((L∞(a,∞))m,(L∞(a,∞))m) = ‖DT [P[c]] ◦ DP[c]‖L((L∞(a,∞))m,(L∞(a,∞))m)
≤ ‖DT [P[c]]‖L(L∞(a,∞),(L∞(a,∞))m)‖DP[c]‖L((L∞(a,∞))m,L∞(a,∞)). (B.6)

Recall that

‖DP[c]‖L((L∞(a,∞))m,L∞(a,∞)) = sup
0 6= u∈(L∞(a,∞))m

‖(DP[c])[u]‖∞
‖u‖∞

. (B.7)

Let u = (u1, . . . , um) ∈ (L∞(a,∞))m. Then (DP[c])[u] = d
dt

∣∣
t=0P[c + tu]. This is a function of r > a. Notice that

P : (L∞(a,∞))m → L∞(a,∞) is an affine mapping. Denote by χE(r) the characteristic function of a set E, i.e., χE(r) = 1 if
r ∈ E and χE(r) = 0 if r 6∈ E. We then obtain from all (3.1), (3.3)–(3.5) and (B.1), and a series of calculations that

|(DP[c])[u](r)| =

∣∣∣∣∣ 12κ
∫
∞

a

[ m∑
i=1

qi
εs
ui(s)

][
s
r
e−κ(s−r) +

e2κa(κa− 1)
κa+ 1

s
r
e−κ(s+r)

− χ(a,r)(s)
s
r
e−κ(s−r) + χ(a,r)(s)

s
r
eκ(s−r)

]∣∣∣∣∣ ds
≤

(
m∑
i=1

|qi|
2κεs

)
‖u‖∞

∫
∞

a

∣∣∣∣(1− χ(a,r)) sr e−κ(s−r) + e2κa(κa− 1)κa+ 1
s
r
e−κ(s+r) + χ(a,r)(s)

s
r
eκ(s−r)

∣∣∣∣ ds
≤

(
m∑
i=1

|qi|
2κεs

)
‖u‖∞

[∫
∞

r

s
r
e−κ(s−r)ds+

e2κa|κa− 1|
κa+ 1

∫
∞

a

s
r
e−κ(s+r)ds+

∫ r

a

s
r
eκ(s−r)ds

]

=

(
m∑
i=1

|qi|
κ2εs

)
‖u‖∞

{
1+

[|κa− 1| − (κa− 1)]
2κr

e−κ(r−a)
}

≤

(
m∑
i=1

|qi|
κ2εs

)[
1+
|κa− 1| − (κa− 1)

2κa

]
‖u‖∞ ∀r > a.

This and (B.7) lead to

‖DP[c]‖L((L∞(a,∞))m,L∞(a,∞)) ≤

(
m∑
i=1

|qi|
κ2εs

)[
1+
|κa− 1| − (κa− 1)

2κa

]
. (B.8)

Let now ψ = P[c] ∈ L∞(a,∞). We estimate

‖DT [ψ]‖L(L∞(a,∞),(L∞(a,∞))m) = sup
0 6= f∈L∞(a,∞)

‖(DT [ψ])[f ]‖∞
‖f ‖∞

. (B.9)

Let f ∈ L∞(a,∞). We have

(DT [ψ])[f ] =
d
dt

∣∣∣∣
t=0
T [ψ + tf ]

=

(
d
dt

∣∣∣∣
t=0
T1[ψ + tf ], . . . ,

d
dt

∣∣∣∣
t=0
Tm[ψ + tf ]

)
= (DT1[ψ][f ], . . . ,DTm[ψ][f ]) .

Straight forward calculations using the definition of Ti : L∞(a,∞)→ L∞(a,∞) for each i (cf. (3.9)) leads to

|DTi[ψ][f ](r)| =

∣∣∣∣∣βqiTi[ψ](r)
[∫
∞

a s
−2eβqiψ(s)f (s)ds∫
∞

a s
−2eβqiψ(s)ds

+ f (r)−

∫ r
a s
−2eβqiψ(s)f (s)ds∫ r
a s
−2eβqiψ(s)ds

]∣∣∣∣∣
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≤ β|qi||Ti[ψ](r)|

[∣∣∣∣∣
∫
∞

a s
−2eβqiψ(s)f (s)ds∫
∞

a s
−2eβqiψ(s)ds

∣∣∣∣∣+ |f (r)| +
∣∣∣∣∣
∫ r
a s
−2eβqiψ(s)f (s)ds∫ r
a s
−2eβqiψ(s)ds

∣∣∣∣∣
]

≤ (3β|qi||Ti[ψ](r)|) ‖f ‖∞
≤
(
3β|qi|c∞i e

−qiβψ(r)
)
‖f ‖∞ ∀r > a,

where in the last step we used the fact that |Ti[ψ](r)| ≤ c∞i e
−qiβψ(r) for all r > a, which follows from the definition of

Ti : L∞(a,∞)→ L∞(a,∞) (cf. (3.9)) and (3.2). Consequently, we have by (B.9) that

‖DT [ψ]‖L(L∞(a,∞),(L∞(a,∞))m) ≤ max
1≤i≤m

(
3β|qi|c∞i sup

r>a
e−qiβψ(r)

)
.

This and (B.4), together with the fact that ψ = P[c], imply

‖DT [P[c]]‖L(L∞(a,∞),(L∞(a,∞))m) ≤ max
1≤i≤m

3β|qi|c∞i e
|qi|β

[
|Q |a2

3εs(κa+1)
+
|κa−1|+2(κa+1)

2κ3a2

m∑
j=1
|qj|(‖cj‖∞+c∞j )

]
. (B.10)

Since ξj in (B.5) is a convex combination, we have by Lemma B.1 that

‖ξ (j)‖∞ ≤ max
(
‖c(j)‖∞, ‖c(j+1)‖∞

)
≤ x∗(â, b̂).

Therefore, combining (B.5), (B.6), (B.8) and (B.10), we conclude that

θj ≤ ÂeB̂x
∗(â,b̂) < 1,

where Â and B̂ are given by (3.13) and (3.14), respectively. �
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