Molecular Based Mathematical Biology

S
VERSITA

Research Article ¢ DOI: 10.2478/mlbmb-2013-0005 ¢ MBMB e 2012 ¢ 90-108

Parallel Adaptive Finite Element Algorithms for
Solving the Coupled Electro-diffusion Equations

Abstract

In this paper we present parallel adaptive finite element algo-
rithms for solving the 3D electro-diffusion equations such as
the Poisson-Nernst-Planck equations and the size-modified
Poisson-Nernst-Planck equations in simulations of biomolec-
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ular systems in ionic liquid. A set of transformation methods Academy of Sciences, Beijing 100190, China

based on the generalized Slotboom variables is used to solve

the coupled equations. Calculations of the diffusion-reaction
rate coefficients, electrostatic potential and ion concentrations
for various systems verify the method’s validity and stability. Received 2012-09-25
The iterations between the Poisson equation and the Nernst- Accepted 2013-03-19
Planck equations in the primitive method and in the transfor-

mation method are compared to illustrate how the new method

accelerates the convergence of the solution. To speed up the

convergence, we introduce the DIIS (direct inversion of the

iterative subspace) method including Simple Mixing and An-

derson Mixing as under-relaxation techniques, the effective-

ness of which on acceleration is shown by numerical tests.

It is worth noting that the primitive method fails to solve the

size-modified Poisson-Nernst-Planck equations for real pro-

tein systems but the transformation method succeeds in the

simulations of the ACh-AChE reaction system and the DNA

fragment. To improve the accuracy of the solution, we intro-

duce high order elements and mesh adaptation based on an

a posteriori error estimator. Numerical results indicate that

our mesh adaptation process leads to quasi-optimal conver-

gence. We implement our algorithms using the parallel adap-

tive finite element package PHG [53] and high parallel effi-

ciency is obtained.
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1. Introduction

Electrostatic potential and ion distribution around molecular species are essential for describing electro-diffusion, a rate-
limiting step in numerous biological processes, such as ligand-enzyme binding and protein-protein diffusive encounter. If
the particle-particle correlations of the diffusing species are neglected, the Poisson-Nernst-Planck equations (PNPEs)
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are a proper continuum model for describing the electro-diffusion process of ions via coupling electrostatic potential to
tonic diffusion [33]. PNPEs are used to simulate ion channels [44,26,31,21,5,7,17,54] and ion migrations [29]. In this
paper we adopt the Poisson-Nernst-Planck equations and the size-modified PNP equations to describe the electro-
diffusion-reaction of mobile ions and charged ligands, all modeled as diffusive particles with vanishing size and finite
size effects respectively, in the solvated biomolecular system. Here the electrostatic potential is induced by the mobile
tons, charged ligands and the fixed charges carried by biomolecules.

Figure 1 illustrates biomolecular solution system occupying a domain Q) with a smooth boundary ;. The domain Q;
denotes the solvent region that contains several diffusing species while the domain Q,, denotes the macro-biomolecule(s)
region. Here, Q = Q, U Q,,. I, denotes the boundary of Q,. A small patch [, (', € I',,) around the active site is set
to a zero Dirichlet boundary condition to model the chemical reaction.

Fig 1. Schematic illustration of the computational domain modeling electro-diffusion reaction processes in the biomolecular solution system.

The Poisson-Nernst-Planck equations (PNPEs) describe the coupling of potential field, density distribution and diffusion
processes as follows:

op; o
2L =V AD(Vpi+BY(@i#)p)} in Qi=1,. K. (1)

K
—V-eVo=p'+1) qipi inQ )
i=1
where p; and ¢ are unknowns. p; is the density distribution function of the diffusing particles of the ith species with
diffusion constant D;. ¢ is the electrostatic potential that imposes driving forces on the diffusing particles. The other
variables are given as constants. A =0 in Q, and A =1 in Q,, K is the number of species considered, B = 1/kgT is
the inverse Boltzmann energy, kg is the Boltzmann constant, T is the temperature and e is the dielectric coefficient.
q: = zie. is the charge of each particle of the ith species, e, is the elementary charge. The permanent (fixed) charge
distribution p’(x) = 2_;q;0(x — x;) is an ensemble of singular charges g; located at x; inside biomolecules. See [23] for
details about units and physical constants.
Both the potential and ion concentration gradients contribute to the movement of ions. lons interact with the atomic
charges in the protein and all the other mobile ions in solvent. The PNP model is able to generate a self-consistent
electrostatic potential and the non-equilibrium densities. In this paper, we focus on the steady-state diffusion system,
opi
;= 0.

PNPEs are also a proper model for semiconductor device simulations [38,20,2,15,14], for instance, in calculating the /—V
characteristics or studying the process of ion transport. Numerical PNPEs solvers have been developed for both simple
one-dimensional phenomenological models [12,6,18] and complex 3D models for ion channel permeations [5,47,26]. It is
known that the Nonlinear Poisson Boltzmann equation [43,39,32] is a special case of PNPEs at equilibrium in which the
ion concentrations follow Boltzmann distributions. Therefore, the PB results are consistent with PNP solution under
certain conditions [33]. A variety of numerical methods have been applied to solve PBE as well as PNPEs including
finite difference method [30,51,55,54], finite element method (FEM) [40,34,33] and hybrid method [4,36]. In this paper, we

ie.
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continue to use FEM for solving PNPEs because it is flexible in dealing with irreqular shapes in surface biomolecular
systems and higher order approximations can be easily obtained by increasing the finite element order.

During past several years, there have been enormous strides in numerical studies of PNP theory. From the point
of view of finite element computing, some difficulties in FEM PNP solution have been overcome. The first among
these is mesh generation that is fundamental as discretization of computing regions. So far, softwares and packages
such as Tetgen [48], TMSmesh [8], ISO2Mesh [19] and TransforMesh [52] are used to generate high resolution meshes.
Secondly, open-source finite element computing softwares such as PHG [53] and FETK [24] are publicly available and
are successfully used in our work to solve PNP equations. However, there are still problems confronting the finite
element computing of PNP models, especially in the area of biomolecular simulation. Firstly, qualified, stable and
efficient molecular surface/volume meshing appears to be necessitated by recent developments for realistic mathematical
modeling and numerical simulation of biomolecules, especially in implicit solvent modeling. Secondly, in the solution
of the PNP equations system, direct iterative approaches between coupling equations sometimes fail to converge or
converge at a slow speed, therefore relaxation or other techniques need to be introduced to speed up convergence.
For the more complicated size-modified PNP equations, we found our previous primitive relaxation iterative approaches
fail to converge when applied to protein and DNA systems other than the very simple sphere cavity model [35]. The
size-modified PNPEs (SMPNP) are written as

ap; i kipi 3 : :
=V-D'|Vpi+ —FL — v piVel,inQ,i=1,... K 3
n ”*1—2,@»2”’ pi+BapiVe |, in Qi 3)
K
~V-eVo=p'+1)_qipi, inQ (4)

i=1

where k; = Z—z and a; denotes the size of ith ion species and ag of the water molecule. A stable algorithm is required
to solve the PONP—like equations on practical biophysical systems. In addition, due to the expensive computations, finite
element computing softwares need to be parallelized. To improve accuracy of the solution, one may introduce adaptive
strateqy, which greatly complicates the implementation. Finally, more theoretical analysis on finite element method
needs to be performed for the PNP theory, which is crucial for assuring the reliability and performance of numerical
computations.

In this paper, not all problems listed above have been fully solved, but we have obtained several satisfactory results via
introducing stable algorithms, efficient relaxation strategies, mesh adaptation and parallelization. Our work is mainly
on the following aspects: (i) Based on the (generalized) Slotboom variables, we find stable algorithms for PNP and
SMPNP equations; (ii) Relaxation strategies are introduced to accelerate iterations between the coupling equations; (iit)
A parallel adaptive finite element code is implemented and numerical experiments indicate its high parallel efficiency;
(iv) We use an a posteriori error estimator to control mesh adaptation and validate it by numerical tests; (v) The
effectiveness and flexibility of higher order finite element elements are shown in our numerical studies. (vi) Numerical
tests are performed not only on sphere cavity model but also on real biophysical systems.

The paper is organized as follows. The numerical algorithms are presented in Section 2, where Section 2.1 and
Section 2.2 describe the boundary conditions and derive the weak forms of the PNPEs, Section 2.3 describes the
primitive method and under-relaxation techniques, Section 2.4 and Section 2.5 introduce the Slotboom variables for the
PNPEs and the generalized Slotboom variables for the size-modified PNPEs respectively, and Section 2.6 presents
the mesh adaptation algorithm. The numerical results are given in Section 3, including comparisons of the primitive
and transformed methods, effectiveness of mesh adaptation and high order elements, and parallel efficiency. Finally
conclusions are given in Section 4.

2. Numerical Algorithms
2.1. Boundary Conditions

For the Poisson equation, the electrostatic potential strength of the outer boundary of the whole calculation domain
almost vanishes because it is far away from macro-biomolecule(s) in our computation setup, i.e. ¢ =0 on 9Q.

For the Nernst-Planck equation, both 0Q and I, should be considered. pyux is set on 0Q as Dirichlet boundary
condition, where py, denotes the bulk concentration. In this paper, we consider the solution of the diffusion-reaction
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system, which can be modeled by defining a “reactive” boundary patch I, (see Figure 1), and setting the boundary
conditions as follows: For the reactive species i, we have

pi=0,0only n-ji=0 onl,\l, (5)
and for non-reactive species, the boundary condition can be written as
n-j=0,onl, (6)

—J, n-jds
Pbutk
boundary condition models the fact that the diffusion time scale is much larger than the reactive time scale and that in

where j = D(Vp+ BV (q¢)p). The diffusion-controlled reaction rate coefficient is calculated by k = . This

the solution there is a sufficient large number of solute molecules which are able to hydrolyze all ligands that migrate
to the reaction centers of solute molecules. The non-zero flux on the reactive surface makes the particle concentrations
described by PNP differ fundamentally from the Boltzmann distribution, which can be reproduced if the macroscopic flux
is vanishing everywhere [45].

2.2. Finite Element Discretization

A tetrahedral mesh is used to discretize the whole domain (), and the molecular surface is defined by a surface mesh of
triangles on both ', and I's.

To solve the PE, we divide ¢ into three parts, the sinqular component G of the electrostatic potential, a harmonic
component H and the regular component ¢, as [10,33]

¢=GC+H+ o (7)
We define the singular component G to be the restriction on Q,, of the solution of
-V e, VG=p/, nR3 (8)
and harmonic component H to be the solution of a Laplace equation
—AH =0, in Q, )

H=-G, onTl, (10)

It is seen that G can be given analytically by Green’s function

qk
G= 1"
endmry’ (an

where gy is the kth atomic charge and ry is the distance from current position to the kth atom. This G is then used
to compute the boundary condition for H, the latter is to be solved numerically from Eq. (9), for which we use a finite
element method in this study. It is worth noting that there is no decomposition of the potential in the solvent region,
thus ¢(x) = ¢.(x) in Qs. Two interface conditions on [, need to be satisfied according to the physical laws:

[¢] = ¢s — ¢m =0 (12)
[eg—f] = e %ﬁs — € 6;;,,, =0 (13)
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where [-] denotes the jump on I, of enclosed quantity from Q,, to Q,. Substituting two components from Eq. (2) we get
the governing equation for the reqgular component ¢,:

— VeV =AY qipi inQyUQ (14)
.04,  0G  OH
[¢.]=0,[e an |= em(an + an ), on T, (15)

Let u = e B¢, with boundary conditions given in Section 2.1, the weak form of the PE is derived as follows:
Find u € H}(Q) which satisfies

G oH
/O(eVqu)dQ =ep (/QAZ(q,-p,-)de — en /rm(tTn + an)vdrm) , v € H{(Q) (16)

The weak form of the NP is obtained as follows:
Find p; € H'(Q,) which satisfies

/ (VpiVv + zip,VuVv)dQ, =0, Vv € Hy(Q,) (17)
piloaa = ppu, 1 =1,2,3. (18)

nojile, =0, i=1,2. (19)

n-jlrar, =0, p3lr, =0 (20)

Three kinds of diffusing species are considered in this paper, therefore we set K = 3. In our numerical studies, the first
two kinds of species are non-reactive and the third is reactive, therefore all of them have same boundary conditions on
m\l e as described in Eq. (19) while different on ', as described in Eq. (20). Of course, we also consider in this paper
the case of no reactive species, then Eq. (20) is ignored and K = 2.

Compared to the original model with a fixed charge source distribution, the regularized PNP equations have different
features [33]. Firstly, the decomposition of electrostatic potential only occurs inside biomolecules, thus the numerical
solution of ¢, in Qs no longer suffers the instability. Secondly, the singular and harmonic components only need to be
solved once a priori before the coupled solutions of the reqularized PNPEs. They serve only for providing fixed interface
conditions for solving ¢,.

2.3. Primitive lterative Strategies for the Coupled Systems

The solution of the PNPEs is obtained by finding the fixed point of the system which couples electrostatic potential
and ion concentrations. Since the equations solved within each iteration are linear, the iterative algorithm as described
in Algorithm 1 can be considered as another approach to solve the nonlinear Poisson-Boltzmann equation in steady
state. To our experience, to improve convergence rate, under-relaxation should be employed [13], especially when
macromolecule exists. In the literature, over-relaxation has been used in the finite difference solver [31] but it is found
not applicable in this context. The error tolerance tol > 0 and relaxation coefficient 0 < a < 1 are predefined constants.
Since it costs several tens or hundreds iterations by using Algorithm 1 to converge to a reasonable solution, DIIS
method is employed here to accelerate convergence. DIIS (direct inversion of the iterative subspace) method, which
is an extrapolation technique and also a dynamic relaxation method, was developed by Péter Pulay in the field of
computational quantum chemistry with the intent to accelerate and stabilize the convergence of the Hartree Fock self
consistent field method [41]. Briefly, the approach uses a linear combination of approximate error vectors from previous
iterations.

Given a system S, pi, denotes the input of S and p,. the output. The stopping criterion is set as Hp~m — pom|| < tol.
Simple mixing and Anderson mixing are two general DIIS methods described as follows:
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Algorithm 1 Primitive iterative method for PNP

for each i € [1,K] do
Initialize ion density p; = 0 and auxiliary variable p; = 0;
end for
Initialize electrostatic potential v = 0 and auxiliary variable & = —1;
while ||u — &||, > tol do
Determine @ as electrostatic potential of the PE by using p; as ion densities;
u«—au+(1—a)i;
for each i €[1,K] do
Determine p; as ion densities of the NP by using u as electrostatic potential;
pi «— api+ (1 — a)pi
end for
end while

e Simple Mixing

pii denotes the n-th step input of system S, then the next input is calculated as

n+1

P = (1= a)py + apgy (21)

It is so called under-relaxation if 0 < a < 1 and over-relaxation if a > 1.

e Anderson Mixing
Define F(p) = pout — pins P = (1= Bl + Bpin ", o = (1= B)play + Bpl' where B is the solution of the least
square problem:

opt __opt

Pin Pout (22)

min ‘
B

2

It can be solved as:

opt opt

Pin ~ Pout

opt opt _opt apt)

m;n ‘ m;n(pin — Poutr Pin — Pout

2

min((1 — B)pi, + Bpin ' = (1= B)pow = Bpowt (1 = B)piy + Bpiy " = (1 = B)pous = BPout)

out

min(F" — B(F" — F'=), F" = B(F" = F"™")

m;n {(F”, Fﬂ) _ ZB(FN, Fn_ Fn71) +B2(Fn _ Fn71’ Fn_ Fn71)}

as (F" — F"=', F" — F"=1) > 0, therefore a unique solution is obtained:

(F", Fn— Fn—1)
B: (Fn_Fn—‘I’Fn_Fn—‘I) (23)
The next step input is written as
Pt = (1= a)pd + apyy (24)

Anderson Mixing is more complicated than Simple Mixing due to its extra calculations of B as described in Eq. (23),

therefore it should be applied to accelerate the iterations only if Simple Mixing does not converge or has a very low
convergence rate.
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2.4. A Symmetric Transformation of PNPEs

The discretization of the Nernst-Planck equation described in Algorithm 1 leads to an asymmetric weak form. A general
treatment to get a symmetric weak form, which is widely used in the study of semiconductor devices, is to employ the
Slotboom variables [42,27,28]. It is seen that by introducing the Slotboom variables

P, = pieql’Bdhl Di — Die_q“3¢’, (25)
the Nernst-Planck equation can be transformed as

P.e—4iBor N
WPee ') _ v (Dvp) (26)
ot
These transformations hence give rise to a self-adjoint, uniformly elliptic operator in the case of a fixed potential. When
we consider steady-state diffusion, the left side of Eq. (26) is 0. The application of transformations in Eq. (25) to the
steady-state diffusion will lead to weak forms as

/{&vavw«x:a (27)

[Q(e(r)V¢,Vv)dQ = , (28)

oG oH
A= qiBYr p. _ —_ P
/5 Ei (zie PvdQq /rm(a” + an Jvdl,

where P; and ¢, are unknowns in the transformed system. After getting approximations of P; when converged, the

concentrations of PNP system are obtained by p; = P;e~9#% . Compared with the original PE, these transformations
lead to a nonlinear part of potential field and the Newton method is used here to solve Eq. (28). Therefore, we have
two nested levels of iterations:

e Internal iterations: iterations for solving the nonlinear PE using Newton method;
e External iterations: iterations between the NP and PE.

Denote by {®; | j =1,..., N} the finite element bases. Let ¢! be the finite element approximation of ¢, at the mth
Newton iteration, which can be regarded as a vector in R" composed of its degrees of freedom. We define a nonlinear
function F(¢") (RY — RN) whose jth component is given by:

m G oH
m. m ) _ e~ 9iBY Pb . T YO
F(ol); = /Q(quSr Vo,)dQ /5 gi (zie7 TP P d,;dQ, + /rm(a” + an )®;dl, (29)
Then the Newton iteration of the Poisson equation reads
F(]')(¢7 — ¢7*") = F(9]), (30)

where F’(¢!) is the Jacobian matrix whose j, [-th element is given by:

F'( ;n)j’,:/(eVng(Dj)dQ—i-/ Z(q[BPie*qiﬁqbﬁn)q)[q)deS
0 0,5

As described in Algorithm 1, the under-relaxation techniques can also be applied here to the iterations between the
transformed NPEs and PE (Egs. (??-28)).
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2.5. A Symmetric Transformation of the Size-modified PNPEs

Our primitive algorithm fails to solve the size-modified Poisson-Nernst-Planck equations (SMPNP) [35] except in simple
cases like the sphere model. By introducing new Slotboom variables [37], the SMPNP equations applied to real protein
systems and the DNA fragment system have been successfully solved in this work. Eq. (3) adds size effects into models
and can also be transformed to give rise to self-adjoint, uniformly elliptic operator in case of a fixed potential. Here we
introduce the following transformations

P, = pieqiﬁ¢r(1 _ Z a?p[)*k[’ f)i — Die*qi&br“ _ Z a?p[)k[ 31
[ [

as a set of generalized Slotboom variables for our SMPNP system, the weak form of the steady-state size-modified
PNPEs reads

DivVPVv)dQ, =0 (32)
[, (bwre)

s

/ Z (qie 99 (1 _Z” p)iP)vdQ, — / (— + — drm) (33)

where only P; and ¢, are solved as unknowns. For each external iteration between the NP and PE, we approximates

/(e(r)V¢,Vv)dQ =

pl = Pre=9Ber (13" alp]~")k, where p? denotes the update in the nth external iteration. When converged, it satisfies
pi = Pie=%P% (13" a?p,)ki. As with the original PNPE, this transformation leads to a nonlinear Poisson equation for
the potential field and the Newton method is used to solve Eq. (33). Here the nonlinear function F(¢/") is defined by:

F(¢r), = /Q(ev¢>;"v¢,)do —/ Z(ze b (1 — Za )P, d0+/ (— + — d> dl o, (34)

and the Newton iteration of the Poisson equation reads

F(@)(¢r — ¢7*") = F(4]) (35)

where

F'( ;n)j.s = /Q(ev(bqu)j)dQ +/0 Z(qiﬁpie*qxﬁsb’r"(,l _ ZG?Pl)ki)q)sq)des
s i !

It is worth noting that in the traditional PNPEs, Dis only dependent on the potential u, but not on the concentration
p. Thus, for a given u, the stiffness matrix of the PE is symmetric. While in size-modified PNPEs, D is dependent both
on the potential u and on the unknown concentration p. In numerical computation of D in each iteration , we shall use

n—1

p?~" as the concentration distribution to maintain the size-modified NPE symmetric.

2.6. Mesh Adaptation

Adaptive mesh refinement is an effective method for improving the accuracy of the numerical solution in finite element
computations. Here we employ the so called h-refinement [3] using an a posteriori error estimate to PNPEs, which
consists of the following steps:

Solve compute the finite element solution for the harmonic component H, the potential and concentration distribution
on the current mesh as described in Section 2.3

Estimate compute an elementwise a posteriori error indicator on each element using the current numerical solution
Mark select a subset of elements on which the error indicators are large

Refine refine (subdivide) the selected elements, plus possibly more elements to maintain the conformity of the mesh
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The above steps are repeated until some criteria are met, which would eventually produce a quasi-optimal mesh for
solving the given problem. In this paper bisection is used to refine (subdivide) an element. This method is widely used
in recent researches [22,25,9].

A crucial ingredient for the effectiveness of mesh adaptation is the a posteriori error estimate used to calculate the error
indicators. In this paper we use the following formula to compute the error indicator ns on the element s

1
2

1
no=| B} _qipi+p" + V- (€V¢h)||i2(s> *t3 2_ hilllevén)- ”f]Hizm ' (36)
i feF(s)

in which F(s) denotes the set of (non-boundary) faces of s, h, the diameter of s, hy the diameter of the face f, ns the
normal of the face f, and [] the jump of the enclosed quantity across the face f. The reasons why we define the error
indicator as in Eq. (36) rather than considering the NP equations mainly rely on: (i) The magnitude of concentrations
varies a lot and differs much from the potential, so does its a posteriori error estimation. Therefore an estimator combining
both potential and concentrations to control mesh refinement is hard to define. (ii) If ||uh1 — uh2|| < tol and tol is small
enough, then the concentrations must be very closed since the system is coupling of the two fields.

The above error indicator is similar to the well-known a posteriori error indicator for the Poisson-Boltzmann equation
introduced by [22] if we consider steady-state diffusion process for the case of two ion sizes. It reflects the residue of
the PE and the jump discontinuities in the dielectric are detected by the second term in the sum containing the jump
function, leading to mesh refinement at the dielectric boundary. The following theorem justifies the validity of this error
indicator in the NPBE system [22].

Theorem 1.
Let ¢ and ¢y, be the exact and numerical solutions of electrostatic potential of the NPBEs respectively, here ¢, € V,
and Vj, denotes the standard H'-conforming linear finite element space, then the following a posteriori error estimate
holds:
1
6=l < (3 nd)2, (37)

seM

where M denotes the tetrahedral mesh, Cy is a constant depending on the discretization.

The error indicator defined in Eq. (36) is an extension for the case of three ion sizes in the steady-state diffusing
process. Its effectiveness for adaptive refinements is discussed in Section 3.4.
The mesh adaptation algorithm is described in Algorithm 2, in which the error tolerance tol > 0 is a predefined constant.

Algorithm 2 The mesh adaptation algorithm

Initialize an initial mesh My;

Solve the discrete problem of the PNPEs on My;

Compute the local error indicator ns on each s € My;

Set k = 0;

while erry = (3_cp, ng)% > tol do
Refine all s € My satisfying ns > %maxSeMkr;S to construct a conforming mesh M1, plus a few more to maintain mesh
conformity;
Solve the discrete problem of the PNPEs on M1;
Compute the local error indicator ns on each s € My1;
Set k =k +1;

end while

3. Numerical Results

In this section, we apply the adaptive finite element algorithms presented in the last section to the sphere cavity model
and protein systems to study the electrostatic potential, ion concentrations and reactive rate constants under various
combinations of inputs. Various aspects of the algorithms including the convergence rate of linear and nonlinear solvers,
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the effectiveness of mesh adaptation and the parallel efficiency and scalability of the parallel code are demonstrated
using these systems.

The implementation of the algorithms is based on the parallel adaptive finite element package PHG [53]. The parallel
code is written in C and uses MPI for message passing. The computations were carried out on the cluster LSSC-III of
the State Key Laboratory of Scientific and Engineering Computing of China, which consists of compute nodes with dual
Intel Xeon X5550 quad-core CPUs, interconnected via DDR InfiniBand network.

3.1. Reaction Rate Coefficients: ACh-AChE System

One of the protein systems computed here is the acetylcholine (ACh)-acetylcholinesterase (AChE) system. The sur-
rounding solvent domain is a sphere with a radius of 400 A. Detailed description of the system can be found in [36]. We
compute the reaction rate coefficients of neurotransmitter ACh at the reaction center of the enzyme AChE. The molecular
surface of which is schematically illustrated in Figure 2. This system carries a total fixed charge of —7.61e.. The mesh
over the whole domain has a total of 176 673 vertices and 1 099 255 tetrahedra. The coefficient € is piecewise constant
in the computational domain which equals to €, = 2 in Q, and e, = 78 in Q. The diffusion coefficient D = 78000 Az/us.
Steady state simulations are performed in this work to calculate the reaction rate coefficients under different conditions.

Fig 2. The discretized molecular surface of AChE with the region around the reaction center colored green, which is generated by TetView [49].

We assume that there are only monovalent ions in the salt, G; and G, are the total bulk concentrations of cation and
anion respectively, and G, is the bulk concentration of substrate. These bulk values are used as Dirichlet conditions
of the diffusion domain in solving the PNPEs. Therefore, to make a closer connection with physiology, it is reasonable
to consider a neutrality condition of the bulk values in our work as g1 G + g2G + g3Cp, = 0, where g1 = +1e. and
g> = —1e. and they denote the charges of non-reactive species respectively. Reaction rate k depends on both ionic
strength and substrate concentration. For the ACh-AChE system, g3 = +1e..

The reaction rate constant is shown as a function of ionic strength for different prescribed substrate concentrations in
Figure 3(a) (linear finite element is used).

At very low substrate concentration, i.e. T mM or less, the results show asymptotic agreement with the Debye-Hiickel
limiting law [16]. However, at moderate concentrations of the substrate, the curves are shifted. The general trend is that
the the reaction rate increases as the bulk concentration of substrate increases for a fixed overall tonic strength. At very
high ionic strength, due to strong Debye screening effects, the electrostatic interactions become weak. Therefore, the
reaction rate reduces to a low level at different substrate concentrations, and are close to the pure diffusion-reaction
rate constant.

We come to study the size effects on the reaction rate for the ACh-AChE system by using the SMPNP model that
has not been successfully applied to real protein systems previously. In our numerical studies, it is found that the
transformation method which leads to a self-adjoint operator is stable and robust in dealing with not only the simple
sphere model, but also the protein systems. Figure 3(b) illustrates the reactive rate constants for various combinations
of ionic strength and substrate concentration with ag = 11.5 A a; =6 A, a, =6 A and a3 =8 A Compared to the
case illustrated in Figure 3(a) without size-effect, it is found that the predicted reaction rate coefficients of the attractive
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substrate are smaller than the results from PNP model. With size effects, it can be seen from Eq. (3) that the flux is
influenced by the additional coupled terms with concentration gradients of all the diffusing species. Within those, the
counter-ion term is dominant due to its much higher concentration and gradient at reactive surface. And note that the
counter-ion and substrate concentration gradients have opposite signs, which negates the substrate flux hence lowers
the reaction rate coefficient.

3.2. Electrostatic Potential and lon Concentrations: DNA Fragment

A DNA fragment is studied, a system which has high permanent charges and leads to numerical difficulties in convergence.
There are only two species considered in the DNA fragment system and both of them are non-reactive and in an
equilibrium state. Therefore the ton concentrations follow Boltzmann distributions and the PNP equations are equivalent
to the Nonlinear Poisson Boltzmann equation. Figure 4 illustrates an example of the unstructured tetrahedral volume
mesh and triangulated surface mesh of a fragment of A-form DNA that is taken from [36]. The figures are produced by
Paraview [1] and Tetgen[48].

The system carries total fixed charge of —22e.. It has a strong negative potential field, which attracts cations. The mesh
over the whole domain has a total of 99 093 vertices and 620 117 tetrahedra, with 24 503 vertices and 49 002 triangles
on the molecular surface. The system is bounded on the outside by a spherical boundary with a radius of 200 A.

(a) (b)

Fig 4. An example mesh for a fragment of A-form DNA. (a) A close-up view of the fine mesh around the molecule. (b) The triangular boundary
mesh conforming to the molecular surface.
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Both the bulk densities of Na* and Cl™ are set to 50 mM. Figure 5 shows the electrostatic potential and corresponding
ton density distributions, by which we can notice that the electrostatic potential in 50 mM solution ranges from -3.63 to
0.92 k cal/mol - e, and the cation density ranges from 0 to 23.1 M. The anion density ranges from 0 to 0.239 M, which
is much smaller than cation density. High cation concentration appears in the vicinity of the molecular surface. In our
previous work in [36], we studied the electrostatic potential and ion concentrations in the LPBE model.

(@) (b)

Fig 5. Electrostatic potential and cation density(M) around a fragment of A-form DNA. (a) Surface electrostatic potential from the PNPEs solution
in a 50 mM salt. The color scale is from -4(red) to 1(blue) kcal/mol- e.. (b) Cross section of the density distribution in 50 mM NaCl solution.
Notice that the cation density is defined only in solvent region.

We also studied the ion size effects on potential and densities. It can be shown that when all sizes a; are equal, for
the case of two ion sizes, it gives a very close but different form of the size-modified Poisson-Boltzmann equation [35].
According to [11], we set ag = 3 A for the water molecule, a; = 3 A for the positive charge species, a; = 3 A for the
negative charge species, then we have the electrostatic potential of the DNA fragment in 50 mM NaCl solution ranges
from —3.78 to 0.94 kcal/mol - e, the cation density ranges from 0 to 18.69 M. The anion density ranges from 0 to
0.236 M, which is smaller than it is in the PNPEs. When comparing the numerical results with that in the PNP case
described in [36], the electrostatic potential with size-effect is found lower and the maximum counter-ion concentration
drops from 23.1 M to 18.69 M while maximum co-ion concentration is not sensitive to the size effects. Obviously, the
counter-ion density near the molecular surface is higher and is three or more orders larger than the co-ion density,
therefore its density is sensitive to the size effects. Consistent with the observations in [37], the counter-ion density
decreases and thus it contributes to a reduced screening to the electric field, hence to a higher potential.

3.3. Numerical Analysis: Convergence and Stability

The introduction of the self-adjoint electro-diffusion operator in Section 2.4 brings up a question on whether the condition
number cond(A) of the PNP system increases or not after the transformations. Previous work in [33] indicates that the
condition number of the stiffness matrix will have catastrophic growth as the permanent charge increases. Examples
in [33] also explicitly indicate that the condition number can still be extremely large if there are positive and negative
permanent charges presented inside biomolecules even if the charges are not large. Actually, it is known that the
condition number with preconditioner cond(PA) is more meaningful than cond(A), where P denotes preconditioner and A
the stiffness matrix. For a matrix A, cond(A) is defined as the rate of maximum and minimum eigenvalue of A’A. Minimum
eigenvalue of A'A is equivalent to maximum eigenvalue of (A’A)~". To compute maximum eigenvalue, we use Power
Method which is widely used. Its extension to the inverse power method is practical for finding any eigenvalue provided
that a good initial approximation is known. Some schemes for finding eigenvalues use other methods that converge fast,
but have limited precision. We only use Power Method to analyze the condition numbers. In our numerical studies, it is
more efficient to solve the NP equations in ACh-AChE system with Additive Schwarz preconditioner [50] than with ILU
preconditioner [46]. In order to verify cond(PA) does not necessarily increase after transformations, numerical results on
cond(PA) are calculated in the sphere cavity model, which is simpler than the ACh-AChE system, and the results show
that the maximum cond(PA) during iterations on solving the NP equations for three species are 5.34 x 10° , 1.84 x 10*
and 3.03 x 10° after transformations while 1.22 x 10, 3.18 x 10° and 1.26 x 10? respectively for the primitive method.
For the Poisson equation, the transformed formulation is nonlinear that requires Newton iterations, thus it costs more
internal iterations than the primitive formulation. Although the transformed PE causes more internal iterations of PE,
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the external iterations between NP and PE can be fewer. In our studies, the primitive method described in Algorithm 1
converges at a much slower rate than the transformation method for solving the PNPEs for both the sphere cavity model
and ACh-AChE system, which is demonstrated in Table 1. The comparisons made here are under the same condition of
using same relaxation parameters a = 0.1 in the external iterations.

Table 1. CPU time costs (with 32 processors) and external iterations between the NP and the PE under different combinations of ionic strength
(mM) and substrate concentration (mM) for the sphere cavity model and the ACh-AChE system.

lonic strength and Sphere Cavity model ACh-AChE system
substrate concentration (mM) primitive | transformed primitive | transformed
50 mM, 10 mM 149 (23.06 s)| 3 (2.54 s)| 148 (1072.88 s)| 10 (168.82 s)
50 mM, 50 mM 152 (2391 s)| 3 (2.66s)| 154 (1114.3 s)| 14 (230.91 s)
100 mM, 50 mM 145 (2157 s)| 3 (2.63 s)|141 (1018.24 s)| 12 (200.92 s)
300 mM, 10 mM 148 (21.92's)| 3 (2.39s)|153 (1108.06 s)| 8 (128.94 s)
300 mM, 50 mM 148 (2214 s)| 3 (2.68 s)|151 (109259 s)| 9 (146.44 s)
300 mM, 100 mM 148 (22.22's)| 3 (2.74 )| 149 (1080.12 s)| 10 (167.88 s)

In the sphere cavity model, the number of internal iterations of the transformed PE ranges from 2 to 5, and the total
number of iterations is less than 20 in each PNP solution. The changes in condition number for the transformed PE are
not significant. Compared to the sphere model, the ACh-AChE model has larger total permanent charges Q = —7.61e,
and the number of iterations between the transformed NP and PE increases but is still much smaller than the primitive
method. It is worth noting that the number of internal iterations of the transformed PE ranges from 2 to 13, and it costs
about several tens iterations to solve each system in total. In other words, for above two systems, self-adjointness of
the electro-diffusion operator significantly improves the convergence rate of external iterations compared to the primitive
method. Table 1 shows the transformed method decreases CPU time by 80% compared to the primitive method in the
meanwhile.

It is worth noting that the transformation method causes a rapid growth of the internal iterations in our numerical studies
of different systems, although it only takes several external iterations between the NP and the PE. It is also found that
the reactive boundary condition is always associated with a smaller condition number than the non-reactive boundary
condition. From our observations, it is seen that the transformation method with Algorithm 1 is stable for solving practical
systems but sometimes it costs many internal iterations when solving the nonlinear transformed PE.

The two under-relaxation methods, Simple Mixing and Anderson Mixing, described in Section 2.3, are static and dynamic
choices of relaxation coefficient respectively. In addition to Simple Mixing, we also have numerical experiments to study
how Anderson Mixing accelerates the iterations between the NP and the PE in primitive method. It is worth noting that
we only use Anderson Mixing on potential field but still use Simple Mixing on concentration field rather than apply
Anderson Mixing on both fields. Because using Anderson Mixing on both fields will not make significant acceleration
and may cause divergence under some combinations of parameters meanwhile. Table 2 illustrates the results with and
without Anderson Mixing for the sphere cavity model at low concentration 1:1 salt solution.

Table 2. Comparisons on the number of iterations with and without Anderson Mixing via using primitive method for the sphere cavity model.

lonic strength and Iterations by Iterations by
substrate concentration (mM) || Simple Mixing | Anderson Mixing

1 mM, 1T mM 154 57
10 mM, 10 mM 153 57
10 mM, 5 mM 144 81
10 mM, 1 mM 154 53
50 mM, 50 mM 152 104
50 mM, 10 mM 149 93
100 mM, 100 mM 153 113
100 mM, 50 mM 145 127
100 mM, 10 mM 150 102

It is seen that the number of iterations using Anderson Mixing as under-relaxation strategy is smaller than using Simple
Mixing and the former does accelerate convergence of the iterations between the NP and the PE at low concentrations.
Our results indicate that the accelerations are not significant at high concentrations for the sphere cavity model. However,
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the primitive method with Anderson Mixing still costs more external iterations than the transformed method with Simple
Mixing, which can be observed from Table 1 and Table 2.

3.4. Mesh Adaptation

To demonstrate the effectiveness of mesh adaptation, we apply Algorithm 2 to the sphere cavity model. Figure 6 shows
the decay rates of the a posteriori error estimate (y axis) with respect to the number of degrees of freedom (DOFs, x axis)
for the PNP system in the mesh adaptation procedure. The optimal error decay rate is indicated by a line of slope —1/3
for the linear element used in the computations. We observe that on the adaptive meshes the error decay rates are quasi-
optimal. For uniform refinements, we compute the error decay and found it can not reach the quasi-optimal convergence.
Figure 7 compares the error estimates between uniform refinements and adaptive refinements when /s = 50 mM and
Pouik = 50 mM for the steady-state diffusing case. From Figure 7, we can make conclusions as follows: (i) For a given
tolerance of the error estimates, adaptive refinements will reach the tolerance with less degrees of freedom (DOFs). (ii)
If the stop criterion of refinements is a given upper bound memory of mesh grid size, then adaptive refinements will
get better accuracy. (iii) After 2-3 uniform refinements, the decay rate of error estimates becomes flatter than before.
Therefore, mesh adaptation is necessary if we want to get better FEM approximations via mesh refinements.

2
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Fig 6. The quasi-optimal convergence of the mesh adaptation algorithm for various combinations of ionic strength (mM) and substrate concentration
(mM) in the sphere cavity model, which is indicated by a line of slope —1/3 in the case of linear element.

3.5. Parallel Scalability and Efficiency

To assess the parallel scalability and efficiency of our parallel code, we introduce a much larger system with a mesh
containing a total of 2 800 768 vertices and 17 522 738 tetrahedra, on which we solve the PNPEs using the transformed
method and quadratic element. The total number of unknowns is 23 134 140. For the solution of the linear systems, we
use PCG as solver because of its symmetry. Table 3 gives the wall-clock time and parallel efficiency for different number
of MPI processes. Due to large memory requirements, our tests start with 64 processes, whose parallel efficiency is
regarded as 100%, and the parallel efficiency for p processes is defined as

64 To4

E =
p pr

where T, denotes the wall-clock time needed for solving the PNPEs using p processesThe parallel efficiencies obtained
are satisfactory. One can notice a rapid drop in the parallel efficiency when going from 512 processes to 1 024 processes,
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Fig 7. Comparisons of convergence between using uniform refinements and adaptive refinements. Both the numerical solutions are obtained from

PNP system by setting /s = 50 mM and pp,;x = 50 mM.

which we believe may be related to the interconnection topology of the underlying InfiniBand network. We also expect
the code to work with larger parallel computers by using faster interconnection network, solving larger problems, or
exploiting the OpenMP/MPI two level parallelism provided by PHG.

Table 3. Parallel efficiency in solving the PNPEs using transformed method with solver PCG.

Num of Procs || Time (s) | Efficiency
64 1899.2 | 100%
128 840.6 | 112.9%
256 384.8 | 123.4%
512 2212 | 107.3%
1024 176.6 67.2%

3.6. High Order Finite Elements

An interesting feature of PHG is the ability to use different finite element types without changing the code. In this
section we demonstrate the effectiveness of high order elements by solving the PNPEs and SMPNPEs for the sphere
cavity model using our code with linear, quadratic and cubic elements respectively.

Figure 8 illustrates the decay of error estimate of electrostatic potential under linear, quadratic and cubic elements,
with respect to the number of DOF, during the uniform mesh refinement procedure. For all three elements we observe
quasi-optimal error decay rates indicated by the asymptotic slopes of the curves in the figure (—1/3 for linear element,
—2/3 for quadratic element and —3/3 for cubic element). Both quadratic and cubic elements are more efficient than the
linear element in that they achieve a given error tolerance with much fewer DOF.

4. Conclusions

We have developed a parallel adaptive finite element code for solving the electro-diffusion equations with permanent
charges in real biomolecular systems. We adopted a recently developed and widely used technique [10,37] to reqularize
the Poisson equation featured with singular charges distributed in the molecular domain in the PNP systems. By
introducing Slotboom variables to the PNP and the size-modified PNP equations, the resulting self-adjoint operator
is more stable and robust in terms of convergence between the Poisson equation and the Nernst-Planck equations,
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Fig 8. The error decay rates of the electrostatic potential for the sphere cavity model in a 50 mM salt with linear, quadratic and cubic elements.

which is verified by our numerical tests with practical models. The corresponding transformed Poisson equation is
nonlinear which requires the Newton method and requires the iterations between the nonlinear Poisson equation and
the symmetric Nernst-Planck equation to employ under-relaxation techniques. Due to the limited availability of the
analytical solutions to 3D PNP, we constructed various test problems to study the electro-diffusion process and to
examine the stability of the transformation method.

It's worth noting that with the primitive method, the iterations between the Poisson equation and the Nernst-Planck
equations fail to converge when solving the size-modified PNP equations for protein systems. In contrast, in our
numerical studies, the transformation method succeeds in converging for practical biophysical systems. By comparing
the primitive method and the transformation method for the PNP equations from observations of the number of iterations
between the Poisson equation and the Nernst-Planck equation and CPU time costs, it is found that the number of
iterations using transformation method is significantly reduced from 150 to 3 and CPU time costs decrease by more than
80% for the sphere cavity model. Moreover, the condition numbers of the preconditioned systems for the transformation
method are not significantly larger than those for the primitive method. We believe that the transformation method is
more stable and robust than the primitive method for practical biophysical applications.

Our code is based on the parallel adaptive finite element package PHG. It is fully parallel with mesh adaptation and
high order capability, and the advantage of mesh adaptation and high order elements has been confirmed by numerical
tests. We believe our code can be applied to computations of complex, large biomolecular systems on parallel computers
with thousands of CPU cores.

In this paper, we focused on the steady-state diffusion process. The parallel solution of time-dependent Poisson-
Nernst-Planck equations with and without size-effect are being explored, and applications of the proposed parallel
FEM algorithms to ion channels are under way.
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