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Parallel Adaptive Finite Element Algorithms for
Solving the Coupled Electro-diffusion Equations

Abstract
In this paper we present parallel adaptive finite element algo-
rithms for solving the 3D electro-diffusion equations such as
the Poisson-Nernst-Planck equations and the size-modified
Poisson-Nernst-Planck equations in simulations of biomolec-
ular systems in ionic liquid. A set of transformation methods
based on the generalized Slotboom variables is used to solve
the coupled equations. Calculations of the diffusion-reaction
rate coefficients, electrostatic potential and ion concentrations
for various systems verify the method’s validity and stability.
The iterations between the Poisson equation and the Nernst-
Planck equations in the primitive method and in the transfor-
mation method are compared to illustrate how the new method
accelerates the convergence of the solution. To speed up the
convergence, we introduce the DIIS (direct inversion of the
iterative subspace) method including Simple Mixing and An-
derson Mixing as under-relaxation techniques, the effective-
ness of which on acceleration is shown by numerical tests.
It is worth noting that the primitive method fails to solve the
size-modified Poisson-Nernst-Planck equations for real pro-
tein systems but the transformation method succeeds in the
simulations of the ACh-AChE reaction system and the DNA
fragment. To improve the accuracy of the solution, we intro-
duce high order elements and mesh adaptation based on an
a posteriori error estimator. Numerical results indicate that
our mesh adaptation process leads to quasi-optimal conver-
gence. We implement our algorithms using the parallel adap-
tive finite element package PHG [53] and high parallel effi-
ciency is obtained.
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1. IntroductionElectrostatic potential and ion distribution around molecular species are essential for describing electro-diffusion, a rate-limiting step in numerous biological processes, such as ligand-enzyme binding and protein-protein diffusive encounter. Ifthe particle-particle correlations of the diffusing species are neglected, the Poisson-Nernst-Planck equations (PNPEs)
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are a proper continuum model for describing the electro-diffusion process of ions via coupling electrostatic potential toionic diffusion [33]. PNPEs are used to simulate ion channels [44,26,31,21,5,7,17,54] and ion migrations [29]. In thispaper we adopt the Poisson-Nernst-Planck equations and the size-modified PNP equations to describe the electro-diffusion-reaction of mobile ions and charged ligands, all modeled as diffusive particles with vanishing size and finitesize effects respectively, in the solvated biomolecular system. Here the electrostatic potential is induced by the mobileions, charged ligands and the fixed charges carried by biomolecules.Figure 1 illustrates biomolecular solution system occupying a domain Ω with a smooth boundary Γs. The domain Ωsdenotes the solvent region that contains several diffusing species while the domain Ωm denotes the macro-biomolecule(s)region. Here, Ω = Ωs ∪ Ωm. Γm denotes the boundary of Ωm. A small patch Γa (Γa ∈ Γm) around the active site is setto a zero Dirichlet boundary condition to model the chemical reaction.

Fig 1. Schematic illustration of the computational domain modeling electro-diffusion reaction processes in the biomolecular solution system.

The Poisson-Nernst-Planck equations (PNPEs) describe the coupling of potential field, density distribution and diffusionprocesses as follows:
∂pi
∂t =∇ · {Di(∇pi + β∇(qiφ)pi)}, in Ωs, i = 1, . . . , K . (1)

−∇ · ε∇φ = ρf + λ
K∑
i=1 qipi, in Ω. (2)

where pi and φ are unknowns. pi is the density distribution function of the diffusing particles of the ith species withdiffusion constant Di. φ is the electrostatic potential that imposes driving forces on the diffusing particles. The othervariables are given as constants. λ = 0 in Ωm and λ = 1 in Ωs, K is the number of species considered, β = 1/kBT isthe inverse Boltzmann energy, kB is the Boltzmann constant, T is the temperature and ε is the dielectric coefficient.
qi = ziec is the charge of each particle of the ith species, ec is the elementary charge. The permanent (fixed) chargedistribution ρf (x) =∑j qjδ(x − xj ) is an ensemble of singular charges qj located at xj inside biomolecules. See [23] fordetails about units and physical constants.Both the potential and ion concentration gradients contribute to the movement of ions. Ions interact with the atomiccharges in the protein and all the other mobile ions in solvent. The PNP model is able to generate a self-consistentelectrostatic potential and the non-equilibrium densities. In this paper, we focus on the steady-state diffusion system,i.e. ∂pi∂t = 0.PNPEs are also a proper model for semiconductor device simulations [38,20,2,15,14], for instance, in calculating the I−Vcharacteristics or studying the process of ion transport. Numerical PNPEs solvers have been developed for both simpleone-dimensional phenomenological models [12,6,18] and complex 3D models for ion channel permeations [5,47,26]. It isknown that the Nonlinear Poisson Boltzmann equation [43,39,32] is a special case of PNPEs at equilibrium in which theion concentrations follow Boltzmann distributions. Therefore, the PB results are consistent with PNP solution undercertain conditions [33]. A variety of numerical methods have been applied to solve PBE as well as PNPEs includingfinite difference method [30,51,55,54], finite element method (FEM) [40,34,33] and hybrid method [4,36]. In this paper, we
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continue to use FEM for solving PNPEs because it is flexible in dealing with irregular shapes in surface biomolecularsystems and higher order approximations can be easily obtained by increasing the finite element order.During past several years, there have been enormous strides in numerical studies of PNP theory. From the pointof view of finite element computing, some difficulties in FEM PNP solution have been overcome. The first amongthese is mesh generation that is fundamental as discretization of computing regions. So far, softwares and packagessuch as Tetgen [48], TMSmesh [8], ISO2Mesh [19] and TransforMesh [52] are used to generate high resolution meshes.Secondly, open-source finite element computing softwares such as PHG [53] and FETK [24] are publicly available andare successfully used in our work to solve PNP equations. However, there are still problems confronting the finiteelement computing of PNP models, especially in the area of biomolecular simulation. Firstly, qualified, stable andefficient molecular surface/volume meshing appears to be necessitated by recent developments for realistic mathematicalmodeling and numerical simulation of biomolecules, especially in implicit solvent modeling. Secondly, in the solutionof the PNP equations system, direct iterative approaches between coupling equations sometimes fail to converge orconverge at a slow speed, therefore relaxation or other techniques need to be introduced to speed up convergence.For the more complicated size-modified PNP equations, we found our previous primitive relaxation iterative approachesfail to converge when applied to protein and DNA systems other than the very simple sphere cavity model [35]. Thesize-modified PNPEs (SMPNP) are written as
∂pi
∂t =∇ ·Di

(
∇pi + kipi1−∑l a3

l pl

∑
l

a3
l∇pl + βqipi∇φ

)
, in Ωs, i = 1, . . . , K . (3)

−∇ · ε∇φ = ρf + λ
K∑
i=1 qipi, in Ω (4)

where ki = a3
i
a30 and ai denotes the size of ith ion species and a0 of the water molecule. A stable algorithm is requiredto solve the PNP-like equations on practical biophysical systems. In addition, due to the expensive computations, finiteelement computing softwares need to be parallelized. To improve accuracy of the solution, one may introduce adaptivestrategy, which greatly complicates the implementation. Finally, more theoretical analysis on finite element methodneeds to be performed for the PNP theory, which is crucial for assuring the reliability and performance of numericalcomputations.In this paper, not all problems listed above have been fully solved, but we have obtained several satisfactory results viaintroducing stable algorithms, efficient relaxation strategies, mesh adaptation and parallelization. Our work is mainlyon the following aspects: (i) Based on the (generalized) Slotboom variables, we find stable algorithms for PNP andSMPNP equations; (ii) Relaxation strategies are introduced to accelerate iterations between the coupling equations; (iii)A parallel adaptive finite element code is implemented and numerical experiments indicate its high parallel efficiency;(iv) We use an a posteriori error estimator to control mesh adaptation and validate it by numerical tests; (v) Theeffectiveness and flexibility of higher order finite element elements are shown in our numerical studies. (vi) Numericaltests are performed not only on sphere cavity model but also on real biophysical systems.The paper is organized as follows. The numerical algorithms are presented in Section 2, where Section 2.1 andSection 2.2 describe the boundary conditions and derive the weak forms of the PNPEs, Section 2.3 describes theprimitive method and under-relaxation techniques, Section 2.4 and Section 2.5 introduce the Slotboom variables for thePNPEs and the generalized Slotboom variables for the size-modified PNPEs respectively, and Section 2.6 presentsthe mesh adaptation algorithm. The numerical results are given in Section 3, including comparisons of the primitiveand transformed methods, effectiveness of mesh adaptation and high order elements, and parallel efficiency. Finallyconclusions are given in Section 4.

2. Numerical Algorithms
2.1. Boundary ConditionsFor the Poisson equation, the electrostatic potential strength of the outer boundary of the whole calculation domainalmost vanishes because it is far away from macro-biomolecule(s) in our computation setup, i.e. φ = 0 on ∂Ω.For the Nernst-Planck equation, both ∂Ω and Γm should be considered. pbulk is set on ∂Ω as Dirichlet boundarycondition, where pbulk denotes the bulk concentration. In this paper, we consider the solution of the diffusion-reaction
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system, which can be modeled by defining a “reactive” boundary patch Γa (see Figure 1), and setting the boundaryconditions as follows: For the reactive species i, we have
pi = 0, on Γa; n · ji = 0, on Γm\Γa (5)

and for non-reactive species, the boundary condition can be written as
n · j = 0, on Γm (6)

where j = D(∇p+β∇(qφ)p). The diffusion-controlled reaction rate coefficient is calculated by k = − ∫Γa n · jdspbulk . Thisboundary condition models the fact that the diffusion time scale is much larger than the reactive time scale and that inthe solution there is a sufficient large number of solute molecules which are able to hydrolyze all ligands that migrateto the reaction centers of solute molecules. The non-zero flux on the reactive surface makes the particle concentrationsdescribed by PNP differ fundamentally from the Boltzmann distribution, which can be reproduced if the macroscopic fluxis vanishing everywhere [45].
2.2. Finite Element DiscretizationA tetrahedral mesh is used to discretize the whole domain Ω, and the molecular surface is defined by a surface mesh oftriangles on both Γm and Γs.To solve the PE, we divide φ into three parts, the singular component G of the electrostatic potential, a harmoniccomponent H and the regular component φr as [10,33]

φ = G +H + φr . (7)
We define the singular component G to be the restriction on Ωm of the solution of

−∇ · εm∇G = ρf , in R3 (8)
and harmonic component H to be the solution of a Laplace equation

− ∆H = 0, in Ωm (9)
H = −G, on Γm (10)

It is seen that G can be given analytically by Green’s function
G =∑

k

qk
εm4πrk , (11)

where qk is the kth atomic charge and rk is the distance from current position to the kth atom. This G is then usedto compute the boundary condition for H , the latter is to be solved numerically from Eq. (9), for which we use a finiteelement method in this study. It is worth noting that there is no decomposition of the potential in the solvent region,thus φ(x) = φr(x) in Ωs. Two interface conditions on Γm need to be satisfied according to the physical laws:
[φ] = φs − φm =0 (12)

[ε ∂φ∂n ] = εs
∂φs
∂n − εm

∂φm
∂n =0 (13)
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where [·] denotes the jump on Γm of enclosed quantity from Ωm to Ωs. Substituting two components from Eq. (2) we getthe governing equation for the regular component φr :
−∇ · ε∇φr = λ

∑
i
qipi, in Ωm ∪Ωs (14)

[φr ] = 0, [ε ∂φr∂n ] = εm(∂G∂n + ∂H
∂n ), on Γm (15)

Let u = ecβφr , with boundary conditions given in Section 2.1, the weak form of the PE is derived as follows:Find u ∈ H10 (Ω) which satisfies
∫

Ω(ε∇u∇v )dΩ = ecβ
(∫

Ω λ
∑
i

(qipi)vdΩ− εm ∫Γm (∂G∂n + ∂H
∂n )vdΓm) , ∀v ∈ H10 (Ω) (16)

The weak form of the NP is obtained as follows:Find pi ∈ H1(Ωs) which satisfies
∫

Ωs (∇pi∇v + zipi∇u∇v )dΩs = 0, ∀v ∈ H10 (Ωs) (17)
pi|∂Ω = pbulk, i = 1, 2, 3. (18)
n · ji|Γm = 0, i = 1, 2. (19)

n · j3|Γm\Γa = 0, p3|Γa = 0 (20)
Three kinds of diffusing species are considered in this paper, therefore we set K = 3. In our numerical studies, the firsttwo kinds of species are non-reactive and the third is reactive, therefore all of them have same boundary conditions onΓm\Γa as described in Eq. (19) while different on Γa as described in Eq. (20). Of course, we also consider in this paperthe case of no reactive species, then Eq. (20) is ignored and K = 2.Compared to the original model with a fixed charge source distribution, the regularized PNP equations have differentfeatures [33]. Firstly, the decomposition of electrostatic potential only occurs inside biomolecules, thus the numericalsolution of φr in Ωs no longer suffers the instability. Secondly, the singular and harmonic components only need to besolved once a priori before the coupled solutions of the regularized PNPEs. They serve only for providing fixed interfaceconditions for solving φr .
2.3. Primitive Iterative Strategies for the Coupled SystemsThe solution of the PNPEs is obtained by finding the fixed point of the system which couples electrostatic potentialand ion concentrations. Since the equations solved within each iteration are linear, the iterative algorithm as describedin Algorithm 1 can be considered as another approach to solve the nonlinear Poisson-Boltzmann equation in steadystate. To our experience, to improve convergence rate, under-relaxation should be employed [13], especially whenmacromolecule exists. In the literature, over-relaxation has been used in the finite difference solver [31] but it is foundnot applicable in this context. The error tolerance tol > 0 and relaxation coefficient 0 < α < 1 are predefined constants.Since it costs several tens or hundreds iterations by using Algorithm 1 to converge to a reasonable solution, DIISmethod is employed here to accelerate convergence. DIIS (direct inversion of the iterative subspace) method, whichis an extrapolation technique and also a dynamic relaxation method, was developed by Péter Pulay in the field ofcomputational quantum chemistry with the intent to accelerate and stabilize the convergence of the Hartree Fock selfconsistent field method [41]. Briefly, the approach uses a linear combination of approximate error vectors from previousiterations.Given a system S, ρin denotes the input of S and ρout the output. The stopping criterion is set as ∥∥ρin − ρout∥∥ < tol.Simple mixing and Anderson mixing are two general DIIS methods described as follows:
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Algorithm 1 Primitive iterative method for PNP
for each i ∈ [1, K ] doInitialize ion density pi = 0 and auxiliary variable p̂i = 0;
end forInitialize electrostatic potential u = 0 and auxiliary variable û = −1;
while

∥∥u− û∥∥2 > tol doDetermine û as electrostatic potential of the PE by using pi as ion densities;
u←− αu+ (1− α)û;
for each i ∈ [1, K ] doDetermine p̂i as ion densities of the NP by using u as electrostatic potential;
pi ←− αpi + (1− α)p̂i

end for
end while

• Simple Mixing
ρnin denotes the n-th step input of system S, then the next input is calculated as

ρn+1in = (1− α)ρnin + αρnout (21)
It is so called under-relaxation if 0 < α < 1 and over-relaxation if α > 1.
• Anderson MixingDefine F (ρ) = ρout−ρin, ρoptin = (1−β)ρnin +βρn−1in , ρoptout = (1−β)ρnout +βρn−1out where β is the solution of the leastsquare problem: min

β

∥∥∥ρoptin − ρoptout
∥∥∥2 (22)

It can be solved as:
min
β

∥∥∥ρoptin − ρoptout
∥∥∥2 = min

β
(ρoptin − ρ

opt
out , ρ

opt
in − ρ

opt
out )= min

β
((1− β)ρnin + βρn−1

in − (1− β)ρnout − βρn−1
out , (1− β)ρnin + βρn−1

in − (1− β)ρnout − βρn−1
out )

= min
β

(Fn − β(Fn − Fn−1), Fn − β(Fn − Fn−1))
= min

β

{(Fn, Fn)− 2β(Fn, Fn − Fn−1) + β2(Fn − Fn−1, Fn − Fn−1)}
as (Fn − Fn−1, Fn − Fn−1) > 0, therefore a unique solution is obtained:

β = (Fn, Fn − Fn−1)(Fn − Fn−1, Fn − Fn−1) (23)
The next step input is written as

ρn+1in = (1− α)ρoptin + αρoptout (24)
Anderson Mixing is more complicated than Simple Mixing due to its extra calculations of β as described in Eq. (23),therefore it should be applied to accelerate the iterations only if Simple Mixing does not converge or has a very lowconvergence rate.
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2.4. A Symmetric Transformation of PNPEsThe discretization of the Nernst-Planck equation described in Algorithm 1 leads to an asymmetric weak form. A generaltreatment to get a symmetric weak form, which is widely used in the study of semiconductor devices, is to employ theSlotboom variables [42,27,28]. It is seen that by introducing the Slotboom variables
Pi = pieqiβφr , D̂i = Die−qiβφr , (25)

the Nernst-Planck equation can be transformed as
∂(Pie−qiβφr )

∂t =∇ · (D̂i∇Pi) (26)
These transformations hence give rise to a self-adjoint, uniformly elliptic operator in the case of a fixed potential. Whenwe consider steady-state diffusion, the left side of Eq. (26) is 0. The application of transformations in Eq. (25) to thesteady-state diffusion will lead to weak forms as

∫
Ωs (D̂i∇Pi∇v )dΩs = 0, (27)

∫
Ω(ε(r)∇φr∇v )dΩ = (∫Ωs

∑
i

(zie−qiβφrPi)vdΩs −
∫

Γm (∂G∂n + ∂H
∂n )vdΓm) , (28)

where Pi and φr are unknowns in the transformed system. After getting approximations of Pi when converged, theconcentrations of PNP system are obtained by pi = Pie−qiβφr . Compared with the original PE, these transformationslead to a nonlinear part of potential field and the Newton method is used here to solve Eq. (28). Therefore, we havetwo nested levels of iterations:
• Internal iterations: iterations for solving the nonlinear PE using Newton method;
• External iterations: iterations between the NP and PE.

Denote by {Φj | j = 1, . . . , N} the finite element bases. Let φmr be the finite element approximation of φr at the mthNewton iteration, which can be regarded as a vector in RN composed of its degrees of freedom. We define a nonlinearfunction F (φmr ) (RN → RN ) whose jth component is given by:
F (φmr )j = ∫Ω(ε∇φmr ∇Φj )dΩ− ∫Ωs

∑
i

(zie−qiβφmr Pi)ΦjdΩs + ∫Γm (∂G∂n + ∂H
∂n )ΦjdΓm (29)

Then the Newton iteration of the Poisson equation reads
F ′(φmr )(φmr − φm+1

r ) = F (φmr ), (30)
where F ′(φmr ) is the Jacobian matrix whose j, l-th element is given by:

F ′(φmr )j,l = ∫Ω(ε∇Φl∇Φj )dΩ + ∫Ωs
∑
i

(qiβPie−qiβφmr )ΦlΦjdΩs

As described in Algorithm 1, the under-relaxation techniques can also be applied here to the iterations between thetransformed NPEs and PE (Eqs. (??-28)).
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2.5. A Symmetric Transformation of the Size-modified PNPEsOur primitive algorithm fails to solve the size-modified Poisson-Nernst-Planck equations (SMPNP) [35] except in simplecases like the sphere model. By introducing new Slotboom variables [37], the SMPNP equations applied to real proteinsystems and the DNA fragment system have been successfully solved in this work. Eq. (3) adds size effects into modelsand can also be transformed to give rise to self-adjoint, uniformly elliptic operator in case of a fixed potential. Here weintroduce the following transformations
Pi = pieqiβφr (1−∑

l

a3
l pl)−ki , D̂i = Die−qiβφr (1−∑

l

a3
l pl)ki (31)

as a set of generalized Slotboom variables for our SMPNP system, the weak form of the steady-state size-modifiedPNPEs reads ∫
Ωs
(
D̂i∇Pi∇v

)
dΩs = 0 (32)

∫
Ω(ε(r)∇φr∇v )dΩ = (∫Ωs

∑
i

(qie−qiβφr (1−∑
l

a3
l pl)kiPi)vdΩs −

∫
Γm (∂G∂n + ∂H

∂n )vdΓm) (33)
where only Pi and φr are solved as unknowns. For each external iteration between the NP and PE, we approximates
pni = Pn

i e−qiβφr (1−∑l a3
l pn−1

l )ki , where pni denotes the update in the nth external iteration. When converged, it satisfies
pi = Pie−qiβφr (1−∑l a3

l pl)ki . As with the original PNPE, this transformation leads to a nonlinear Poisson equation forthe potential field and the Newton method is used to solve Eq. (33). Here the nonlinear function F (φmr ) is defined by:
F (φmr )j = ∫Ω(ε∇φmr ∇Φj )dΩ− ∫Ωs

∑
i

(zie−qiβφmr (1−∑
l

a3
l pl)kiPi)ΦjdΩ + ∫Γm (∂G∂n + ∂H

∂n )ΦjdΓm, (34)
and the Newton iteration of the Poisson equation reads

F ′(φmr )(φmr − φm+1
r ) = F (φmr ) (35)

where
F ′(φmr )j,s = ∫Ω(ε∇Φs∇Φj )dΩ + ∫Ωs

∑
i

(qiβPie−qiβφmr (1−∑
l

a3
l pl)ki )ΦsΦjdΩs

It is worth noting that in the traditional PNPEs, D̂ is only dependent on the potential u, but not on the concentration
p. Thus, for a given u, the stiffness matrix of the PE is symmetric. While in size-modified PNPEs, D̂ is dependent bothon the potential u and on the unknown concentration p. In numerical computation of D̂ in each iteration , we shall use
pn−1
i as the concentration distribution to maintain the size-modified NPE symmetric.

2.6. Mesh AdaptationAdaptive mesh refinement is an effective method for improving the accuracy of the numerical solution in finite elementcomputations. Here we employ the so called h-refinement [3] using an a posteriori error estimate to PNPEs, whichconsists of the following steps:
Solve compute the finite element solution for the harmonic component H , the potential and concentration distributionon the current mesh as described in Section 2.3
Estimate compute an elementwise a posteriori error indicator on each element using the current numerical solution
Mark select a subset of elements on which the error indicators are large
Refine refine (subdivide) the selected elements, plus possibly more elements to maintain the conformity of the mesh
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The above steps are repeated until some criteria are met, which would eventually produce a quasi-optimal mesh forsolving the given problem. In this paper bisection is used to refine (subdivide) an element. This method is widely usedin recent researches [22,25,9].A crucial ingredient for the effectiveness of mesh adaptation is the a posteriori error estimate used to calculate the errorindicators. In this paper we use the following formula to compute the error indicator ηs on the element s
ηs = h2

s
∥∥∑

i
qipi + ρf +∇ · (ε∇φh)∥∥2

L2(s) + 12 ∑
f∈F (s)hf

∥∥[(ε∇φh) · nf ]∥∥2
L2(f )
 12

, (36)
in which F (s) denotes the set of (non-boundary) faces of s, hs the diameter of s, hf the diameter of the face f , nf thenormal of the face f , and [·] the jump of the enclosed quantity across the face f . The reasons why we define the errorindicator as in Eq. (36) rather than considering the NP equations mainly rely on: (i) The magnitude of concentrationsvaries a lot and differs much from the potential, so does its a posteriori error estimation. Therefore an estimator combiningboth potential and concentrations to control mesh refinement is hard to define. (ii) If ∥∥uh1 − uh2∥∥ < tol and tol is smallenough, then the concentrations must be very closed since the system is coupling of the two fields.The above error indicator is similar to the well-known a posteriori error indicator for the Poisson-Boltzmann equationintroduced by [22] if we consider steady-state diffusion process for the case of two ion sizes. It reflects the residue ofthe PE and the jump discontinuities in the dielectric are detected by the second term in the sum containing the jumpfunction, leading to mesh refinement at the dielectric boundary. The following theorem justifies the validity of this errorindicator in the NPBE system [22].
Theorem 1.
Let φ and φh be the exact and numerical solutions of electrostatic potential of the NPBEs respectively, here φh ∈ Vh
and Vh denotes the standard H1-conforming linear finite element space, then the following a posteriori error estimate
holds: ∥∥φ − φh∥∥H1Ω ≤ C0(∑

s∈M

η2
s ) 12 , (37)

whereM denotes the tetrahedral mesh, C0 is a constant depending on the discretization.

The error indicator defined in Eq. (36) is an extension for the case of three ion sizes in the steady-state diffusingprocess. Its effectiveness for adaptive refinements is discussed in Section 3.4.The mesh adaptation algorithm is described in Algorithm 2, in which the error tolerance tol > 0 is a predefined constant.
Algorithm 2 The mesh adaptation algorithmInitialize an initial meshM0;Solve the discrete problem of the PNPEs onM0;Compute the local error indicator ηs on each s ∈M0;Set k = 0;

while errk = (∑s∈Mk
η2
s ) 12 > tol doRefine all s ∈ Mk satisfying ηs > 12maxs∈Mk ηs to construct a conforming mesh Mk+1, plus a few more to maintain meshconformity;Solve the discrete problem of the PNPEs onMk+1;Compute the local error indicator ηs on each s ∈Mk+1;Set k = k + 1;

end while

3. Numerical ResultsIn this section, we apply the adaptive finite element algorithms presented in the last section to the sphere cavity modeland protein systems to study the electrostatic potential, ion concentrations and reactive rate constants under variouscombinations of inputs. Various aspects of the algorithms including the convergence rate of linear and nonlinear solvers,
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the effectiveness of mesh adaptation and the parallel efficiency and scalability of the parallel code are demonstratedusing these systems.The implementation of the algorithms is based on the parallel adaptive finite element package PHG [53]. The parallelcode is written in C and uses MPI for message passing. The computations were carried out on the cluster LSSC-III ofthe State Key Laboratory of Scientific and Engineering Computing of China, which consists of compute nodes with dualIntel Xeon X5550 quad-core CPUs, interconnected via DDR InfiniBand network.
3.1. Reaction Rate Coefficients: ACh-AChE SystemOne of the protein systems computed here is the acetylcholine (ACh)–acetylcholinesterase (AChE) system. The sur-rounding solvent domain is a sphere with a radius of 400 Å. Detailed description of the system can be found in [36]. Wecompute the reaction rate coefficients of neurotransmitter ACh at the reaction center of the enzyme AChE. The molecularsurface of which is schematically illustrated in Figure 2. This system carries a total fixed charge of −7.61ec . The meshover the whole domain has a total of 176 673 vertices and 1 099 255 tetrahedra. The coefficient ε is piecewise constantin the computational domain which equals to εm = 2 in Ωm and εs = 78 in Ωs. The diffusion coefficient D = 78000 Å2/µs.Steady state simulations are performed in this work to calculate the reaction rate coefficients under different conditions.

Fig 2. The discretized molecular surface of AChE with the region around the reaction center colored green, which is generated by TetView [49].

We assume that there are only monovalent ions in the salt, C1 and C2 are the total bulk concentrations of cation andanion respectively, and Csub is the bulk concentration of substrate. These bulk values are used as Dirichlet conditionsof the diffusion domain in solving the PNPEs. Therefore, to make a closer connection with physiology, it is reasonableto consider a neutrality condition of the bulk values in our work as q1C1 + q2C2 + q3Csub = 0, where q1 = +1ec and
q2 = −1ec and they denote the charges of non-reactive species respectively. Reaction rate k depends on both ionicstrength and substrate concentration. For the ACh-AChE system, q3 = +1ec .The reaction rate constant is shown as a function of ionic strength for different prescribed substrate concentrations inFigure 3(a) (linear finite element is used).At very low substrate concentration, i.e. 1 mM or less, the results show asymptotic agreement with the Debye-Hückellimiting law [16]. However, at moderate concentrations of the substrate, the curves are shifted. The general trend is thatthe the reaction rate increases as the bulk concentration of substrate increases for a fixed overall ionic strength. At veryhigh ionic strength, due to strong Debye screening effects, the electrostatic interactions become weak. Therefore, thereaction rate reduces to a low level at different substrate concentrations, and are close to the pure diffusion-reactionrate constant.We come to study the size effects on the reaction rate for the ACh-AChE system by using the SMPNP model thathas not been successfully applied to real protein systems previously. In our numerical studies, it is found that thetransformation method which leads to a self-adjoint operator is stable and robust in dealing with not only the simplesphere model, but also the protein systems. Figure 3(b) illustrates the reactive rate constants for various combinationsof ionic strength and substrate concentration with a0 = 11.5 Å, a1 = 6 Å, a2 = 6 Å and a3 = 8 Å. Compared to thecase illustrated in Figure 3(a) without size-effect, it is found that the predicted reaction rate coefficients of the attractive
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(a) (b)
Fig 3. Reaction rate coefficient (M−1 min−1) affected by both ionic strength and substrate concentration for the ACh-AChE system without size-effect

(left) and with size-effect (right). p0 is bulk substrate concentration (mM) and ionic strength mM) includes spectator ions plus substrate, i.e.12 (∑2
i=1 |qiCi|+ |q3Csub|).

substrate are smaller than the results from PNP model. With size effects, it can be seen from Eq. (3) that the flux isinfluenced by the additional coupled terms with concentration gradients of all the diffusing species. Within those, thecounter-ion term is dominant due to its much higher concentration and gradient at reactive surface. And note that thecounter-ion and substrate concentration gradients have opposite signs, which negates the substrate flux hence lowersthe reaction rate coefficient.
3.2. Electrostatic Potential and Ion Concentrations: DNA FragmentA DNA fragment is studied, a system which has high permanent charges and leads to numerical difficulties in convergence.There are only two species considered in the DNA fragment system and both of them are non-reactive and in anequilibrium state. Therefore the ion concentrations follow Boltzmann distributions and the PNP equations are equivalentto the Nonlinear Poisson Boltzmann equation. Figure 4 illustrates an example of the unstructured tetrahedral volumemesh and triangulated surface mesh of a fragment of A-form DNA that is taken from [36]. The figures are produced byParaview [1] and Tetgen[48].The system carries total fixed charge of −22ec . It has a strong negative potential field, which attracts cations. The meshover the whole domain has a total of 99 093 vertices and 620 117 tetrahedra, with 24 503 vertices and 49 002 triangleson the molecular surface. The system is bounded on the outside by a spherical boundary with a radius of 200 Å.

(a) (b)
Fig 4. An example mesh for a fragment of A-form DNA. (a) A close-up view of the fine mesh around the molecule. (b) The triangular boundary

mesh conforming to the molecular surface.
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Both the bulk densities of Na+ and Cl− are set to 50 mM. Figure 5 shows the electrostatic potential and correspondingion density distributions, by which we can notice that the electrostatic potential in 50 mM solution ranges from -3.63 to0.92 k cal/mol · ec and the cation density ranges from 0 to 23.1 M. The anion density ranges from 0 to 0.239 M, whichis much smaller than cation density. High cation concentration appears in the vicinity of the molecular surface. In ourprevious work in [36], we studied the electrostatic potential and ion concentrations in the LPBE model.

(a) (b)
Fig 5. Electrostatic potential and cation density(M) around a fragment of A-form DNA. (a) Surface electrostatic potential from the PNPEs solution

in a 50 mM salt. The color scale is from -4(red) to 1(blue) kcal/mol · ec . (b) Cross section of the density distribution in 50 mM NaCl solution.
Notice that the cation density is defined only in solvent region.

We also studied the ion size effects on potential and densities. It can be shown that when all sizes ai are equal, forthe case of two ion sizes, it gives a very close but different form of the size-modified Poisson-Boltzmann equation [35].According to [11], we set a0 = 3 Å for the water molecule, a1 = 3 Å for the positive charge species, a2 = 3 Å for thenegative charge species, then we have the electrostatic potential of the DNA fragment in 50 mM NaCl solution rangesfrom −3.78 to 0.94 kcal/mol · ec , the cation density ranges from 0 to 18.69 M. The anion density ranges from 0 to0.236 M, which is smaller than it is in the PNPEs. When comparing the numerical results with that in the PNP casedescribed in [36], the electrostatic potential with size-effect is found lower and the maximum counter-ion concentrationdrops from 23.1 M to 18.69 M while maximum co-ion concentration is not sensitive to the size effects. Obviously, thecounter-ion density near the molecular surface is higher and is three or more orders larger than the co-ion density,therefore its density is sensitive to the size effects. Consistent with the observations in [37], the counter-ion densitydecreases and thus it contributes to a reduced screening to the electric field, hence to a higher potential.
3.3. Numerical Analysis: Convergence and StabilityThe introduction of the self-adjoint electro-diffusion operator in Section 2.4 brings up a question on whether the conditionnumber cond(A) of the PNP system increases or not after the transformations. Previous work in [33] indicates that thecondition number of the stiffness matrix will have catastrophic growth as the permanent charge increases. Examplesin [33] also explicitly indicate that the condition number can still be extremely large if there are positive and negativepermanent charges presented inside biomolecules even if the charges are not large. Actually, it is known that thecondition number with preconditioner cond(PA) is more meaningful than cond(A), where P denotes preconditioner and Athe stiffness matrix. For a matrix A, cond(A) is defined as the rate of maximum and minimum eigenvalue of A′A. Minimumeigenvalue of A′A is equivalent to maximum eigenvalue of (A′A)−1. To compute maximum eigenvalue, we use PowerMethod which is widely used. Its extension to the inverse power method is practical for finding any eigenvalue providedthat a good initial approximation is known. Some schemes for finding eigenvalues use other methods that converge fast,but have limited precision. We only use Power Method to analyze the condition numbers. In our numerical studies, it ismore efficient to solve the NP equations in ACh-AChE system with Additive Schwarz preconditioner [50] than with ILUpreconditioner [46]. In order to verify cond(PA) does not necessarily increase after transformations, numerical results oncond(PA) are calculated in the sphere cavity model, which is simpler than the ACh-AChE system, and the results showthat the maximum cond(PA) during iterations on solving the NP equations for three species are 5.34× 105 , 1.84× 104and 3.03× 103 after transformations while 1.22× 104, 3.18× 106 and 1.26× 102 respectively for the primitive method.For the Poisson equation, the transformed formulation is nonlinear that requires Newton iterations, thus it costs moreinternal iterations than the primitive formulation. Although the transformed PE causes more internal iterations of PE,
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the external iterations between NP and PE can be fewer. In our studies, the primitive method described in Algorithm 1converges at a much slower rate than the transformation method for solving the PNPEs for both the sphere cavity modeland ACh-AChE system, which is demonstrated in Table 1. The comparisons made here are under the same condition ofusing same relaxation parameters α = 0.1 in the external iterations.
Table 1. CPU time costs (with 32 processors) and external iterations between the NP and the PE under different combinations of ionic strength

(mM) and substrate concentration (mM) for the sphere cavity model and the ACh-AChE system.Ionic strength and Sphere Cavity model ACh-AChE systemsubstrate concentration (mM) primitive transformed primitive transformed50 mM, 10 mM 149 (23.06 s) 3 (2.54 s) 148 (1072.88 s) 10 (168.82 s)50 mM, 50 mM 152 (23.91 s) 3 (2.66 s) 154 (1114.3 s) 14 (230.91 s)100 mM, 50 mM 145 (21.57 s) 3 (2.63 s) 141 (1018.24 s) 12 (200.92 s)300 mM, 10 mM 148 (21.92 s) 3 (2.39 s) 153 (1108.06 s) 8 (128.94 s)300 mM, 50 mM 148 (22.14 s) 3 (2.68 s) 151 (1092.59 s) 9 (146.44 s)300 mM, 100 mM 148 (22.22 s) 3 (2.74 s) 149 (1080.12 s) 10 (167.88 s)
In the sphere cavity model, the number of internal iterations of the transformed PE ranges from 2 to 5, and the totalnumber of iterations is less than 20 in each PNP solution. The changes in condition number for the transformed PE arenot significant. Compared to the sphere model, the ACh-AChE model has larger total permanent charges Q = −7.61ecand the number of iterations between the transformed NP and PE increases but is still much smaller than the primitivemethod. It is worth noting that the number of internal iterations of the transformed PE ranges from 2 to 13, and it costsabout several tens iterations to solve each system in total. In other words, for above two systems, self-adjointness ofthe electro-diffusion operator significantly improves the convergence rate of external iterations compared to the primitivemethod. Table 1 shows the transformed method decreases CPU time by 80% compared to the primitive method in themeanwhile.It is worth noting that the transformation method causes a rapid growth of the internal iterations in our numerical studiesof different systems, although it only takes several external iterations between the NP and the PE. It is also found thatthe reactive boundary condition is always associated with a smaller condition number than the non-reactive boundarycondition. From our observations, it is seen that the transformation method with Algorithm 1 is stable for solving practicalsystems but sometimes it costs many internal iterations when solving the nonlinear transformed PE.The two under-relaxation methods, Simple Mixing and Anderson Mixing, described in Section 2.3, are static and dynamicchoices of relaxation coefficient respectively. In addition to Simple Mixing, we also have numerical experiments to studyhow Anderson Mixing accelerates the iterations between the NP and the PE in primitive method. It is worth noting thatwe only use Anderson Mixing on potential field but still use Simple Mixing on concentration field rather than applyAnderson Mixing on both fields. Because using Anderson Mixing on both fields will not make significant accelerationand may cause divergence under some combinations of parameters meanwhile. Table 2 illustrates the results with andwithout Anderson Mixing for the sphere cavity model at low concentration 1:1 salt solution.
Table 2. Comparisons on the number of iterations with and without Anderson Mixing via using primitive method for the sphere cavity model.Ionic strength and Iterations by Iterations bysubstrate concentration (mM) Simple Mixing Anderson Mixing1 mM, 1 mM 154 5710 mM, 10 mM 153 5710 mM, 5 mM 144 8110 mM, 1 mM 154 5350 mM, 50 mM 152 10450 mM, 10 mM 149 93100 mM, 100 mM 153 113100 mM, 50 mM 145 127100 mM, 10 mM 150 102
It is seen that the number of iterations using Anderson Mixing as under-relaxation strategy is smaller than using SimpleMixing and the former does accelerate convergence of the iterations between the NP and the PE at low concentrations.Our results indicate that the accelerations are not significant at high concentrations for the sphere cavity model. However,
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the primitive method with Anderson Mixing still costs more external iterations than the transformed method with SimpleMixing, which can be observed from Table 1 and Table 2.
3.4. Mesh AdaptationTo demonstrate the effectiveness of mesh adaptation, we apply Algorithm 2 to the sphere cavity model. Figure 6 showsthe decay rates of the a posteriori error estimate (y axis) with respect to the number of degrees of freedom (DOFs, x axis)for the PNP system in the mesh adaptation procedure. The optimal error decay rate is indicated by a line of slope −1/3for the linear element used in the computations. We observe that on the adaptive meshes the error decay rates are quasi-optimal. For uniform refinements, we compute the error decay and found it can not reach the quasi-optimal convergence.Figure 7 compares the error estimates between uniform refinements and adaptive refinements when Is = 50 mM and
pbulk = 50 mM for the steady-state diffusing case. From Figure 7, we can make conclusions as follows: (i) For a giventolerance of the error estimates, adaptive refinements will reach the tolerance with less degrees of freedom (DOFs). (ii)If the stop criterion of refinements is a given upper bound memory of mesh grid size, then adaptive refinements willget better accuracy. (iii) After 2-3 uniform refinements, the decay rate of error estimates becomes flatter than before.Therefore, mesh adaptation is necessary if we want to get better FEM approximations via mesh refinements.

Fig 6. The quasi-optimal convergence of the mesh adaptation algorithm for various combinations of ionic strength (mM) and substrate concentration
(mM) in the sphere cavity model, which is indicated by a line of slope −1/3 in the case of linear element.

3.5. Parallel Scalability and EfficiencyTo assess the parallel scalability and efficiency of our parallel code, we introduce a much larger system with a meshcontaining a total of 2 800 768 vertices and 17 522 738 tetrahedra, on which we solve the PNPEs using the transformedmethod and quadratic element. The total number of unknowns is 23 134 140. For the solution of the linear systems, weuse PCG as solver because of its symmetry. Table 3 gives the wall-clock time and parallel efficiency for different numberof MPI processes. Due to large memory requirements, our tests start with 64 processes, whose parallel efficiency isregarded as 100%, and the parallel efficiency for p processes is defined as
Ep = 64T64

pTp
.

where Tp denotes the wall-clock time needed for solving the PNPEs using p processes.The parallel efficiencies obtainedare satisfactory. One can notice a rapid drop in the parallel efficiency when going from 512 processes to 1 024 processes,
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Fig 7. Comparisons of convergence between using uniform refinements and adaptive refinements. Both the numerical solutions are obtained from
PNP system by setting Is = 50 mM and pbulk = 50 mM.

which we believe may be related to the interconnection topology of the underlying InfiniBand network. We also expectthe code to work with larger parallel computers by using faster interconnection network, solving larger problems, orexploiting the OpenMP/MPI two level parallelism provided by PHG.
Table 3. Parallel efficiency in solving the PNPEs using transformed method with solver PCG.Num of Procs Time (s) Efficiency64 1899.2 100%128 840.6 112.9%256 384.8 123.4%512 221.2 107.3%1024 176.6 67.2%
3.6. High Order Finite ElementsAn interesting feature of PHG is the ability to use different finite element types without changing the code. In thissection we demonstrate the effectiveness of high order elements by solving the PNPEs and SMPNPEs for the spherecavity model using our code with linear, quadratic and cubic elements respectively.Figure 8 illustrates the decay of error estimate of electrostatic potential under linear, quadratic and cubic elements,with respect to the number of DOF, during the uniform mesh refinement procedure. For all three elements we observequasi-optimal error decay rates indicated by the asymptotic slopes of the curves in the figure (−1/3 for linear element,
−2/3 for quadratic element and −3/3 for cubic element). Both quadratic and cubic elements are more efficient than thelinear element in that they achieve a given error tolerance with much fewer DOF.
4. ConclusionsWe have developed a parallel adaptive finite element code for solving the electro-diffusion equations with permanentcharges in real biomolecular systems. We adopted a recently developed and widely used technique [10,37] to regularizethe Poisson equation featured with singular charges distributed in the molecular domain in the PNP systems. Byintroducing Slotboom variables to the PNP and the size-modified PNP equations, the resulting self-adjoint operatoris more stable and robust in terms of convergence between the Poisson equation and the Nernst-Planck equations,
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Fig 8. The error decay rates of the electrostatic potential for the sphere cavity model in a 50 mM salt with linear, quadratic and cubic elements.

which is verified by our numerical tests with practical models. The corresponding transformed Poisson equation isnonlinear which requires the Newton method and requires the iterations between the nonlinear Poisson equation andthe symmetric Nernst-Planck equation to employ under-relaxation techniques. Due to the limited availability of theanalytical solutions to 3D PNP, we constructed various test problems to study the electro-diffusion process and toexamine the stability of the transformation method.It’s worth noting that with the primitive method, the iterations between the Poisson equation and the Nernst-Planckequations fail to converge when solving the size-modified PNP equations for protein systems. In contrast, in ournumerical studies, the transformation method succeeds in converging for practical biophysical systems. By comparingthe primitive method and the transformation method for the PNP equations from observations of the number of iterationsbetween the Poisson equation and the Nernst-Planck equation and CPU time costs, it is found that the number ofiterations using transformation method is significantly reduced from 150 to 3 and CPU time costs decrease by more than80% for the sphere cavity model. Moreover, the condition numbers of the preconditioned systems for the transformationmethod are not significantly larger than those for the primitive method. We believe that the transformation method ismore stable and robust than the primitive method for practical biophysical applications.Our code is based on the parallel adaptive finite element package PHG. It is fully parallel with mesh adaptation andhigh order capability, and the advantage of mesh adaptation and high order elements has been confirmed by numericaltests. We believe our code can be applied to computations of complex, large biomolecular systems on parallel computerswith thousands of CPU cores.In this paper, we focused on the steady-state diffusion process. The parallel solution of time-dependent Poisson-Nernst-Planck equations with and without size-effect are being explored, and applications of the proposed parallelFEM algorithms to ion channels are under way.
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