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ABSTRACT: The Debye−Hückel limiting law is used to study the binding kinetics of
substrate−enzyme system as well as to estimate the reaction rate of a electrostatically
steered diffusion-controlled reaction process. It is based on a linearized Poisson−
Boltzmann model and known for its accurate predictions in dilute solutions. However, the
substrate and product particles are in nonequilibrium states and are possibly charged, and
their contributions to the total electrostatic field cannot be explicitly studied in the
Poisson−Boltzmann model. Hence the influences of substrate and product on reaction rate
coefficient were not known. In this work, we consider all the charged species, including the
charged substrate, product, and mobile salt ions in a Poisson−Nernst−Planck model, and
then compare the results with previous work. The results indicate that both the charged
substrate and product can significantly influence the reaction rate coefficient with different
behaviors under different setups of computational conditions. It is interesting to find that
when substrate and product are both considered, under an overall neutral boundary
condition for all the bulk charged species, the computed reaction rate kinetics recovers a similar Debye−Hückel limiting law
again. This phenomenon implies that the charged product counteracts the influence of charged substrate on reaction rate
coefficient. Our analysis discloses the fact that the total charge concentration of substrate and product, though in a
nonequilibrium state individually, obeys an equilibrium Boltzmann distribution, and therefore contributes as a normal charged
ion species to ionic strength. This explains why the Debye−Hückel limiting law still works in a considerable range of conditions
even though the effects of charged substrate and product particles are not specifically and explicitly considered in the theory.

■ INTRODUCTION

The Debye−Hückel limiting law (DHL)1 is a long established
theory for describing the binding kinetics of a substrate−
enzyme system, which is also experimentally verified in a range
of conditions. The binding rate is a limiting step in diffusion-
controlled reaction processes, which also makes DHL
applicable to estimate the reaction rate of electrostatically
steered diffusion-controlled reactions under different ionic
strengths. The Debye−Hückel equation determines the rate
coefficient of an acetylcholinesterase (AChE) system as a
function of ionic strength I:2
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Here, the following abbreviations apply: kon is the reaction rate,
kon
0 is the effective reaction rate at zero ionic strength rate, kon

H is
the effective limiting reaction rate at infinite ionic strength and
set to the value of kon calculated at 0.67 M ionic strength, ZE is
the effective enzyme charge, and ZI is the effective substrate
charge. The Debye−Hückel theory is based on the linearized
Poisson−Boltzmann (PB) model which is a simplified model of
electrolyte solution; nevertheless, the DHL theory enables one
to make an accurate prediction which matches well with
experimental data.

Usually, ionic strength is measured through bulk concen-
trations of “spectator” ions (nonreactive mobile ions like Na+

and Cl−). However, an issue is raised here that the
concentrations of charged substrate and product molecules
would also influence the electric field and the reaction rate.
Furthermore, the distributions of the reaction-related species
are not in an equilibrium state. In this work, we try to properly
evaluate the effects of the charged substrate and product to the
reaction rate, which are not treated explicitly by the DHL, with
a continuum electrodiffusion model. A typical example chosen
here is the hydrolysis reaction of acetylcholine (ACh) by
AChE2 (see eq 2). Known as an important enzyme for signal
transduction, AChE is tethered to a postsynaptic membrane in
neuromuscular junctions, serving to terminate synaptic trans-
mission by hydrolyzing acetylcholine and some other choline
esters. Hydrolysis takes place on the active site of AChE, where
acetylcholine is catalyzed to acetic acid and choline. As the
AChE system is widely studied in biophysics and biochemistry,
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the structure and mechanism of the action of AChE have been
elucidated, which facilitates theoretical modeling and numerical
simulation. In addition, the impact of electrostatic steering and
complex geometry in a diffusion-reaction process is also studied
previously by numerical simulations in detail. The chemical
reaction equation is as follows:

The hydrolysis procedure involves not only intake of ACh but
also generation of acetic acid and choline from the active site. It
is worth noting that both acetylcholine and choline are
positively charged and thus influence the electrostatic field
around AChE, while acetic acid is not considered in the current
model for its charge neutrality.
The DHL considers the kinetic motion of a charged substrate

particle subjected to a background PB electric field. A
continuum description of the charge motion under an external
electric field usually adopts the drift-diffusion model governed
by the Smoluchowski equation3 or similarly the Nernst−Planck
(NP) equations. Earlier NP modeling was used in the theory of
electrophoresis of highly charged particles.4,5 These studies
explore the nonequilibrium but steady-state perturbation of a
constant external field on the charge distribution around a host
ion to see how the host ion is being influenced. It shows that
charge polarization effects only become important if the host
particle is highly charged. The phenomena studied in the
present work are more complicated since we deal with the
influence of a spatially varying perturbing field (produced by
other charged particles) rather than an external electric field.
When an external field is determined by the Poisson−
Boltzmann equation,6−9 the model is the so-called Smolu-
chowski−Poisson−Boltzmann (SPB) model. The NP or SPB
was also applied to describe the substrate diffusion.10−12

McCammon’s group used the SPB model and numerical
simulation approaches to study the diffusion-reaction processes
of a enzyme−substrate molecular system.13−16 The SPB
equations consist of the Smoluchowski equation3 and the PB
equation. In numerical calculations, the potential field is initially
calculated by solving the PB equation. The substrate diffusional
flux (drifted by the precalculated PB electric field) is computed
by solving the Smoluchowski equation, and the reaction rate is
defined as the integration of flux on active site. In the SPB
model, the electric field determined by the equilibrium PB
equation neglects the contribution from the nonequilibrium

distributed substrate and product species, which is only
reasonable at a lower concentration of reactive species.
Nevertheless, the numerical results calculated from SPB
model seem to fit the DHL law quite well. A proper
explanation will be given in this work.
As aforementioned, charged substrate and product molecules

are also expected to impose an influence on the reaction, but
few studies were made to give a direct and clarified answer to
this issue. To consider all the charged particles together, and
also notice that the substrate and product are not in an
equilibrium state due to reaction, a proper improved approach
is to adopt the Poisson−Nernst−Planck equation
(PNP)15,17−21 to simulate the whole electrodiffusion process.
The PNP equations consist of a Poisson equation describing
the electrostatic field with arbitrary charge distribution
(including the transient substrate and product distributions)
and Nernst−Planck (NP) equations describing the drift-
diffusion of charged particles. The PNP equations are also
used in various other studies like diffusions on charged
interfaces,11 and ion transport through an ion channel.22−24

In the PNP model, the Poisson equation is fully coupled with
the NP equation, while the SPB equations are partially coupled.
Previous studies show that the uncoupled PB theory may be
challenged in estimating the electrostatic potential energy in ion
channels.25−27 The simulations in our previous work using the
coupled PNP model show that the reaction rate coefficient is
significantly influenced by charged substrate concentration and
deviates significantly from the DHL, with different behaviors
under different setups of computational conditions.20,21 In this
paper, our PNP model simulates all the charged species
together (see Figure 2 in the following section), including
charged substrate, product, and mobile ions, and the results are
compared with previous work and DHL.
For convenience, we use “PNP1” to indicate the PNP model

including substrate species (without the product species) and
“PNP2” to indicate the PNP model including both substrate
and product species. The models and numerical methods are
presented in the next section, and simulation results are
compared and discussed in the Numerical Results and
Discussions section.

■ METHOD
A solvated biomolecular system is represented in Figure 1, with
an illustration of the whole simulation domain Ω on the left
and an AChE surface mesh on the right. Mobile ions

Figure 1. Two-dimensional illustration of computational model and a surface mesh of AChE (from ref 20). The reactive site (boundary) Γa is
marked in red.
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(“spectator” ions which usually account for ionic strength as a
measure of the degree of electrostatic screening) are assumed
to distribute continuously in the solvent region and are not able
to diffuse across the boundary of biomolecule into the solute
region. The solute (molecule) region is represented by Ωm and
the solvent region by Ωs. Γs is the outer boundary, and Γm is the
boundary of the biomolecule; Γa ⊂ Γm represents the active site
in the reaction-diffusion model,13 which is a 20 Å deep gorge.
Three simulation models are considered in this paper. The

first model is the steady-state Smoluchowski−Poisson−
Boltzmann equations:13,14

∇· ∇ = Ωβ ϕ β ϕ−D c x( e ( ( )e )) 0 inq x q x
s

( )
s

( )
ss s (3)

∑ϕ ρ λ−∇·ϵ ∇ = + Ωβ ϕ−x x x q c( ) ( ) ( ) e inf

i
i i

q xbulk ( )i

(4)

Here the summation in eq 4 only includes the nonreactive salt
ion species obeying Boltzmann distributions.
The second and third models are the Poisson−Nernst−

Planck equations without (PNP1 model) or with (PNP2
model) the charged product species. The Poisson−Nernst−
Planck equations are given as follows:15,20,21
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where i stands for different species (we only consider at most
four charged species, using i = 1, 2 to denote the nonreactive
salt ions like Na+ and Cl−, i = s to denote charged substrate, and
i = p to denote charged product). For the ith species, its flux Ji
is defined as − Di(∇ci(x) + βqici(x)∇ϕ(x)), ci denotes density
distribution function, ci

bulk bulk concentration, qi the charges of
each particles, and Di the diffusion coefficient. ϵ is a piecewise
dielectric constant and β the inverse Boltzmann energy. ρf

denotes the density distribution function of fixed atomic
charges in enzyme, λ a characteristic function of Ωs (1 in Ωs,
and 0 in Ωm), and ϕ the electrostatic potential function. In this

work only the steady state is considered, namely, =∂
∂ 0c

t
i . In the

PNP1 model only three species, i = 1, 2, s, are considered
(studied in refs 20 and 21), while in the PNP2 model four
species i = 1, 2, s, p are considered.
Dirichlet boundary conditions are used on outer boundary to

mimic the bulk situation:

ϕ = = Γc c0, oni i
bulk

s (7)

On Γm, boundary conditions differ for different species. In
previous work,13,21 the absorbing boundary condition is set on
the reactive boundary for substrate:

= Γ = Γ Γc J0 on and 0 on \s a s m a (8)

and nonreactive species have a reflecting boundary on
biomolecular boundary:

= ΓJ 0 oni m (9)

In this work, we use a more general and reasonable Robin
boundary condition28,29 at the reactive boundary for substrate
species:

α· = ΓJ n c ons s a (10)

Here α is a reaction coefficient29 and is set to 103 Å3/μs in our
experiments, which can be modified for different kinetics of
ligand binding systems and different charged species.
Now, we consider the product species and its boundary

condition. According to the chemical reaction in eq 2, every
positively charged substrate particle participating in a reaction
will finally produce a positively charged product particle (and a
neutral product particle, but the neutral species is not
considered in this work as it has no influence on the reaction
rate within this model). Therefore, the “output” flux of charged
product should be equal to the “input” substrate flux, but with
opposite direction at the reactive boundary. This is a key point
of the current work, and the whole picture is schematically
illustrated in Figure 2.

The above consideration leads to another Robin boundary
condition for the charged product species:

· = − · ΓJ n J n onp s a (11)

This boundary condition of charged product species describes a
balance of ionic flow for substrate and product. From eqs 10
and 11 an alternative Robin boundary condition for product in
the PNP2 model can be applied for convenience:

α· = − ΓJ n c onp s a (12)

In our numerical experiments, we compared the Robin
boundary condition with the absorbing Dirichlet boundary
condition, and observed that the reaction rate coefficients only
slightly vary with different boundary conditions, provided that
the reaction coefficient α is large. The influence of α on rate
coefficient will be reported in the next section.
It is found that the setup of boundary conditions for the

species’ bulk concentrations strongly affects the calculated
reaction rate coefficient. In both situations, i.e., (1) only
considering the charge neutrality condition for the two salt ion

Figure 2. Schematic show of the diffusion-reaction model and the
boundary condition for product species in this work.
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species, c−
bulk = c+

bulk (for simplicity, + and − denote the
positively and negatively charged salt ion species, respectively),
and (2) considering the neutrality condition for two ion species
and the positively charged substrate ACh, c−

bulk = c+
bulk + cs

bulk, the
calculated rate coefficients all strongly depend on the substrate
bulk concentration, but the two situations differ from each
other and can even lead to very different trends. These studies
have been reported in previous work.20,21 The model PNP1 is
considered in situation 2, for which we recalculate some data
for comparison in the Numerical Results and Discussions
section. When the product species is taken into account in this
work, a more reasonable neutral condition is to consider all four
species, i.e., c−

bulk = c+
bulk+ cs

bulk + cp
bulk. Dirichlet boundaries with

various bulk concentrations for product species are also tested,
but the reaction rate coefficient turns out to be almost the same
as long as the over neutrality condition is satisfied at the
boundary. Therefore, to simplify the outer boundary
conditions, zero concentration is set as the boundary condition
on Γs for the product species in all the following simulations.
The reaction rate is calculated by integrating the flux of

substrate on the reactive boundary:

∫= ·
Γ

v J n dSs
a (13)

and the rate coefficient is the ratio of the reaction rate to the
bulk substrate concentration:

=k
v

cs
bulk

(14)

where cs
bulk denotes the bulk substrate concentration.

A parallel finite element method is used as our numerical
approach, and a body-fitted mesh is adopted, which enables
convenient implementation of the above various boundary/
interface conditions.13,24,29

■ NUMERICAL RESULTS AND DISCUSSIONS
The implementation of the finite element algorithm is based on
the package PHG,30 and all the calculations were carried out on
the cluster LSSC-III of the State Key Laboratory of Scientific
and Engineering Computing of Chinese Academy of Sciences.
Before comparing the three models in AChE system, namely,

the SPB model, the PNP1 model, and the PNP2 model, we
recalculated the numerical results with the PNP1 model21 as
shown in Figure 3, assuming that the diffusion coefficient for
ACh is 78 000 Å2/μs. It is observed that the behaviors of the
reaction rate coefficient strongly depend on both substrate
concentration and ionic strength, as was discussed in earlier
work.21

To make more convenient comparisons, in the following
analysis, we define “substrate ratio” as the ratio of the bulk
substrate concentration to the ionic strength. Actually, in our
case the ionic strength is equal to the bulk positive ion
concentration in a neutral system (assuming all the charged
particle is monovalent), and thus, the substrate ratio
equivalently describes the substrate concentration in proportion
to the overall positive charge concentration in bulk. In Figure 4,
the reaction rate coefficient is represented as a decreasing
function of I (ranging from 0 to 0.5 M) with prescribed
substrate ratios for both PNP models, while the rate coefficient
calculated by the SPB model is not related to the substrate
ratio. We calculated the reaction rate coefficient of the PNP1
model with three different ratios, and it is shown that the

reaction rate coefficient increases as the substrate ratio
increases. In the PNP2 model, the diffusion coefficient for
choline Dp is assumed to be the same as that for ACh (the
result dependence on different Dp is shown in Figure 5). It is
observed that the reaction rate coefficient is hardly influenced
by the substrate ratio in the PNP2 model. Therefore, only one
line is plotted with the substrate ratio simply set to 1.0 (results
with different substrate ratios are shown in Figure 5). In the
ACh−AChE reaction system, the coefficients in DHL are given
as follows, ZE = −7.91, ZI = +1.2

Different from the PNP1 model, with the above settings, the
numerical results of the PNP2 model, the SPB model, and
DHL are close to each other. All of these results show an
exponential decay of the rate coefficient when the ionic
strength increases due to an electrostatic screening effect. The
reaction rate coefficients calculated by the PNP1 model are
always higher, especially when the substrate ratio is close to 1.0.
The difference between PNP1 and PNP2 models decreases as
the substrate ratio decreases.

Figure 3. Reaction rate coefficient influenced by ionic strength and
substrate concentration in the PNP1 model. x-axis is ionic strength
(M), and y-axis is reaction rate coefficient (M−1 min−1).

Figure 4. Reaction rate coefficients calculated in SPB, PNP1, and
PNP2 models.
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We now try to explain the differences between the three
methods. The two PNP models are mainly different in reaction
product, as long as the reaction coefficient α is large enough,
like α = 103 Å3/μs in our simulations. In the PNP2 model, the
positively charged choline is assumed to be generated on the
biomolecular boundary, where the hydrolyzation takes place
and ACh is absorbed. With charged choline considered, more
positive charges accumulate around the enzyme in the PNP2
model, producing a stronger ionic screening effect (AChE is
overall negatively charged) than in the PNP1 model, and
leading to a smaller reaction rate coefficient in the PNP2
model.
A more precise and quantitative explanation for the PNP2

model is as follows. In the simple case that ACh and choline are
assumed to have the same diffusion coefficients (like a similar
type of particle), the two NP equations for ACh and choline are
the same, and their concentrations are additive. This means
their total concentration, noted as cx = cs + cp, satisfies a similar
NP diffusion equation, which can be considered as the
concentration of a substitutive imaginary species x with the
same positive charge and same diffusion coefficient. Because Jp·
n = −Js·n, the imaginary species x has a reflecting boundary
condition on the active site Γa (Jtotal·n = Js·n + Jp·n = 0, see
Figure 2) and a Dirichlet boundary condition on the outer

boundary Γs. In other words, cx has a reflective boundary
condition on the whole molecular boundary Γm. According to
the property of PNP equations,31 if every NP equation satisfies
a reflective boundary condition at the molecular boundary and
the other conditions are similar to the settings in the PB model,
the PNP equations are equivalent to the equilibrium (non-
linear) PB equation, indicating zero fluxes everywhere. This
means that cx and other concentrations of salt ion species obey
Boltzmann distributions in AChE system, and the total
potential field is the same as a nonlinear PB potential field
(note that a similar overall charge neutrality condition also
holds at the outer boundary for all the charged species), though
each individual of cs and cp does not follow a Boltzmann
distribution due to their nonequilibrium property (nonzero
flux). The physical consequence in this situation is that the
substrate ACh is subject to an exact PB potential field during its
diffusive binding process and behaves like a field “probing”
particle without considering its self-influence to the potential
field as in the SPB model. This explains the reason why in
Figure 4 our PNP2 model yields very close predictions as in the
SPB model, and both PNP2 and SPB models fit the Debye−
Hückel limiting law well. A difference is that the PNP2 model
inherently coincides with the nonlinear PB model (with certain
setup of diffusion coefficients and neutrality condition satisfied

Figure 5. Reaction rate coefficient influenced by (A) diffusion coefficient ratio, (B) reaction coefficient, and (C) substrate ratio in the PNP2 model.
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as discussed above), and DHL is based on the linearized PB. In
addition, if the substrate and product have quite different
diffusion coefficients and/or do not bring similar charge(s), or
if the reaction coefficient α is not large enough as shown in
Figure 5, the PNP2 model may generate different results from
the SPB model and DHL. Both previous SPB model and DHL
assume a very fast chemical reaction step (large α). However,
according to above observations and physical explanations, the
PNP2 model seems to be applicable in more general situations.
In Figure 5, we show how different coefficients, including

product/substrate diffusion coefficients, reaction coefficient,
and substrate ratio, influence the reaction rate coefficient in the
new PNP2 model. The condition and coefficients in Figure 5
are given as follows for each subfigure if not specified: I = 0.5
M, substrate ratio = 0.2, diffusion coefficient ratio = 1, reaction
coefficient = 103 Å3/μs. The “diffusion coefficient ratio” is
defined as the ratio of choline diffusion coefficient Dp to ACh
diffusion coefficient Ds. As shown in Figure 5A, the diffusion
coefficient ratio strongly influences the reaction rate coefficient.
We consider two kinds of extreme situations: one is that the
diffusion coefficient ratio is very small, so that choline
accumulates around the active site, which hinders the reaction
process and reduces the reaction rate coefficient; the other one
is that if the diffusion coefficient ratio is large enough, the
choline would diffuse quickly, and the accumulation effect
disappears and approaches the limiting case. In fact, the choline
molecule is smaller in size than ACh. From the Stokes−
Einstein relation, Dp can be estimated to be slightly larger than
Ds, so a reasonable diffusion coefficient ratio for choline and
ACh system should be a little bit larger than 1. Figure 5B shows
how the reaction coefficient influences the results. At small
reaction coefficient, the reaction rate coefficient is small because
the reaction is slowed by the chemical reaction step. When the
reaction coefficient α becomes large enough, diffusion is the
limiting step for the overall reaction process and the reaction
rate coefficient is completely diffusion-controlled, in which case
the rate coefficient approaches its diffusion rate limit. Two
extreme cases are α = 0 (representing nonreaction) and α =
+∞ (representing the “perfect” reaction). However, we have no
good reason to explain why there is an extreme point at about α
= 10−1 Å3/μs. It is found in Figure 5C that an increase in
substrate ratio can very slightly increase the rate coefficient, but
the influence is only within 1% of the overall magnitude. This is
why we only use the data from the substrate ratio equal to 1.0
in Figure 4.

■ CONCLUSIONS
A comparative study is done for three numerical models and
the DHL for estimation of the reaction rate coefficient of the
diffusion-controlled reaction system ACh-AChE. The following
conclusions can be drawn through the results and analysis: (1)
All the charged species including salt ions, charged substrate,
and product (if not negligibly dilute) play significant roles in
influencing the reaction rate coefficient, and both the charged
substrate and product contribute to electrostatic screening
which is similar to the ionic strength in DHL. (2) Boundary
conditions, especially the method for setting up the neutrality
condition, can also strongly influence the calculated results. (3)
The Debye−Hückel limiting law describes well the electrostatic
steering effects in diffusion-reaction processes for a range of
conditions without the need to specifically consider the
influence of the charged substrate and product on the overall
electric field. The model PNP2, considering the electric field

from all the charged species, especially including the substrate
and product, yields very close results to those of SPB and DHL
for a range of conditions (provided that the overall neutrality
condition at outer boundary is satisfied), whereas the SPB
model and DHL do not explicitly and self-consistently (as the
coupled PNP equations) take into account the charge effect of
substrate and product in their underlying theory. As explained
in the previous section for the PNP2 model, the overall
influence of substrate and product is almost like the effect of a
single imaginary nonreactive species, indicating that the total
charge concentration of substrate and product obeys the
Boltzmann distribution and contributes as a component of the
overall ionic strength and screening. This means that the
simpler models such as DHL and SPB can in fact produce the
correct electrostatic interactions in diffusion-reaction processes,
and give reasonable predictions for a considerable range of
conditions. (4) A model as PNP1 considering the substrate but
without the charged product most likely leads to unacceptable
results except for in the case with very low substrate bulk
concentrations. Although the original goal of the PNP1 model
is to improve the SPB model by considering an additional
species, the substrate, the results become worse (because the
ignored product can actually compensate the substrate in terms
of electrostatic screening). (5) The relatively complete model
PNP2 considering all the charged species can be in principle
applicable to various and more general conditions, such as very
low or high diffusion coefficient ratios, low reaction coefficient,
or non-neutral conditions if they exist.
When the mean field PNP theory is challenged, other factors

such as particle size effects, correlation effects, and molecular
flexibility need to be considered beyond the current
model.32−35
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