
J Stat Phys (2016) 163:156–174
DOI 10.1007/s10955-016-1470-7

A Local Approximation of Fundamental Measure
Theory Incorporated into Three Dimensional
Poisson–Nernst–Planck Equations to Account for
Hard Sphere Repulsion Among Ions

Yu Qiao1 · Xuejiao Liu1 · Minxin Chen 2 ·
Benzhuo Lu1

Received: 6 September 2015 / Accepted: 29 January 2016 / Published online: 15 February 2016
© Springer Science+Business Media New York 2016

Abstract The hard sphere repulsion among ions can be considered in the Poisson–Nernst–
Planck (PNP) equations by combining the fundamental measure theory (FMT). To reduce the
nonlocal computational complexity in 3D simulation of biological systems, a local approx-
imation of FMT is derived, which forms a local hard sphere PNP (LHSPNP) model. In the
derivation, the excess chemical potential from hard sphere repulsion is obtained with the
FMT and has six integration components. For the integrands and weighted densities in each
component, Taylor expansions are performed and the lowest order approximations are taken,
which result in the final local hard sphere (LHS) excess chemical potential with four compo-
nents. By plugging the LHS excess chemical potential into the ionic flux expression in the
Nernst–Planck equation, the three dimensional LHSPNP is obtained. It is interestingly found
that the essential part of free energy term of the previous sizemodifiedmodel (Borukhov et al.
in Phys Rev Lett 79:435–438, 1997; Kilic et al. in Phys Rev E 75:021502, 2007; Lu and Zhou
in Biophys J 100:2475–2485, 2011; Liu and Eisenberg in J Chem Phys 141:22D532, 2014)
has a very similar form to one term of the LHS model, but LHSPNP has more additional
terms accounting for size effects. Equation of state for one component homogeneous fluid is
studied for the local hard sphere approximation of FMT and is proved to be exact for the first
two virial coefficients, while the previous size modified model only presents the first virial
coefficient accurately. To investigate the effects of LHS model and the competitions among
different counterion species, numerical experiments are performed for the traditional PNP
model, the LHSPNP model, the previous size modified PNP (SMPNP) model and the Monte
Carlo simulation. It’s observed that in steady state the LHSPNP results are quite different
from the PNP results, but are close to the SMPNP results under a wide range of boundary
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conditions. Besides, in both LHSPNP and SMPNPmodels the stratification of one counterion
species can be observed under certain bulk concentrations.

Keywords Hard sphere repulsion · Three dimensional fundamental measure theory ·
Poisson–Nernst–Planck equations · Size-modified PNP · Equation of state

1 Introduction

In systems of charged particles, the traditional continuum Poisson–Nernst–Planck (PNP)
model has been widely used for modeling and simulating a variety of interesting phenomena,
such as ion distributions around charged particles [2,43,44], and flow of ions across channels
[1,9,19,25,27,35,68] and axons [49]. A defect in the PNPmodel is the point charge treatment
of ions which in fact have finite volumes. This may lead to unphysical concentration values
in the neighborhood of biomolecules [6,43,50] and hence can not properly capture the size
effects which may play important role in ion permeation through ion channels.

A great deal of efforts have been devoted to remedy this disadvantage and improve the PNP
model to provide reliable predictions through including ionic size effects and ion-ion correla-
tions. In equilibrium and uniform ionic size, Andelman et al. have incorporated the ionic size
effects into the traditional continuummodel, and provided the explicit expressions of ion con-
centrations and the uniform size modified Poisson–Boltzmann (SMPB) equation [6,7]. This
is derived by introducing an additional solvent entropy term, representing the unfavorable
energy modeling the overpacking or crowding of ions and solvent molecules, into the free
energy form. Fenley’s group has studied this SMPB model explicitly through comparisons
with the original Poisson–Boltzmann (PB) model, and investigations of the sensitivities to
parameterization [23,24,64]. By using a rigorous lattice gas method, Chu et al. extended this
uniform SMPB model to make it work for two different ion sizes and studied ion binding to
DNA duplexes which showed improved agreements with experimental data [12]. In the case
of three or more different sizes, the rigorous lattice gas method is hard to apply to give an
explicit SMPB equation, but an alternative size modified Poisson–Nernst–Planck (SMPNP)
model is derived in our previous work which can be considered as an implicit SMPB model
in equilibrium [43,50]. Li et al. have provided some mathematical analysis on the energy
functional for the SMPB model [37]. In recent work by Liu and Eisenberg [39–41], they
considered the size effects from all spherical ions, water molecules (treated as polarizable
spheres) and interstitial voids, and derived an entropy form of those spheres of arbitrary diam-
eter and voids. To further account for the correlation effect of ions, Liu and Eisenberg’s work
also included a high-order derivative term of potential in free energy functional derived by
Santangelo [61] which has similar form to Cahn–Hilliard concentration-gradient expansions
[8,47]. The resulted fourth order Poisson–Fermi equation [40,41] (for equilibrium condi-
tion) and Poisson–Nernst–Planck–Fermi equations (for nonequilibrium condition) [41] can
account for the steric effect of ions and water molecules, the correlation effect of crowded
ions, the screening effect of polar water, as well as the charge/space competition effect of
ions and water molecules. These models were shown to be able to capture critical phenomena
such as ion binding, blocking, and selective permeation of L-type calcium channels [39–41].

Apart from the above mean field modified models, coupling of density functional theory
(DFT) and PNPmodel has also been used to account for ion-ion interactions in solutions. The
major description of DFT lies in the construction of the excess Helmholtz free energy [14].
Rosenfeld derived the fundamental measure theory (FMT) to express the excess Helmholtz
free energy for hard sphere mixtures [51], which contains four scalar and two vector weight
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functions, and has been widely used in many literatures [15,16,19,22,28,29,31,32,34,36,
38,42,46,48,52–60,62,65–67,70]. Not long after that, he extended the original FMT, that
works for three dimensional inhomogeneous fluids, to predict a freezing transition of the
hard-sphere fluid into a solid [57,58]. At the same time, lots of contributions have been
made to improve the FMT. Kierlik and Rosinberg have proposed a simplified version of
FMT, which requires only four scalar weight functions [32]. Roth et al. and Wu et al. have
independently, published the white-bear version [60] or the modified FMT [70] using the
Mansoori–Carnahan–Starling–Leland bulk equation of state to make simulation results more
accurate. For inhomogeneous fluids of nonspherical hard particles,Mecke et al. have derived a
fundamental measure theory using the Gauss-Bonnet theorem [22]. In numerical calculation,
due to the complexity of FMT, calculations are mostly reduced to 1D cases using geometric
symmetry of the simulation systems [22,31,59,60,70]. Only a few literatures provided 3D
results [15,16,36,62]. When FMT is combined with the PNP model to include hard sphere
repulsion for non-equilibrium transport studies, the final integro-differential equations are
more complex and computationally expensive, especially in the situation with biomolecular
systems. Liu et al. have made some mathematical analysis on the PNP system for ion flow
with density functional theory for hard sphere interaction in 1D situation [28,42]. So far, most
studies are restrained to 1D case [19,20,26,28,42]. Recently, Gillespie et al. [34] and Meng
et al. [46] have reported simulations of 3D systems. The main difficulty is the calculation of
the nonlocal components originated from the Helmholtz free energy.

In this work, we propose a 3D local hard sphere PNP (LHSPNP) model for real biomole-
cular systems in ionic solutions. On one hand, 3D simulation can count for the irregular
boundary of biomolecule which plays an essential role during biological processes, such
as ionic flow across channel, protein modification or interaction with a protein or substrate
molecule and cell signaling [44,68]. These shape information is hard to be captured in 1D
case resulted from the symmetric boundary simplifications. On the other hand, the local
hard sphere (LHS) model largely simplifies the numerical calculations while it still partially
maintains the effects of hard sphere repulsion.

We improve the PNP model by considering the hard sphere repulsion from FMT. The
excess Helmholtz free energy of FMT is employed to generate the excess hard sphere chemi-
cal potential which is completely ignored in the PNPmodel. Different from the ideal chemical
potential, this excess component of a certain ion at a given point is determined by an integra-
tion about all ion concentrations in a region around the given point, rather than the certain
ion concentration at the given point. This integration is in the form of convolution. Gillespie
et al. have used fast Fourier transform to deal with the convolution [34], while Meng et al.
have used the definition of Dirac delta function and change of variables to transform these
3D integrals into 2D integrals on spheres and remove the singularity in the integrands [46].
Though both algorithms can solve the integro-differential equations, they cost lots of com-
puter memory and time during calculation. We aim to construct an excess chemical potential
in a point to point way like the ideal component for 3D simulations of ionic solutions. Liu
et al. have derived a LHS excess chemical potential in 1D case and made theoretical analysis
on the model problem based on geometric singular perturbation theory [38]. In our work, we
concentrate on the more complex 3D case and simplify the integration using an expansion
of the integrand under small ionic diameters to obtain the final LHSPNP model. It’s found
that the 3D LHSPNP model is exactly the same as Liu’s when reduced to 1D case.

We examine the effects of the LHSmodel both from a theoretical and a numerical point of
view.For the case of one component homogeneousfluid, the virial coefficients are investigated
through the equations of state from the FMT, our local approximation and the size modified
model [6,33,43] studied in former work. For FMT, the equation of state is known to be the
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Percus-Yevick compressibility equation, equivalent to scaled particle theory, which provides
the first three virial coefficients exactly. Frydel and Levin have shown that the size modified
model only predicts the first virial coefficient exactly [17]. Based on these discussions and
the relations between bulk grand canonical potentials from the micro and macro views, we
derive the virial coefficients for our local approximation.Wefind that the LHSmodel provides
the first two virial coefficients exactly, which performs better than the size modified model.
Numerically, to investigate the effects of the hard sphere repulsion from LHS model, we
make numerical comparisons for a spherical cavity case among the PNP, LHSPNP, SMPNP
models and the Monte Carlo (MC) simulation. For the four parts of the local excess chemical
potential in LHSPNP,we notice that the first term is, to some extent, similar to the local excess
chemical potential of the SMPNP model, though LHSPNP and SMPNP are based on two
different theoretical frameworks. We consider two counterion species in the solution, which
helps us to understand competitions between them under the PNP, LHSPNP and SMPNP
models. However, in real biomolecular systems, like enzyme molecules and ion channels,
the boundary is rarely spherical and may be rather complex. The effects of the boundary
shape will be different and may be quite important. The shape of the cavity determines
details of confinement (and concentration) of the crowded ions and these in turn determines
(for example) the selectivity of calcium channels [3–5,30]. Besides of the complexity of
the geometry, it’s also necessary to take care of the charge distribution on the biomolecular
outer boundary which usually is specific and controls the contents and function of the whole
systems, for example, ion channels studied in Refs. [13] and [18]. These should be carefully
treated when applied for real biomolecular systems and will be considered explicitly in our
future work.

The rest of the paper is organized as follows. The method section offers a detailed descrip-
tion about the derivation of the LHSPNP model, its equation of state in one component
uniform fluid, and the numerical method to solve the LHSPNP equations. The result and dis-
cussion section provides numerical results of a spherical cavity in various bulk concentrations
with the PNP, LHSPNP, SMPNPmodels andMC simulation and also some discussions about
the observed phenomena. Finally, conclusions are summarized in the conclusion section.

2 Method

2.1 Local Hard Sphere Poisson–Nernst–Planck Model

In addition to the ideal chemical potential considered in the original Poisson–Nernst–Planck
(PNP) equations, an excess chemical potential arising from hard sphere repulsion is incor-
porated to the equations to make the model more accurate. Using the constitutive relations
about the flux and the electrochemical potential, we have the following expression of ion
flux

Ji = −mici∇μi = − Di

kBT
ci∇μi , (1)

where Ji is the flux, mi and ci are the mobility and concentration for the i th ion species
respectively, μi is the chemical potential, Di is the diffusion coefficient, kB and T are the
Boltzmann constant and absolute temperature. The chemical potential μi is composed of
two parts, the ideal part μid

i and the excess part μex
i . The mass and current conservation law

leads to the following equation
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∂ci
∂t

= −∇ · Ji = ∇ ·
(

Di

kBT
ci∇μi

)
= ∇ ·

(
βDici

(
∇μid

i + ∇μex
i

) )
, (2)

where μid
i = qiφ + β−1 ln�3

i ci , φ is the electrostatic potential, β = 1
kBT

, qi and �i are
the charge amount and de Broglie wave length of the i th ion species respectively. Coupling
Eq. 2 with the Poisson equation, we obtain the modified PNP at steady state

∇ · Di (∇ci + βqi ci∇φ + βci∇μex
i ) = 0, i = 1, · · · , K , (3)

−∇ · ε∇φ −
K∑
i=1

ciqi =
N∑
i=1

Qiδi , (4)

where K is the number of ion species, and Qi is the charge amount of the i th atom in
the biomolecule that contains N fixed point charges. Specifically, it is worth noting that in
equilibrium state of zero flux, the above modified PNP equations become a modified PB
model as described by the following equation:

− ∇ · ε(x)∇φ(x) −
K∑
i=1

cbiqi e
−βqiφ(x)−β

(
μex
i (x)−μex

bi

)
=

N∑
i=1

Qiδi (x), (5)

where μex
bi is the bulk excess chemical potential defined under bulk concentrations. This

generalized PB equation incorporating the hard sphere repulsion can be solved by combining
with the following local expression of μex

i (x) from FMT.
According to Rosenfeld’s fundamental measure theory (FMT) [51], the excess Helmholtz

free energy due to hard sphere repulsion can be expressed as

Fex

[{
ci (x)

}] = β−1
∫

dx�
[{
nα(x)

}]
, (6)

�
[{
nα(x)

}] = − n0 ln(1 − n3) + 1

1 − n3
(n1n2 − nV 1 · nV 2)

+ n2
24π(1 − n3)2

(n22 − 3nV 2 · nV 2), (7)

nα(x) =
∑
i

∫
ci (x′)ω(α)

i (x − x′)dx′, (8)

where nα(x) is the weighted density, ω
(α)
i (x) is the characteristic (weight) function for

α = 0, 1, 2, 3, V 1, V 2. The indexes V 1 and V 2 are used to represent the vector terms while
the other four represent the scalar terms. For a three-dimensional hard sphere particle of
radius Ri , these functions are defined as:

ω
(3)
i (x) = θ(|x| − Ri ), (9)

ω
(2)
i (x) = δ(|x| − Ri ), (10)

ω
(1)
i (x) = ω

(2)
i (x)/4πRi , (11)

ω
(0)
i (x) = ω

(2)
i (x)/4πR2

i , (12)

ω
(V 2)
i (x) = x

|x|δ(|x| − Ri ), (13)

ω
(V 1)
i (x) = ω

(V 2)
i (x)/4πRi . (14)
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θ(x) is the unit step function defined by

θ(x) =
{
0 if x > 0,
1 if x ≤ 0,

(15)

and δ(x) is the Dirac delta function.
From above definitions, it’s not difficult to obtain the following expression of the excess

chemical potential

μex
i (x) = δFex

δci
= β−1

∫
dx′ ∑

α

∂�

∂nα

[
{nγ (x)}

]
ω

(α)
i (x′ − x), (16)

where

∂�

∂n0
= − ln(1 − n3), (17)

∂�

∂n1
= n2

1 − n3
, (18)

∂�

∂n2
= n1

1 − n3
+ 1

8π(1 − n3)2
(n22 − nV 2 · nV 2), (19)

∂�

∂n3
= n0

1 − n3
+ 1

(1 − n3)2
(n1n2 − nV 1 · nV 2) + n2

12π(1 − n3)3

× (n22 − 3nV 2 · nV 2), (20)
∂�

∂nV 1
= − nV 2

1 − n3
, (21)

∂�

∂nV 2
= − nV 1

1 − n3
− 1

4π

n2nV 2

(1 − n3)2
. (22)

As shown in Eq. 16, the excess chemical potential resulted from hard sphere repulsion is
an integration defined on a certain region, which requires plenty of calculation. By taking
corresponding Taylor expansions of the excess chemical potential, we can deduce a local
formula for the excess chemical potential as follows. From Eq. 16, the excess chemical
potential of the i th ion species can be decomposed into six components. Denote them by
{μα

i (x) = β−1
∫

∂�
∂nα

[{nγ (x)}]ω(α)
i (x′ − x)dx′} and we can get:

βμ0
i (x) = − ln

(
1 −

∑
j

4

3
πR3

j c j (x)
) + O(R4), (23)

βμ1
i (x) = Ri

∑
j 4πR2

j c j (x)

1 − ∑
j
4
3πR3

j c j (x)
+ O(R4), (24)

βμ2
i (x) = 4πR2

i

∑
j R j c j (x)

1 − ∑
j
4
3πR3

j c j (x)
+ O(R4), (25)

βμ3
i (x) = 4

3
π

R3
i

∑
j c j (x)

1 − ∑
j
4
3πR3

j c j (x)
+ O(R4), (26)

βμV 1
i (x) = O(R4), (27)

βμV 2
i (x) = O(R4). (28)
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Here, we give the explicit derivation of Eq. 23 as an example. Others can be obtained in the
similar way. First, consider the expansion of n3(x) in the definition of βμ0

i (x):

n3(x) =
∑
i

∫
ci (x′)ω(3)

i (x − x′)dx′ =
∑
i

∫
ci (x − x′)ω(3)

i (x′)dx′

=
∑
i

∫
|x′|≤Ri

ci (x − x′)dx′

=
∑
i

∫
|x′|≤Ri

[
ci (x) − ∇ci (x) · x′ + O(R2)

]
dx′

=
∑
i

4

3
πR3

i ci (x) + O(R5). (29)

Then, substituting above equation for n3(x) in the expansion of βμ0
i (x), we have:

βμ0
i (x) =

∫
∂�

∂n0
(x′)ω(0)

i (x − x′)dx′ =
∫

∂�

∂n0
(x − x′)ω(0)

i (x′)dx′

= −
∫

ln
(
1 − n3(x − x′)

) 1

4πR2
i

δ(|x′| − Ri )dx′

= −
∫ 2π

0
dφ

∫ π

0
sin θdθ

∫ ∞

0
ln

(
1 − n3(x − rν)

) r2

4πR2
i

δ(r − Ri )dr

= − 1

4π

∫ 2π

0
dφ

∫ π

0
ln

(
1 − n3(x − Riν)

)
sin θdθ

= − 1

4π

∫ 2π

0
dφ

∫ π

0

[
ln

(
1 − n3(x)

)

+ −∇n3(x)

1 − n3(x)
· (−Riν) + O(||∇2n3(x)||R2)

]
sin θdθ

= − ln
(
1 − n3(x)

) + O(R4)

= − ln
(
1 −

∑
j

4

3
πR3

j c j (x) + O(R5)
) + O(R4)

≈ − ln
(
1 −

∑
j

4

3
πR3

j c j (x)
) + O(R4), (30)

The other terms can be obtained similarly, as shown in Eqs. 24–28. Take the lowest order
approximation of each term and the local excess chemical potential in three dimensions is
given by:

βμLHS
i (x) = β

∑
α

μα
i (x)

= − ln
(
1 −

∑
j

4

3
πR3

j c j (x)
) + Ri

∑
j 4πR2

j c j (x)

1 − ∑
j
4
3πR3

j c j (x)

+ 4πR2
i

∑
j R j c j (x)

1 − ∑
j
4
3πR3

j c j (x)
+ 4

3
π

R3
i

∑
j c j (x)

1 − ∑
j
4
3πR3

j c j (x)
. (31)
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It’s notable that the excess chemical potential expressed by Eq. 31 at a given point is deter-
mined by the concentration values at this point. This local expression is much simpler than
the nonlocal one in numerical calculation. For one dimensional situation, a local hard sphere
potential is also proposed by Liu et al. [38] to investigate ion flow through channels and
shows great improvements.

The final modified Nernst–Planck (NP) equations of the local hard sphere PNP (LHSPNP)
can be obtained by replacing the μex

i in Eq. 3 by μLHS
i (x) in Eq. 31

∇ · Di (x)
(
∇ci (x) + βqi ci (x)∇φ(x) + βci (x)∇μLHS

i (x)
)

= 0, i = 1, · · · , K . (32)

In the size modified PNP (SMPNP) equations proposed in our former work [43,50], the
excess chemical potential is expressed by μex

i (x) = −β−1ki ln
(
1 − ∑

j a
3
j c j (x)

)
, where

ki = a3i
a30
, ai and a0 are the diameters of ion and water molecule, respectively. This is quite

similar to the first term of the local hard sphere excess chemical potentialμLHS
i (x) in Eq. 31.

From this point of view, the LHSPNP can capture the same ionic size effects contained in
the SMPNP model. Furthermore, it’s found that all the four terms of Eq. 31 are positive and
contribute unfavorable energies for all possible concentrations, which indicates the later three
terms have the similar influence as the first term and strengthen the hard sphere repulsion
effect. Compared with the excess chemical potential in SMPNP model, these extra three
terms in μLHS

i (x) can be regarded as supplements to the size effects.

2.2 Bulk Fluid Equation of State

In uniform fluid with constant density, the equation of state for FMT is known to be the
Percus-Yevick compressibility equation, which is the same as the scaled particle theory
[14,51,60]. The four scalar weighted densities {nα}(α = 0, 1, 2, 3) can be reduced to {ξ (α)}
where ξ (3) = 4π

3

∑
i ci R

3
i , ξ

(2) = 4π
∑

i ci R
2
i , ξ

(1) = ∑
i ci Ri and ξ (0) = ∑

i ci , while the
vector weighted densities nV 1 and nV 2 vanish. The bulk grand canonical potential is given
by

�b =
(

β−1�b + f idb −
∑
i

μi ci

)
V, (33)

where β−1�b is the bulk excess energy density defined in Eq. 7, f idb is the bulk ideal energy
density defined by β−1 ∑

i ci (ln ci�
3
i − 1) and V is the system volume [14]. On the other

hand, �b can also be determined from the thermodynamic relation

�b = −PV, (34)

where P is the pressure [14]. From Eqs. 33 and 34, the pressure is expressed as:

P =
∑
i

μi ci − β−1�b − f idb . (35)

According to the equilibrium condition, the chemical potential μi at bulk state is
∂ f
∂ci

, where
f is the energy density composed of the excess and ideal parts in the FMT. This leads to the
general expression of pressure in the following equation:

P =
∑
i

ci
∂ f

∂ci
− f. (36)
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In studying the equation of state, we consider one component bulk fluid with constant
density ρ. Under this assumption, the bulk excess energy density from Eq. 7 is

�b = −ρ ln(1 − η) + 3ηρ

1 − η
+ 3η2ρ

2(1 − η)2
, (37)

where η is the packing fraction defined by η = πσ 3

6 and σ is the diameter of ions in solution.
Thus we can get the energy density, and the equation of state

βP

ρ
= 1 + η + η2

(1 − η)3
= 1 +

∞∑
i=1

3i2 + 3i + 2

2
ηi = 1 + 4η + 10η2 + 19η3 + · · · . (38)

Based on tabulated values of the first eight virial coefficients [21], the equation of state for
homogeneous hard sphere fluid is given by

βP

ρ
= 1 + 4η + 10η2 + 18.365η3 + 28.225η4 + 39.74η5 + 53.5η6 + 70.8η7 + · · · .(39)

It’s apparent that the first three virial coefficients are exact from FMT in Eq. 38.
In our local hard sphere approximation, we replace the weighted densities with a local

expression by ignoring the Taylor expansion terms of order O(σm)(m � 4), and use it in
the derivation of excess chemical potentials. With this consideration, the bulk excess energy
density in local hard sphere model is given by

�LHS
b = −ρ ln(1 − η) + 3ηρ

1 − η
. (40)

Comparedwith Eq. 37, this equation does not take into account the last term of order O(η2) =
O(σ 6). Following this definition, we can get the bulk excess chemical potential after ignoring
the terms of order O(σm)(m � 4)

βμex
b = ∂�LHS

b

∂ρ
= − ln(1 − η) + 7η

1 − η
. (41)

This is in accordance with our above result of Eq. 31 in one component bulk condition.
Substituting these expressions of excess energy density and chemical potential, and those of
the ideal parts into Eq. 36, we finally get

βP

ρ
= 1 + 3η

1 − η
= 1 + 4

∞∑
i=1

ηi = 1 + 4η + 4η2 + · · · . (42)

It’s clear the first two virial coefficients from Eq. 42 is exact, which is reasonable with the
approximation that we do not take into account the terms of order O(ηn)(n � 2). For the later
terms in the order of O(ηn)(n � 2) = O(σm)(m � 6) in Eq. 42, they can not be predicted
well in LHS, since the terms of order O(σm)(m � 6) are ignored.

For the size modified model [6,33,43] with one component bulk fluid, Frydel and Levin
have arrived at the following conclusion [17]

βP

ρ
= −1

η
ln(1 − η) = 1 +

∞∑
i=1

1

i + 1
ηi = 1 + 1

2
η + · · · . (43)

Different from the FMT and LHS predictions, above equation only provides the first virial
coefficient accurately. Figure 1 illustrates the compressibility factor Z = βP

ρ
versus packing

fraction η of the three different results discussed in Eqs. 38, 42 and 43. From the inset of
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Fig. 1 (Color online) The
equation of state of pure hard
sphere fluid
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Fig. 1, it’s notable that at low η values, the predictions between FMT and our local approach
are quite close to each other, while the values from the size modified models SMPB/SMPNP
[6,33,43] are much lower than those from FMT and LHS.

2.3 Numerical Method

Finite element method (FEM) is employed in our work to solve the three different models,
PNP, SMPNP and LHSPNP, numerically. To accelerate the calculations, the algorithms are
implemented with the parallel adaptive finite element package PHG [71]. The molecular
surface and volume meshes, that are necessary for FEM computation, are generated by
TMSmesh [10,11] and Tetgen [63].

Similar to our formerwork [43], using Slotboom transformation, themodifiedNP equation
Eq. 32 can be written in a symmetric form

∇ · (D̄i∇ c̄i ) = 0, (44)

where D̄i = Die−Vi , c̄i = ci eVi and Vi = βqiφ + β
∑

α μα
i . Substituting the above trans-

formed concentration into Poisson equation, we have

− ∇ · ε∇φ −
K∑
i=1

c̄i e
−Vi qi =

N∑
i=1

Qiδi . (45)

It’s notable that the weak form of Eq. 44 is symmetric and linear in finite element method,
and Eq. 45 leads to a nonlinear weak form. Similar weak forms and the bilinear forms for
FEM to solve the SMPNP have been presented explicitly in our former work [68,69]. To deal
with the nonlinearity of the weak form of Eq. 45, we use Newton method to linearize the
system as given in previous work [68,69]. Also, relaxation iteration is employed to obtain
convergent simulation results for the coupled PDE systems.

3 Result and Discussion

In this section, a spherical cavity of radius 10Å in ionic solution is taken as a simulation
example. The total computational region is a sphere of radius 80Å which has the same origin
as the spherical cavity. Numerical tests are first performed in a 1:1 electrolyte solution, in
which K+ and Cl− are added, to study the influence of ionic size effects in various conditions
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Fig. 2 (Color online) Concentrations of K+ and Cl− at two different bulk concentrations: (1) cb = 0.1M
(upper panel) and (2) cb = 0.5M (lower panel) when the central charge of spherical cavity Q is −10ec

by comparisons among the LHSPNP, SMPNP, PBmodels and theMC simulation. It’s notable
that the PB description for continuummodel is equivalent to the steady state PNP equations at
equilibrium state [45]. The diameters of these two ion species required in LHSPNP, SMPNP
andMC calculations are: a(K+) = 5.51Å and a(Cl−) = 6.37Å [37]. These values are larger
than pure ionic diameters because a hydration shell is considered around ions in solution.
Figures 2 and 3 illustrate the density profiles when bulk concentrations are 0.1 M (upper
panels) and 0.5M (lower panels). It is worth noting that because of volume exclusion, the ion
density in MC simulation vanishes in the region within an ion radius to the cavity surface. To
make a clearer comparison, the curves from MC data in both figures are shifted half the ion
diameters towards the origin. As shown in the upper panel of Fig. 2 at low bulk concentration
and low central charge, the simulation results among the four methods are close to each other
and the difference between the SMPNP and LHSPNP model is small. However, when the
central charge increases to −40ec shown in Fig. 3, the concentration of K+ from the MC
simulation is considerably larger than those from the SMPNP andLHSPNP calculations. This
seems that the SMPNP and LHSPNPmodels overestimate the volume exclusion effects in the
environment of strong electric field and condensed ionic density.While inMC simulation, the
ion correlation effects that are missed in SMPNP and LHSPNP can enhance the condensation
of counter ions in the situation. As shown in both Figs. 2 and 3, the LHSPNP tends to result
in a slightly higher counter ion concentration near the sphere than the SMPNP model.

In order to investigate the competition among various kinds of counterions, two positive
ion species, K+ and Ca2+, and one negative ion species, Cl− are added in the solution. The
neutrality condition is applied on the boundary of the computational region. In the following,
if not specified, the bulk concentration of K+ is set to be cb1 = 0.1M. Only the bulk
concentration of Ca2+, cb2 is varied. The bulk concentration of Cl−, cb3 is then determined
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Fig. 3 (Color online) Same as in Fig. 2 but for Q = −40ec

from the neutrality condition. Three models, LHSPNP, SMPNP and PB models are used to
simulate the spherical cavity in ionic solution, respectively. The concentration profiles of
different ion species in the steady state are obtained from the numerical solutions of those
models for comparison. The spherical cavity contains a central charge of −40ec and the
diameter of Ca2+ is 4.75Å [37]. In the figures below, solid curve is applied for K+, and
dashed curve for Ca2+.

Figure 4 shows the concentration profiles of Ca2+ obtained from the three models at two
different bulk values. In Fig. 4a, when the bulk concentration of Ca2+ is 10−3M, the PB
predictions overestimate the concentrations compared with those of SMPNP and LHSPNP.
And the concentration from PB decreases quickly to smaller values than the other two pre-
dictions in a narrow region within a distance of 0.4Å to the cavity surface. However, when
cb2 = 10−4M, the SMPNP and LHS predictions are always higher than the PB, even near
the spherical surface. This indicates PB model can also lead to underestimation of concen-
tration for counterions when its bulk concentration is small enough. This may be explained
as follows. According to the Boltzmann distribution, the following equations hold:

c(K+) = cb1e
−ecβφ, c(Ca2+) = cb2e

−2ecβφ, (46)

c(K+)

c(Ca2+)
= cb1

cb2
eecβφ. (47)

Equation 47 can be reduced to c(K+)

c(Ca2+)
= 103eecβφ , when cb1 and cb2 are 0.1 and 10−4M,

respectively. The reduced potential u = ecβφ is about−6 under the given neutrality boundary

conditions, resulting in the ratio c(K+)

c(Ca2+)
larger than 2. Therefore, K+ plays a leading role in

neutralizing thefixednegative charge,while the concentrationofCa2+ maybeunderestimated
by the PBmodel. Besides, it’s easy to see that in both subfigures of Fig. 4 the predictions from
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Fig. 4 (Color online) Concentrations of Ca2+ at two different bulk concentrations: a cb2 = 10−3M and b
cb2 = 10−4M
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Fig. 5 (Color online) Concentrations of K+ at two different bulk concentrations: a cb2 = 10−3M and b
cb2 = 10−4M

PB model decrease faster than the others, which can be explained by Eq. 46. This heavily
exponential decrease is resulted from the quick enhancement of the reduced potential u in
the vicinity of the spherical cavity.

Figure 5 presents the predictions of K+ at the same bulk valuesmentioned above for Fig. 4.
According to the neutrality boundary condition, the cb3 values are then 0.102 and 0.1002
M, respectively. As is known, the counterion concentration predicted from the traditional PB
model is unphysically high in the vicinity of the biomolecule [6,50]. This is clearly shown in
the two subfigures of Fig. 5. The concentration on the spherical surface can reach as high as
13.5 M when cb2 = 10−3M. As the radial distance increases, the concentration decreases to
the bulk value quickly. For SMPNP and LHSPNP models, a stratification of K+ is observed,
which is quite different from themonotonic phenomenonof thePBmodel.With the increasing
of the radial distance, the concentration first increases to a highest value then decreases to the
bulk value slowly. In SMPNP, ionic size effects are incorporated through adding an additional
entropy term to the free energy, leading to an extra excess chemical potential. In LHSPNP,
hard sphere repulsion described by the FMT is added to the free energy and then the excess
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Fig. 6 (Color online) Concentrations of two ion species: a K+ and b Ca2+ calculated from the original PB
model. Four different bulk concentrations are considered: (1) PB4: cb2 = 10−4M, (2) PB5: cb2 = 10−5M,
(3) PB6: cb2 = 10−6M and (4) PB7: cb2 = 10−7M

chemical potential is approximated locally. Both models can capture the stratification of
K+ through adding extra terms to the chemical potential. This change originates from the
reasonable assumption that ions in solution are regarded as finite volumes rather than point
charges. SinceCa2+ carries onemore positive elementary charge thanK+, huge accumulation
of Ca2+ around the charged spherical cavity prevents the enhancement of K+. Nevertheless,
as the radial distance becomes larger, the electric field strength becomes smaller and so does
the concentration of Ca2+. Thus the repelling from the Ca2+ weakens and the concentration
of K+ increases to a certain value in a finite distance. At further distance, the weakening of
electric field makes the concentration of K+ decrease. This explains the stratification of K+
from results of SMPNP and LHSPNP models.

Next, we vary the cb2 value from 10−4M to 10−7M in which the ratio of cb1
cb2

can reach

as high as 106, while the other conditions remain the same as aforementioned. Under these
circumstances, Figs. 6, 7, 8 illustrate the concentration profiles of the two positive ion species
resulted from the PB, SMPNP and LHSPNPmodels. In Fig. 6, it’s observed that both positive
ion concentrations decrease as the radial distance increases and that the concentration of K+
is larger than that of Ca2+ under same conditions. These phenomena can be explained by
the Boltzmann concentrations defined in Eqs. 46 and 47. Similar explanations have been
presented in above analysis for Figs. 4 and 5. In addition, with the decrease of the cb2, the
enhancement of c(K+) is clear (Fig. 6a), while c(Ca2+) decreases accordingly (Fig. 6b). This
also occurs in the SMPNP and LHSPNP models as shown in Figs. 7 and 8.

In Figs. 7a and 8a, the stratification of K+ disappears when the bulk concentration of Ca2+
is smaller than 10−5M. This is a straightforward result from the decrease of cb2. ThoughCa2+
ions are much easier to be attracted to the spherical surface than K+, the number of Ca2+ is
so tiny that they have no significant influence on the accumulation of K+. Therefore, a great
number of K+ can be attracted to the neighborhood of the spherical surface. As the radial
distance increases, the concentration of K+ decreases gradually to the bulk values attributed
to the weakening of the electric potential. In contrast to the stratification of K+ appeared at
certain cases, the concentration of Ca2+ always decreases monotonically with the increasing
of the radial distance, even when its bulk value is 10−7M. This means the bulk concentration
is not the essential factor for ion stratification. For SMPNP at given conditions, Li et al. have
shown that the phenomenon depends on the ratio of ionic charge amount over its volume [37].
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Fig. 7 (Color online) Concentrations of two ion species: a K+ and b Ca2+ when ionic size effects are
incorporated. Four different bulk concentrations are considered: (1) SMPNP4: cb2 = 10−4M, (2) SMPNP5:
cb2 = 10−5M, (3) SMPNP6: cb2 = 10−6M and (4) SMPNP7: cb2 = 10−7M
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Fig. 8 (Color online) Concentrations of two ion species: a K+ and b Ca2+ when local hard sphere excess
chemical potential is included. Four different bulk concentrations are considered: (1) LHS4: cb2 = 10−4M,
(2) LHS5: cb2 = 10−5M, (3) LHS6: cb2 = 10−6M and (4) LHS7: cb2 = 10−7M

For the similar spherical case with mixed ion species, the concentration of the ion with the
largest or the smallest ratio changes monotonically as the radial distance increases, while the
other ion species’ concentrations may appear with stratification phenomenon. In our settings,
the following relation holds:

q(Ca2+)

a3(Ca2+)
>

q(K+)

a3(K+)
>

q(Cl−)

a3(Cl−)
. (48)

As a result, the change of Ca2+ is always monotonic, while the stratification occurs only for
K+. In Fig. 8, the numerical results from LHS models also show these properties.

However, difference between the SMPNP and the LHSPNP models is also observed in
Figs. 7 and 8. When cb2 = 10−5M, the stratification of K+ occurs in the SMPNP model
but not in the LHSPNP model. Furthermore, there is also a small difference between Ca2+
concentration profiles from SMPNP (Fig. 7b) and LHSPNP (Fig. 8b) models. The Ca2+
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concentration from LHSPNP simulations is smaller than that from SMPNP under the same
boundary conditions. This indicates that the LHSPNP model captures more about the exclu-
sion effects of Ca2+ than the SMPNP model. In SMPNP, when the bulk concentration cb2
is 10−5M, Ca2+ is still much easier to be attracted than K+. But for LHSPNP model, the
number of Ca2+ is not enough to prevent K+ from accumulation around the sphere. There-
fore, in LHSPNP, the stratification of K+ does not happen under this condition. When cb2 is
10−6M or less, no stratification occurs in either SMPNP or LHSPNP modeling.

4 Conclusion

Wehave proposed a local hard sphere PNPmodel to account for hard sphere repulsion in three
dimensional ionic solutions. Compared with the PNP model, the LHSPNP model contains
an extra local excess chemical potential, derived from the expansion of the variation of the
excess Helmholtz free energy (excess chemical potential) from FMT. This local expression
avoids solving of integro-differential equations which requiresmuchmore computermemory
and time. It is interesting to notice that one component of our local excess chemical potential
is similar to the key part in SMPNP model. This indicates that in some sense, the LHSPNP
model essentially contains the previous SMPB/SMPNP models [6,33,43], though these two
models are from different backgrounds. The closeness between these two models under
certain conditions are also demonstrated by numerical computations in this work.

Theoretical study on the equation of state of one component homogeneous fluid shows
that the LHS model can predict exactly the first two virial coefficients, performing better
than the size modified model which only provides the first coefficient accurately. Numerical
tests for an example of a spherical cavity in ionic solutions indicate the LHSPNP model
can avoid unphysical accumulation of counterions around biomolecular surface. But when
the bulk concentration and the potential are high, the concentration results from LHSPNP
model are lower than those from the MC simulation. Under certain bulk concentrations in
mixed ionic solution, we find that the concentration of one counterion species in LHSPNP
equilibrium simulation is higher than that in PNP simulation. Furthermore, the stratification
of counterion is observed when two different counterion species are included in the solution
system. These phenomena from LHSPNP model are quite similar to those from SMPNP.
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