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A rigorous approach is proposed to calculate the electrostatic forces among an arbitrary number of
solvated molecules in ionic solution determined by the linearized Poisson—Boltzmann equation. The
variational principle is used and implemented in the frame of a boundary element niBtik).

This approach does not require the calculation of the Maxwell stress tensor on the molecular
surface, therefore it totally avoids the hypersingularity problem in the direct BEM whenever one
needs to calculate the gradient of the surface potential or the stress tensor. This method provides an
accurate and efficient way to calculate the full intermolecular electrostatic interaction energy and
force, which could potentially be used in Brownian dynamics simulation of biomolecular
association. The method has been tested on some simple cases to demonstrate its reliability and
efficiency, and parts of the results are compared with analytical results and with those obtained by
some known methods such as adaptive Poisson—Boltzmann soh#80® American Institute of
Physics[DOI: 10.1063/1.19244483

I. INTRODUCTION erably raises the computational cost, while the BEM only
requires discretizing the surface of the molecule. Moreover,
Continuum models of electrostatic interaction, based onhe BEM adopts an open boundary condit{ant an artificial
the Poisson—Boltzmann equatiPBE), have found increas- one as in FD methgdand its solution domain is arbitrary in
ing application in molecular modelirf(jf1 Several different  principle (not limited to a cubic box Such a unique feature
computational techniques have been developed in the laghables the BEM to easily account for the interaction be-
two decades, such as finite differer(&®) methods, ' finite  tween widely separated biomolecules, e.g., in the Brownian
element (FE) methods’® and boundary element methods dynamics simulation of a protein-protein association process.
(BEMs)."”™In most applications, the stationary solutions of As will be shown in the following sections, because the dis-
the PBE under fixed conformations were used for calculatingretization of each individual molecule is fixed and can be
the electrostatic potential or solvation energy. However, theised repeatedly during multiple rigid conformational sam-
PB force can also be used in molecular-dynami®d)  pling in protein-protein interaction, the BEM is especially
simulation and other conformational sampling procedure fokfficient in saving computational cost. In the normal FD
biomolecules. Gilsoret al*? derived an expression for PB methods the discretization step has to be repeated for every
force calculation that is proper for the FD approach. Thedifferent conformations of a protein pair; this is not practical
formula is compatible with the Maxwell stress tensorfor multiple protein-protein conformational sampling. In
method, and a smooth dielectric boundary is required in thagypical calculations using the FDPB method to simulate
method. We have previously applied the FDPB fofomit-  protein-ligand or protein-protein encountéas in the widely
ting thlg boundary pressyrén MD simulation of an insulin  ysed program University of Houston Brownian Dynartifcs
dimer: (UHBD)], the reaction field is calculated only for a fixed
For some applications involving linear and elliptical protein conformation using FD method, and the moving
problems, the BEM is vastly superior to the FD and FEjigand/protein is taken as a set @éffective charges im-
methods in both efficiency and accuracy. Alternative methmersed in and interacting with the reaction field. Hence the
ods all require discretizing the whole domain, which consid-contribution of the moving ligand/protein to the reaction
field is ignored or at least simplified. This may lead to con-
¥Electronic mail: blu@mccammon.ucsd.edu siderable deviation in the interaction calculation for a large
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I|gand_ or protein. The BEM results for multiple molecules V2¢gxt: K2¢ext(rp), peQ, 2)
can give the full PB interaction between solvated molecules.

For the dynamical study of protein-ligand/protein en-where ¢™ is the potential at positiop inside the molecular
counter, the PB forces and torques are essential. In theorgiomain (),4() is its boundary, i.e., solvent-accessible sur-
the forces and torques on a rigid-body molecule can be obface,(pf;x‘is the potential at positiop outside domain), Dj
tained by integrating the stress tensor over the moleculas the interior dielectric constant, is the position of thekth
surface. Because the BEM includes an explicit dielectricsource point chargg, of the molecule, and is the inverse
boundary surface, it looks conceptually straightforward toof the Debye—Hiickel screening length, which is determined
compute forces(including boundary pressureusing the by the ionic strength of the solution. By using Green’s sec-
Maxwell stress tensor. However, the stress tensor calculatiopnd identity
in BEM is not trivial, and there are still problems to be
tackled. The full electrostatic field on the boundary is re-
quired in order to calculate the stress tensor, while only the
normal component of the electric field on the surface is di-
rectly obtained in the present direct BEM solutiofwgith ~ the solutions for Eqs(1) and(2) can be expressed as
both single-layer and double-layer tepmk calculating the int
component on any other spatial directi®uch as the tan- d)int:?g {G I _ IGp int} dA,

. . . p pt t
gential componenton the surface, a hypersingular integra- a0 an an
tion arises and causes complexity in both theory and numeri-

f (¢V2— YyV2p)dV = f (V- yVg)-dS  (3)
QO Z9)

cal .implementationé‘r.’ The hypersiqgularity comes from the + iz aGpe Pk e Q, (4)

derivative of the Green’s function associated with the int k

double-layer part in the BEM. In the single-layer formulation

of the BEM, the hypersingular problem in force and torque (9¢th Iy _

calculations can be avoided, such as in the work of Bordner ¢3Xt13g ~Up, —t ?:‘#m dA, peQ, (5
129

and Huber® who used the “surface charge density” to cal-
culate the force. This “polarized charge” method was de
scribed by Zauhal in which the force included botigE
forces and boundary pressures, and this was also incorp
rated into the BEM Langevin dynamics simulatidfisThe
accuracy of the boundary pressure computed by this tech-

nigue has not yet been demonstrated. More generally, the use 1

‘Wwheren is the outward normal vector artdis an arbitrary
oint on the boundarys andu are the Green functions and
Iso the fundamental solutions of Eq4) and (2), respec-

of only a single- or double-layer representation of BEM to Gpg= At (6)
calculate the forces and torques has still not been adequately P
tested, although they have been widely applied in electro- Upq = EXP(= KT o) 4T o 7)

static potential and energy computations.

~In this work, we use a variational principle to derive a4t js straightforward to extend the above boundary integral
rigorous algorithm to calculate the forces and torques iMaquations to a system with an arbitrary number of separate

posed on a rigid molecule in a solvated molecular systeMyomains surrounded by infinite homogeneous solvent,
and avoid the hypersingular problem associated with the

stress tensor calculation. The calculated force inherently in- ot <9¢>{:“ IGpy .
cludes theqE term, the boundary electrostatic pressure, and ¢pl :3€ Gpt, o on dAi
the ionic concentration pressufeThe force computation *

does not incur much extra computational cost compared to 1
solving the PBE. + D_E U Gpk:  Piki € i, (8)
int k
Il. BOUNDARY INTEGRAL REPRESENTATION oxt 5¢§Xt IUpy, oxt
OF THE SOLUTION OF THE PBE $'=2 “Up T Tt ¢ A
i Jao, n
In this section, the integral equations governing the elec- (9)

trostatic potential of a system with an arbitrary number of peQ1UQ2U,...,

molecules in an ionic solution will be derived. Let us first

consider the BEM solution for an isolated molecule, which iswherep; andt; in Eq. (8) denote the points in thigh domain
surrounded by infinitely homogeneous solvent. For brevity{i and on thdth domain surface(};, respectivelygy is the
the electrostatic potentiab(x,) is written as¢,, wherep is  kth point charge in théth domain, ang is a point outside all
any position inside, outside, or on the boundary of the molthe molecules in Eq(9).

ecule. The Poisson—Boltzmann equation can be written as ~ When pointp approaches surfac#), we can utilize the
jump discontinuity of the double-layer potential at boundary

V2=~ iz wdrp=r0, pel, (1) Q) (Ref. 19 to obtain the following integral equations for
P Dint "k the one-domain case from Edg) and(5):

Downloaded 16 Jun 2005 to 132.239.16.167. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



214102-3 Computation of electrostatic forces J. Chem. Phys. 122, 214102 (2005)
PV int
- ae, Gyt i 1
1 ,int _ t t ,int -
= G - d = Gok 17
1 andA,B,C, andD areNX N coefficient matrices that come
" Dimzk“ 4Gpi P € I, (10 from integrals on related elements, which are noted as fol-
lows:
PV ext
d au D
1 jext_ t YUt ext ext
= —Uy—— + dA, 90, —==
2¢p f(m |: PC N on :| A, pe Apt‘_ DinthtG(Xp,Xt)dA, (18)
(11)
IG(Xq, %)
where PV denotes the principal-value integral to avoid the Bpt<_f —mﬁ—tdAn (19
singular point whert— p in the integral equations. Similar Et
expressions can be obtained for a multiple molecular system.
The surface potential and its normal derivative can be
. . 2
solved from Egs.(10) and (11) with the following two C”U_Lt U0, ) AAY, (20
boundary conditions at the dielectric boundary:
int — sext AU(Xq, %)
¢ =™, (12) Do | 2dA, (21)
E
ad)int O—,¢ext
Dim? = Dy P (13)  For example A is a weighted sum of integrations on all

elementsk; that include thetth node, and the weight is de-
termined by the numerical quadrature method. The integra-
tion on elemen€; not containingx,, is trivial, which can be
calculated by Gaussian quadrature with a certain number of
quadrature base points. When the elentgrtontainsx,, the

whereD,, is the exterior dielectric constant.

Ill. NUMERICAL TREATMENT
A. Numerical solution for a single molecule system

Substituting Eqs(10) and(11) with Egs.(12) and(13) at

principal-value integral should be applied, and through trans-
formation, the Gaussian quadrature can also be thsed.

For clarity, matrix and vector representations will be
used from now on. Let’'s us denote matkixas

the boundary, and through discretizing the boundary, we can

get two sets of equations with two kinds of unknown quan-
tities, the surface potentidk ¢'"= ¢ and its outside nor-
mal derivativeh=9¢% on. Flat triangular elements are used

H—(B’ _A> 22
“\p’ -c/’ 22

for the boundary discretization in this work. And a linear whereB’ =B+31, D'=D-3l, and! is the identity matrix; the
element approximation is used, which means that all unlinear equation system can then be simply written as

known surface functions, e.gf, and h, are approximated
with linear combination of the values at three vertices
(nodes$ of the element weighted by the local triangle coordi-

{0)-(0)

nate (¢, 7), 0<¢<1, 0<y=<1-£ For example, the value 5 ;onyentional way to solve Eq23) is to use the LU de-

f(&, ) can be expressed as

f(&m) = (1 - &= pf(x) + & (%) + 7f(xg), (14)

composition algorithm. With a fixed boundary discretization,
the LU decomposition factors remain the same, thus can be
used repeatedly. Much of the matrix computation time can be

wherex,x,, andx; are the positions of the three vertices of saved, making it efficient for multiple conformational calcu-

the element.

lation or Brownian dynamic¢BD) simulation, as will be

Denotingf; andh; as the unknown potential and its out- discussed in the later sections.

side normal derivative on thgh node, after discretization,
the integral Eqs(10) and (11) become a set of linear equa-

tions:
N
> [(Bpt+%|)fI_Aptht]:va (15)
t
N
> [(Dpt_%l)ft_cptht]zoy (16)
t

whereN is the number of nodes on the triangulated surfacepnly depend on

and

B. Extension to an interacting system with an
arbitrary number of separate molecules
in ionic solution

For a system with an arbitrary number of separate mol-
ecules, the corresponding equations and solution vectors are
similar to Egs.(22) and (23) but with an expanded matrix
and vector. It can be easily found that new matriéeB’,C,
andD’ in H can be blocked further, and most of the blocks
individual boundaries. We use
Al ,B'',C',D'l, and H' to denote the corresponding coeffi-
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cient matrices for théth molecular boundary, with similar C. The interaction energy between solvated
meaning as in the isolated molecule case. Matrkesd B’ molecules

have the forms of After Af andAh are obtained, the change in the electro-

Al 0 - B'l 0 . static potential at any source charge posit'rQinin the ith
0 0 molecule, sayAVki, can be computed by integration:

A e g |

AV, —§ [G Dexy, - P ¢ dA, (29)
ST T L D 0 an N a

ThoughC andD’ have nonzero cross terms, we still use a ] . o o
similar blocked representation. Let us uSk and D'l (i # j) The interaction energy within the molecular system is given
to denote these cross coefficient submatrices, in which thBY
elements correspond to the coefficients between nodes on the
it? t_)ounde_lry and_ nodes on thth boundary. For example, AU = }2 > QkiAVk., (30)
Cj is the interaction coefficient for theth node on theth 277 '
molecular boundary and thigh node on theth molecular
boundary: where Ok, is the partial charge of th&th atom of theith
molecule.
Ch— . U(xp, X JdA, . (25)
ll
The elements in th®' are similar. Similarly, thef vector D. Electrostatic forces and torques on molecule
also extends to befl,...fl,...f/,..}T, and h becomes A promising application for this approach is in the BD
{nt,...h",...hI,...}T, where T denotes transpose operation, simulation of protein-protein/ligand encounter, where the
andf' andh' are the solution vectors associated with itie  forces and torques must be calculated. Instead of calculating
boundary. Then, the linear system has the same form as ihe stress tensor on the molecular surface, which will cause
Eqg. (23). hypersingularity due to the second derivatives on Green’s
Suppose that' andh' are the surface potential and the function, here the variational principle is used to calculate
corresponding normal derivative for thid isolated molecule the forces among molecules. In an encounter study, the typi-
in ionic solution, and have been solved independently in adeal setup is that the large protein is fixed, and only the small
vance, an iterative procedure can be used to obtain thigand or protein moves relative to the fixed proteins. As-
changes inf' andh', noted asAf' and Ah!, due to the pres- sume that a variation in displacemedt, on the moving
ence of other molecul€s: molecule causes a variation in the interaction enetgy,
thenF=-8AU/ &%,. By substitution of Eq(30), we get

H‘(Aﬂ):(O) i=1,2 (26)
Ah V) e 1
F==>2 2 g SAVy /%, (31)
whereH' is the same as in E¢22) 25
/BT A Now the problem is to calculatéAVy / 8x,. In Eq. (29),
H' = (D’i B Ci) (27)  because the variation @, on the whole moving molecule
does not chamgekit and aGkit/an, 5Gkit and 5&Gkit/an are
and equal to 0. Therefore, one only needs to calculdié/ o,
and 5Af/ dx,. This can be done by taking variations on both
Y= —Di(fl + Afl) + Cli(h + Ah)). (28)  sides of Eqs(26) and (28). Noting thatsH' =0, 6fi=0, and
j#i shi=0, the only nonzero variational matrices a®'l and

|J . . - . . g
Equation(26) forms the general BEM iterative formulas for 5C (i ij.)’ an(_j th_ese can bg obtained from their definitions
in the discretization of the integral equations. Because the

the linearized PBE solution for multiple molecules in ionic . . . .
. i i o integral calculations for these two kinds of matrices are only
solution. The solution$' andh' for each individual molecule

are required to be solved in advanced for just once, then th%?\rfﬂ;ﬁd gftr\]’vez:]sti?‘e lj\IIZ\cr)itmci)rt(\e/gllj\l/iab:ur?gvir;eest’(:P?r:'g;no
individual matricesH' and its LU decomposition factor can tivege ua}[/ions Zfe deri?/ed fo¥ solvin t'he UnKNoBAT / X
be used repeatedly in the iterative procedure as inZgj.to 9 9 2

i .
getAf andAh, which determine all the interactions between and GAR'/ 8%,
the molecules(see the following sections Therefore, for

I
conformations with different relative positions and orienta- oAf 0
tions in a system where only the cross matri@sand D'l Hi 5)(2_ =| s =12 (32)
are needed, this iterative procedure is efficient to get the SAh' e ' S
solution. Moreover, a proper frame has been found to calcu- X, 2
late the forces and torques on each molecule using a varia-
tional principle(see Sec. Il . and
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TABLE |. The BEM solution at the nodes on the spherical surface. Five points are selected to compare the solutions by two surfaceandshase
potential and its normal derivative, respectivély,,, andh,,,, are the corresponding analytical values, ang @&nd ery, are relative errors in percentage of

f andh, respectively. The corresponding units are in A, mol, and kcal.

Nodes X y z f h Enaly Nanaly
Surface mesh with 162 nodes and 320 elements
1 0.000 0.000 1.000 4.485 -4.202 4.150 8.08 -4.150 1.27
2 0.273 0.000 0.962 4.499 -4.200 4,150 8.41 -4.150 1.21
3 0.084 0.260 0.962 4.500 -4.191 4.150 8.44 -4.149 1.02
4 0.526 0.000 0.851 4,518 -4.173 4,150 8.88 -4.146 0.67
5 0.362 0.263 0.894 4.526 -4.219 4.150 9.08 -4.152 1.62
Surface mesh with 642 nodes and 1280 elements
1 0.000 0.000 1.000 4.326 -4.092 4.150 4.24 -4.150 -1.39
2 0.138 0.000 0.990 4.304 -4.220 4.150 371 -4.150 1.68
3 0.043 0.131 0.990 4.304 -4.224 4.150 3.71 -4.154 1.68
4 0.273 0.000 0.962 4.314 -4.179 4,150 3.94 -4.150 0.70
5 0.181 0.132 0.975 4.331 -4.094 4,150 4.37 -4.147 -1.26
St _2 5D 6+ Af) - D SAfl pitulated in the force calculations described below, and is
5, - < ) ( ) 5% quite promising for BD trajectory calculation.
) . Figure 1 shows the potentials calculated using the BEM,
sc o . . AN adaptive Poisson—Boltzmann solv@PB9?! and analytical
+—(MH+AR)+C'—. (33 -
oy o results plotted along a radial line. The BEM uses a surface

mesh with 162 node&20 BES, APBS uses multigrid with

Finally, the forces can be computed by subsituting thegrid points 97 97x 97, coarse grid dimension 1615
interative solutions to Eq31). Similarly, the torques can be % 15 A, and fine grid dimension 86X 6 A3. The APBS

qbtamed foIIowmg_the same varlatlona_ll approach and 'mer.abotentials for each plotting point are obtained by interpola-
tive procedure as in the force calculation, whereas the varigs - from its solutions on grids, while the BEM results are
tlon .Of the potentlak?\/ki are 'Faken with respect to a ;mall obtained with surface integration according to E@s.and

variation of the relative rotational angléd of the moving (5). It is found that in the exterior region away from the

m.ollecule. In fact, the calculatior_l for th? torque can be Simboundary(>1.1 A), both BEM and APBS results coincide
plified. In Eq.(3;), '.f each term is considered as a.compo-very well with the analytical results. In most of the interior
nent force contributing to the total force on the moving mol-OIOmain the BEM's results still agree with the analytical re-
ecule, then the torqu is easily calculated with respect to sults, V\;hile the APBS results deviate somewhat from the
the center of mass; of the molecule as follows: analytical results. In a narrow area very close to the bound-
ary, both numerical methods show larger relative errors from
the analytical results relative to other positions, about 8% in
BEM, and more than 50% in APBS. The reason may be that
where ther is a vector from the center of massto thekth  at the boundary area, the grid treatment in APBS is expected
point charge in théth molecule. The accuracy of this method to produce artifacts. In addition, APBS uses approximate
will be demonstrated in the following simple test cases.

1
M=- 52 2 0 (o X SAV,/ %), (34)
ik

40— , . . T

* BEM
O Anaytical
v v APBS

IV. TESTS FOR SOME SIMPLE CASES @

The program is first tested on a single sphere model, in
which a unit positive charge is positioned at the center of a ®
unit sphergradius of 1 A. The relative interior and exterior ~ v
dielectric constants are set as 2 and 80, respectively. The,, v
ionic concentration is 0. We use both 320 boundary elementsé ¢
(BE9) and 1280 BEs to check the computational accuracy. ®
Table | shows the BEM solution values and the analytical o
values on the first five nodes on the sphere. I

It is found that with 1280 BEs the computation accuracy
for potential is improved compared with 320 BEs, and the
relative error with respect to the analytical results decreases ® o5 i T 1 s
to about half of that obtained with 320 BEs. Note that the Distance to the point charge
derivatives of the potential on the boundary are calculategg, 1. potentials at different radial positions in the unit sphere model
even more accurately than the potential itself. This is recaebtained with BEM, APBS, and analytical results.

v
& ¥ . . .
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boundary conditions, while the correct boundary conditionsz-direction force componenfE, and they-direction torque
are enforced in BEM. The solvation energy of this model iscomponentM, are not zero. The analytical solutions are
also calculated. The analytical solvation energy isFa"¥=-1.04 kcal/molA, and M2"@¥=-4.15 kcal/mol.
-80.92 kcal/mol, BEM gives the result of —-81.06 kcal/mol Our BEM results are F,=-1.02 kcal/mol A and M,
(error 0.14 kcal/mgl and APBS gives —81.58 kcal/m@r-  =-4.08 kcal/mol. Both relative errors are about 2%.
ror 0.66 kcal/mol.

The CPU time for a whole BEM calculation with 320 V. CONCLUSIONS AND DISCUSSION
BEs is 0.49 s on Intel Pentium I\2 GH2), but 28.8 s with . T
1280 BEs. A single APBS solution procedure takes 39.6 s We apply the variational principle in the BEM frame and

and the solvation enerav usually needs two solutions 0Fresent an iterative procedure to calculate the forces and
9y y orques among rigid molecules immersed in ionic solution.

APBS with different exterior dielectric settings. T

The segqnd test mgdel IS a two-umt sphere system W'tl?)ased on Green'’s theorem for BEM is used. The calculated
each containing a positive unit charge in the centers. The WPhrce is a full PB force that takes into account the reaction

spheres are put on theaxis symmetrically to the origin with field of all the concerned molecules, and inherently includes

a 4-A center-to-center distance. The dielectric constants arg o boundary pressure due to the electric field and ion con-
the same as aboye. The BEM gives an interaction energy entration. The computational accuracy for force and torque
1.22 KcaI/mOI'_US'ng the same treatmenF for eI_ectros_tanc Nis demonstrated in sample tests; the accuracy is found to be
teractions as Is _typ|ce_1lly done in BD simulation ‘_N'th _the somewhat higher than that of the BEM potential solution on
program ,UHBD’, in which only one molegular re_actlon field syrface. An advantage of this method is that it totally avoids
(protein is considered, and the other oflgand is repre- 0 hypersingularity problem in direct BEM where the gra-
sented with a set of point charges that directly interact withyien"of the potential on surface or the stress tensor is re-
the reaction field, one point charge has an interaction energy,ired to be calculated. The code is easily incorporated in an
of 1.02 kcal/mol with the reaction field due to the other onejie aiive algorithm of ordinary BEM, and the additional com-
in this model. This is about 0.2 kcal/mol different from the , \tation time is mainly spent on three parts: the derivative
full electrostatic energy calculation in BEM. This amount is calculations of the coefficient matric€ andD'i. the itera-
expected to be larger for an approaching protein/protein Ofion procedure to solve Eq32), and the summation using
protein/ligand system. Therefore, if the reaction criteria arezgs. (31) and(34) to get the force and torque. The iteration

defined to be close encounter in a BD simulation, the amounjsya|ly converges in less than five steps in our sample cases.

of energy difference calculated by BEM and UHB&milar || these computations are on the order Gﬁ\lﬁodes or

to APBS may significantly influence the encountt_ar kil_wetics. Narom Nnoges Which is a small part compared with the CPU
To test the force calculation, we set both the interior anctost on the whole BEM solving process that contains several

exterior dielectric constants to 1 in the above two-sphergjmes of~Nﬁ0deScomputations for matrices amﬁodescom_

model. 320 BEs are used, and all other details are kept th§tations for LU factorization. However, for large proteins or

same. Because the energy calculation by BEM has beefrotein assembliedy,omX Nyogestimes of computations are

demonstrated to be of good accuracy in the above tests, Wil time consuming, and other accelerating techniques such

use the “virtual work” principle to get a reliable numerical 35 the multipole method will be necessary.

force to compare with the force calculated with the proce-

dure presented in this work. To get the virtual work, the AcKNOWLEDGMENTS
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