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A rigorous approach is proposed to calculate the electrostatic forces among an arbitrary number of
solvated molecules in ionic solution determined by the linearized Poisson–Boltzmann equation. The
variational principle is used and implemented in the frame of a boundary element methodsBEMd.
This approach does not require the calculation of the Maxwell stress tensor on the molecular
surface, therefore it totally avoids the hypersingularity problem in the direct BEM whenever one
needs to calculate the gradient of the surface potential or the stress tensor. This method provides an
accurate and efficient way to calculate the full intermolecular electrostatic interaction energy and
force, which could potentially be used in Brownian dynamics simulation of biomolecular
association. The method has been tested on some simple cases to demonstrate its reliability and
efficiency, and parts of the results are compared with analytical results and with those obtained by
some known methods such as adaptive Poisson–Boltzmann solver. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1924448g

I. INTRODUCTION

Continuum models of electrostatic interaction, based on
the Poisson–Boltzmann equationsPBEd, have found increas-
ing application in molecular modeling.1–4 Several different
computational techniques have been developed in the last
two decades, such as finite differencesFDd methods,5–7 finite
element sFEd methods,8,9 and boundary element methods
sBEMsd.10,11 In most applications, the stationary solutions of
the PBE under fixed conformations were used for calculating
the electrostatic potential or solvation energy. However, the
PB force can also be used in molecular-dynamicssMDd
simulation and other conformational sampling procedure for
biomolecules. Gilsonet al.12 derived an expression for PB
force calculation that is proper for the FD approach. The
formula is compatible with the Maxwell stress tensor
method, and a smooth dielectric boundary is required in that
method. We have previously applied the FDPB forcesomit-
ting the boundary pressured in MD simulation of an insulin
dimer.13

For some applications involving linear and elliptical
problems, the BEM is vastly superior to the FD and FE
methods in both efficiency and accuracy. Alternative meth-
ods all require discretizing the whole domain, which consid-

erably raises the computational cost, while the BEM only
requires discretizing the surface of the molecule. Moreover,
the BEM adopts an open boundary conditionsnot an artificial
one as in FD methodd and its solution domain is arbitrary in
principle snot limited to a cubic boxd. Such a unique feature
enables the BEM to easily account for the interaction be-
tween widely separated biomolecules, e.g., in the Brownian
dynamics simulation of a protein-protein association process.
As will be shown in the following sections, because the dis-
cretization of each individual molecule is fixed and can be
used repeatedly during multiple rigid conformational sam-
pling in protein-protein interaction, the BEM is especially
efficient in saving computational cost. In the normal FD
methods the discretization step has to be repeated for every
different conformations of a protein pair; this is not practical
for multiple protein-protein conformational sampling. In
typical calculations using the FDPB method to simulate
protein-ligand or protein-protein encountersfas in the widely
used program University of Houston Brownian Dynamics14

sUHBDdg, the reaction field is calculated only for a fixed
protein conformation using FD method, and the moving
ligand/protein is taken as a set ofseffectived charges im-
mersed in and interacting with the reaction field. Hence the
contribution of the moving ligand/protein to the reaction
field is ignored or at least simplified. This may lead to con-
siderable deviation in the interaction calculation for a largeadElectronic mail: blu@mccammon.ucsd.edu
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ligand or protein. The BEM results for multiple molecules
can give the full PB interaction between solvated molecules.

For the dynamical study of protein-ligand/protein en-
counter, the PB forces and torques are essential. In theory,
the forces and torques on a rigid-body molecule can be ob-
tained by integrating the stress tensor over the molecular
surface. Because the BEM includes an explicit dielectric
boundary surface, it looks conceptually straightforward to
compute forcessincluding boundary pressured using the
Maxwell stress tensor. However, the stress tensor calculation
in BEM is not trivial, and there are still problems to be
tackled. The full electrostatic field on the boundary is re-
quired in order to calculate the stress tensor, while only the
normal component of the electric field on the surface is di-
rectly obtained in the present direct BEM solutionsswith
both single-layer and double-layer termsd. In calculating the
component on any other spatial directionssuch as the tan-
gential componentd on the surface, a hypersingular integra-
tion arises and causes complexity in both theory and numeri-
cal implementations.15 The hypersingularity comes from the
derivative of the Green’s function associated with the
double-layer part in the BEM. In the single-layer formulation
of the BEM, the hypersingular problem in force and torque
calculations can be avoided, such as in the work of Bordner
and Huber,16 who used the “surface charge density” to cal-
culate the force. This “polarized charge” method was de-
scribed by Zauhar,17 in which the force included bothqE
forces and boundary pressures, and this was also incorpo-
rated into the BEM Langevin dynamics simulations.18 The
accuracy of the boundary pressure computed by this tech-
nique has not yet been demonstrated. More generally, the use
of only a single- or double-layer representation of BEM to
calculate the forces and torques has still not been adequately
tested, although they have been widely applied in electro-
static potential and energy computations.

In this work, we use a variational principle to derive a
rigorous algorithm to calculate the forces and torques im-
posed on a rigid molecule in a solvated molecular system,
and avoid the hypersingular problem associated with the
stress tensor calculation. The calculated force inherently in-
cludes theqE term, the boundary electrostatic pressure, and
the ionic concentration pressure.12 The force computation
does not incur much extra computational cost compared to
solving the PBE.

II. BOUNDARY INTEGRAL REPRESENTATION
OF THE SOLUTION OF THE PBE

In this section, the integral equations governing the elec-
trostatic potential of a system with an arbitrary number of
molecules in an ionic solution will be derived. Let us first
consider the BEM solution for an isolated molecule, which is
surrounded by infinitely homogeneous solvent. For brevity,
the electrostatic potentialfsxpd is written asfp, wherep is
any position inside, outside, or on the boundary of the mol-
ecule. The Poisson–Boltzmann equation can be written as

¹2fp
int = −

1

Dint
o
k

qkdsrp − rkd, p P V, s1d

¹2fp
ext = k2fextsrpd, p P V̄, s2d

wherefp
int is the potential at positionp inside the molecular

domain V ,]V is its boundary, i.e., solvent-accessible sur-
face,fp

ext is the potential at positionp outside domainV ,Dint

is the interior dielectric constant,rk is the position of thekth
source point chargeqk of the molecule, andk is the inverse
of the Debye–Hückel screening length, which is determined
by the ionic strength of the solution. By using Green’s sec-
ond identity

E
V

sf¹2c − c¹2fddV=E
]V

sf¹c − c¹fd ·dS, s3d

the solutions for Eqs.s1d and s2d can be expressed as

fp
int =R

]V

FGpt

]ft
int

]n
−

]Gpt

]n
ft

intGdAt

+
1

Dint
o
k

qkGpk, p,k P V, s4d

fp
ext =R

]V

F− upt

]ft
ext

]n
+

]upt

]n
ft

extGdAt, p P V̄, s5d

wheren is the outward normal vector andt is an arbitrary
point on the boundary.G andu are the Green functions and
also the fundamental solutions of Eqs.s1d and s2d, respec-
tively,

Gpq =
1

4prpq
, s6d

upq = exps− krpqd/4prpq. s7d

It is straightforward to extend the above boundary integral
equations to a system with an arbitrary number of separate
domains surrounded by infinite homogeneous solvent,

fpi

int =R
]Vi

FGpiti

]fti
int

]n
−

]Gpiti

]n
fti

intGdAti

+
1

Dint
o
k

qki
Gpiki

, pi,ki P Vi , s8d

fp
ext = o

i
R

]Vi

F− upti

]fti
ext

]n
+

]upti

]n
fti

extGdAti
,

s9d
p P V1 ø V2 ø ,…,

wherepi andti in Eq. s8d denote the points in theith domain
Vi and on theith domain surface]Vi, respectively,qki

is the
kth point charge in theith domain, andp is a point outside all
the molecules in Eq.s9d.

When pointp approaches surface]V, we can utilize the
jump discontinuity of the double-layer potential at boundary
]V sRef. 19d to obtain the following integral equations for
the one-domain case from Eqs.s4d and s5d:

214102-2 Lu, Zhang, and McCammon J. Chem. Phys. 122, 214102 ~2005!

Downloaded 16 Jun 2005 to 132.239.16.167. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



1
2fp

int =R
]V

PVFGpt

]ft
int

]n
−

]Gpt

]n
ft

intGdAt

+
1

Dint
o
k

qkGpk, p P ]V, s10d

1
2fp

ext =R
]V

PVF− upt

]ft
ext

]n
+

]upt

]n
ft

extGdAt, p P ]V,

s11d

where PV denotes the principal-value integral to avoid the
singular point whent→p in the integral equations. Similar
expressions can be obtained for a multiple molecular system.

The surface potential and its normal derivative can be
solved from Eqs.s10d and s11d with the following two
boundary conditions at the dielectric boundary:

fint = fext, s12d

Dint
]fint

]n
= Dext

]fext

]n
, s13d

whereDext is the exterior dielectric constant.

III. NUMERICAL TREATMENT

A. Numerical solution for a single molecule system

Substituting Eqs.s10d ands11d with Eqs.s12d ands13d at
the boundary, and through discretizing the boundary, we can
get two sets of equations with two kinds of unknown quan-
tities, the surface potentialf =fint=fext, and its outside nor-
mal derivativeh=]fext/]n. Flat triangular elements are used
for the boundary discretization in this work. And a linear
element approximation is used, which means that all un-
known surface functions, e.g.,f and h, are approximated
with linear combination of the values at three vertices
snodesd of the element weighted by the local triangle coordi-
nate sj ,hd, 0øjø1, 0øhø1−j. For example, the value
fsj ,hd can be expressed as

fsj,hd = s1 − j − hdfsx1d + jfsx2d + hfsx3d, s14d

wherex1,x2, andx3 are the positions of the three vertices of
the element.

Denoting f t andht as the unknown potential and its out-
side normal derivative on thetth node, after discretization,
the integral Eqs.s10d and s11d become a set of linear equa-
tions:

o
t

N

fsBpt +
1
2Id f t − Apthtg = Qp, s15d

o
t

N

fsDpt −
1
2Id f t − Cpthtg = 0, s16d

whereN is the number of nodes on the triangulated surface,
and

Qp =
1

Dint
o
k

qkGpk, s17d

andA,B,C, andD areN3N coefficient matrices that come
from integrals on related elements, which are noted as fol-
lows:

Apt ←
Dext

Dint
E

Et

Gsxp,xtddAt, s18d

Bpt ← E
Et

]Gsxp,xtd
]n

dAt, s19d

Cpt ← E
Et

usxp,xtddAt, s20d

Dpt ← E
Et

]usxp,xtd
]n

dAt. s21d

For example,Apt is a weighted sum of integrations on all
elementsEt that include thetth node, and the weight is de-
termined by the numerical quadrature method. The integra-
tion on elementEt not containingxp is trivial, which can be
calculated by Gaussian quadrature with a certain number of
quadrature base points. When the elementEt containsxp, the
principal-value integral should be applied, and through trans-
formation, the Gaussian quadrature can also be used.20

For clarity, matrix and vector representations will be
used from now on. Let’s us denote matrixH as

H = SB8 − A

D8 − C
D , s22d

whereB8=B+ 1
2I, D8=D− 1

2I, andI is the identity matrix; the
linear equation system can then be simply written as

HS f

h
D = SQ

0
D . s23d

A conventional way to solve Eq.s23d is to use the LU de-
composition algorithm. With a fixed boundary discretization,
the LU decomposition factors remain the same, thus can be
used repeatedly. Much of the matrix computation time can be
saved, making it efficient for multiple conformational calcu-
lation or Brownian dynamicssBDd simulation, as will be
discussed in the later sections.

B. Extension to an interacting system with an
arbitrary number of separate molecules
in ionic solution

For a system with an arbitrary number of separate mol-
ecules, the corresponding equations and solution vectors are
similar to Eqs.s22d and s23d but with an expanded matrix
and vector. It can be easily found that new matricesA,B8 ,C,
andD8 in H can be blocked further, and most of the blocks
only depend on individual boundaries. We use
Ai ,B8i ,Ci ,D8i, and Hi to denote the corresponding coeffi-
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cient matrices for theith molecular boundary, with similar
meaning as in the isolated molecule case. MatricesA andB8
have the forms of

A =1
A1 0 . .

0 . .

A1 . .

. . . .
2, B =1

B81 0 . .

0 . .

B8i . .

. . . .
2 . s24d

ThoughC and D8 have nonzero cross terms, we still use a
similar blocked representation. Let us useCij and Dijsi Þ jd
to denote these cross coefficient submatrices, in which the
elements correspond to the coefficients between nodes on the
ith boundary and nodes on thej th boundary. For example,
Cpt

ij is the interaction coefficient for thepth node on theith
molecular boundary and thetth node on thej th molecular
boundary:

Cpt
ij ← E

Etj

usxpi
,xtj

ddAtj
. s25d

The elements in theDij are similar. Similarly, thef vector
also extends to behf1,…f i ,…f j ,…jT, and h becomes
hh1,…hi ,…hj ,…jT, where T denotes transpose operation,
and f i andhi are the solution vectors associated with theith
boundary. Then, the linear system has the same form as in
Eq. s23d.

Suppose thatf i and hi are the surface potential and the
corresponding normal derivative for theith isolated molecule
in ionic solution, and have been solved independently in ad-
vance, an iterative procedure can be used to obtain the
changes inf i andhi, noted asDf i andDhi, due to the pres-
ence of other molecules:11

HiSDf i

Dhi D = S0

ni D, i = 1,2,…, s26d

whereHi is the same as in Eq.s22d

Hi = SB8i − Ai

D8i − Ci D s27d

and

ni = o
jÞi

− Dijsf j + Df jd + Cijshj + Dhjd. s28d

Equations26d forms the general BEM iterative formulas for
the linearized PBE solution for multiple molecules in ionic
solution. The solutionsf i andhi for each individual molecule
are required to be solved in advanced for just once, then the
individual matricesHi and its LU decomposition factor can
be used repeatedly in the iterative procedure as in Eq.s26d to
get Df andDh, which determine all the interactions between
the moleculesssee the following sectionsd. Therefore, for
conformations with different relative positions and orienta-
tions in a system where only the cross matricesCij andDij

are needed, this iterative procedure is efficient to get the
solution. Moreover, a proper frame has been found to calcu-
late the forces and torques on each molecule using a varia-
tional principlessee Sec. III Dd.

C. The interaction energy between solvated
molecules

After Df andDh are obtained, the change in the electro-
static potential at any source charge positionrki

in the ith
molecule, say,DVki

, can be computed by integration:

DVki
=R

]Vi

FGkiti

Dext

Dint
Dhti

−
]Gkiti

]n
Df ti

GdAti
. s29d

The interaction energy within the molecular system is given
by

DU =
1

2o
i

o
ki

qki
DVki

, s30d

where qki
is the partial charge of thekth atom of theith

molecule.

D. Electrostatic forces and torques on molecule

A promising application for this approach is in the BD
simulation of protein-protein/ligand encounter, where the
forces and torques must be calculated. Instead of calculating
the stress tensor on the molecular surface, which will cause
hypersingularity due to the second derivatives on Green’s
function, here the variational principle is used to calculate
the forces among molecules. In an encounter study, the typi-
cal setup is that the large protein is fixed, and only the small
ligand or protein moves relative to the fixed proteins. As-
sume that a variation in displacementdx2 on the moving
molecule causes a variation in the interaction energydDU,
thenF=−dDU /dx2. By substitution of Eq.s30d, we get

F = −
1

2o
i

o
ki

qki
dDVki

/dx2. s31d

Now the problem is to calculatedDVki
/dx2. In Eq. s29d,

because the variation ofdx2 on the whole moving molecule
does not changeGkit

and ]Gkit
/]n, dGkit

and d]Gkit
/]n are

equal to 0. Therefore, one only needs to calculatedDh/dx2

anddDf /dx2. This can be done by taking variations on both
sides of Eqs.s26d and s28d. Noting thatdHi =0, df j =0, and
dhj =0, the only nonzero variational matrices aredDij and
dCijsi Þ jd, and these can be obtained from their definitions
in the discretization of the integral equations. Because the
integral calculations for these two kinds of matrices are only
performed between the two molecular boundaries, there is no
singularity or hypersingularity involved. A new set of intera-
tive equations are derived for solving the unknowndDf i /dx2

anddDhi /dx2:

Hi1
dDf i

dx2

dDhi

dx2

2 = 1 0

dvi

dx2
2, i = 1,2,…, s32d

and
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dvi

dx2
= o

jÞi

−
dDij

dx2
sf j + Df jd − Dij dDf j

dx2

+
dCij

dx2
shj + Dhjd + Cij dDhj

dx2
. s33d

Finally, the forces can be computed by subsituting the
interative solutions to Eq.s31d. Similarly, the torques can be
obtained following the same variational approach and intera-
tive procedure as in the force calculation, whereas the varia-
tions of the potentialdVki

are taken with respect to a small
variation of the relative rotational angledu of the moving
molecule. In fact, the calculation for the torque can be sim-
plified. In Eq. s31d, if each term is considered as a compo-
nent force contributing to the total force on the moving mol-
ecule, then the torqueM is easily calculated with respect to
the center of massrc of the molecule as follows:

M = −
1

2o
i

o
ki

qki
srcki

3 dDVki
/dx2d, s34d

where thercki
is a vector from the center of massrc to thekth

point charge in theith molecule. The accuracy of this method
will be demonstrated in the following simple test cases.

IV. TESTS FOR SOME SIMPLE CASES

The program is first tested on a single sphere model, in
which a unit positive charge is positioned at the center of a
unit spheresradius of 1 Åd. The relative interior and exterior
dielectric constants are set as 2 and 80, respectively. The
ionic concentration is 0. We use both 320 boundary elements
sBEsd and 1280 BEs to check the computational accuracy.
Table I shows the BEM solution values and the analytical
values on the first five nodes on the sphere.

It is found that with 1280 BEs the computation accuracy
for potential is improved compared with 320 BEs, and the
relative error with respect to the analytical results decreases
to about half of that obtained with 320 BEs. Note that the
derivatives of the potential on the boundary are calculated
even more accurately than the potential itself. This is reca-

pitulated in the force calculations described below, and is
quite promising for BD trajectory calculation.

Figure 1 shows the potentials calculated using the BEM,
adaptive Poisson–Boltzmann solversAPBSd21 and analytical
results plotted along a radial line. The BEM uses a surface
mesh with 162 nodess320 BEsd, APBS uses multigrid with
grid points 97397397, coarse grid dimension 15315
315 Å3, and fine grid dimension 63636 Å3. The APBS
potentials for each plotting point are obtained by interpola-
tion from its solutions on grids, while the BEM results are
obtained with surface integration according to Eqs.s4d and
s5d. It is found that in the exterior region away from the
boundarys.1.1 Åd, both BEM and APBS results coincide
very well with the analytical results. In most of the interior
domain, the BEM’s results still agree with the analytical re-
sults, while the APBS results deviate somewhat from the
analytical results. In a narrow area very close to the bound-
ary, both numerical methods show larger relative errors from
the analytical results relative to other positions, about 8% in
BEM, and more than 50% in APBS. The reason may be that
at the boundary area, the grid treatment in APBS is expected
to produce artifacts. In addition, APBS uses approximate

TABLE I. The BEM solution at the nodes on the spherical surface. Five points are selected to compare the solutions by two surface meshes.f andh are
potential and its normal derivative, respectively.fanaly andhanaly are the corresponding analytical values, and errf and errh are relative errors in percentage of
f andh, respectively. The corresponding units are in Å, mol, and kcal.

Nodes x y z f h fanaly errf hanaly errh

Surface mesh with 162 nodes and 320 elements
1 0.000 0.000 1.000 4.485 −4.202 4.150 8.08 −4.150 1.27
2 0.273 0.000 0.962 4.499 −4.200 4.150 8.41 −4.150 1.21
3 0.084 0.260 0.962 4.500 −4.191 4.150 8.44 −4.149 1.02
4 0.526 0.000 0.851 4.518 −4.173 4.150 8.88 −4.146 0.67
5 0.362 0.263 0.894 4.526 −4.219 4.150 9.08 −4.152 1.62

Surface mesh with 642 nodes and 1280 elements
1 0.000 0.000 1.000 4.326 −4.092 4.150 4.24 −4.150 −1.39
2 0.138 0.000 0.990 4.304 −4.220 4.150 3.71 −4.150 1.68
3 0.043 0.131 0.990 4.304 −4.224 4.150 3.71 −4.154 1.68
4 0.273 0.000 0.962 4.314 −4.179 4.150 3.94 −4.150 0.70
5 0.181 0.132 0.975 4.331 −4.094 4.150 4.37 −4.147 −1.26

FIG. 1. Potentials at different radial positions in the unit sphere model
obtained with BEM, APBS, and analytical results.
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boundary conditions, while the correct boundary conditions
are enforced in BEM. The solvation energy of this model is
also calculated. The analytical solvation energy is
−80.92 kcal/mol, BEM gives the result of −81.06 kcal/mol
serror 0.14 kcal/mold, and APBS gives −81.58 kcal/molser-
ror 0.66 kcal/mold.

The CPU time for a whole BEM calculation with 320
BEs is 0.49 s on Intel Pentium IVs2 GHzd, but 28.8 s with
1280 BEs. A single APBS solution procedure takes 39.6 s,
and the solvation energy usually needs two solutions of
APBS with different exterior dielectric settings.

The second test model is a two-unit sphere system with
each containing a positive unit charge in the centers. The two
spheres are put on thex axis symmetrically to the origin with
a 4-Å center-to-center distance. The dielectric constants are
the same as above. The BEM gives an interaction energy of
1.22 kcal/mol. Using the same treatment for electrostatic in-
teractions as is typically done in BD simulation with the
program UHBD, in which only one molecular reaction field
sproteind is considered, and the other onesligandd is repre-
sented with a set of point charges that directly interact with
the reaction field, one point charge has an interaction energy
of 1.02 kcal/mol with the reaction field due to the other one
in this model. This is about 0.2 kcal/mol different from the
full electrostatic energy calculation in BEM. This amount is
expected to be larger for an approaching protein/protein or
protein/ligand system. Therefore, if the reaction criteria are
defined to be close encounter in a BD simulation, the amount
of energy difference calculated by BEM and UHBDssimilar
to APBSd may significantly influence the encounter kinetics.

To test the force calculation, we set both the interior and
exterior dielectric constants to 1 in the above two-sphere
model. 320 BEs are used, and all other details are kept the
same. Because the energy calculation by BEM has been
demonstrated to be of good accuracy in the above tests, we
use the “virtual work” principle to get a reliable numerical
force to compare with the force calculated with the proce-
dure presented in this work. To get the virtual work, the
second charge and its associated sphere are moved by a small
displacement of 0.01 Å in thex direction, and the difference
in the interaction energysDDUd is computed by BEM, then
the virtual work force is obtained withFx

virtual=−DDU /0.01.
The analytical forceFx

analy=20.75 kcal/mol Å, the virtual
work force Fx

virtual=19.63 kcal/mol Å srelative error
,5.4%d, and our BEM procedure gives Fx

=19.58 kcal/mol Åsrelative error,5.6%d. The results show
that the forcesFy and Fz along they and z directions are
indeed 0 in terms of the numerical errors,10−5d. This means
that the accuracy of the force calculation by our procedure is
somewhat higher than that of the boundary potential calcu-
lation in BEM. Using 1280 BEs, the calculated force isFx

=20.20 kcal/mol Å srelative error 2.6%d, and the virtual
work force is 20.25 kcal/mol Åsrelative error 2.4%d.

The last model is a point charge and dipole interaction
system. The point charge surrounded by a spherical boundary
is located ats−2 0, 0d; the dipole is also surrounded by a
spherical boundary with its two point charges located ats2,
0, 0.1d ands2, 0, −0.1d, respectively. In this model, there are
both force and torque acting on the dipole, but only the

z-direction force componentFz and they-direction torque
componentMy are not zero. The analytical solutions are
Fz

analy=−1.04 kcal/mol Å, and My
analy=−4.15 kcal/mol.

Our BEM results are Fz=−1.02 kcal/mol Å and My

=−4.08 kcal/mol. Both relative errors are about 2%.

V. CONCLUSIONS AND DISCUSSION

We apply the variational principle in the BEM frame and
present an iterative procedure to calculate the forces and
torques among rigid molecules immersed in ionic solution.
The direct formulation of the boundary integral equations
based on Green’s theorem for BEM is used. The calculated
force is a full PB force that takes into account the reaction
field of all the concerned molecules, and inherently includes
the boundary pressure due to the electric field and ion con-
centration. The computational accuracy for force and torque
is demonstrated in sample tests; the accuracy is found to be
somewhat higher than that of the BEM potential solution on
surface. An advantage of this method is that it totally avoids
the hypersingularity problem in direct BEM where the gra-
dient of the potential on surface or the stress tensor is re-
quired to be calculated. The code is easily incorporated in an
iterative algorithm of ordinary BEM, and the additional com-
putation time is mainly spent on three parts: the derivative
calculations of the coefficient matricesCij andDij , the itera-
tion procedure to solve Eq.s32d, and the summation using
Eqs.s31d and s34d to get the force and torque. The iteration
usually converges in less than five steps in our sample cases.
All these computations are on the order of,Nnodes

2 , or
Natom3Nnodes, which is a small part compared with the CPU
cost on the whole BEM solving process that contains several
times of,Nnodes

2 computations for matrices andNnodes
3 com-

putations for LU factorization. However, for large proteins or
protein assemblies,Natom3Nnodestimes of computations are
still time consuming, and other accelerating techniques such
as the multipole method will be necessary.
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