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The biophysical mechanisms underlying the relationship between the structure and function of the
KcsA K* channel are described. Because of the conciseness of electrodiffusion theory and the
computational advantages of a continuum approach, the Nernst-Planck (NP) type models, such as
the Goldman-Hodgkin—Katz and Poisson-NP (PNP) models, have been used to describe currents in
ion channels. However, the standard PNP (SPNP) model is known to be inapplicable to narrow ion
channels because it cannot handle discrete ion properties. To overcome this weakness, the explicit
resident ions NP (ERINP) model was formulated, which applies a local explicit model where the
continuum model fails. Then, the effects of the ERI Coulomb potential, the ERI induced potential,
and the ERI dielectric constant for ion conductance were tested in the ERINP model. The
current-voltage (I-V) and current-concentration (/-C) relationships determined in the ERINP model
provided biologically significant information that the traditional continuum model could not,
explicitly taking into account the effects of resident ions inside the KcsA K* channel. In addition,
a mathematical analysis of the K* ion dynamics established a tight structure-function system with
a shallow well, a deep well, and two K" ions resident in the selectivity filter. Furthermore, the
ERINP model not only reproduced the experimental results with a realistic set of parameters, but it

also reduced CPU costs. © 2009 American Institute of Physics. [doi:10.1063/1.3268774]

I. INTRODUCTION

With the arrival of primitive lipid membranes, new
transport mechanisms evolved to allow ionized substrates
into the cell and release ionized waste products into the
environment.! For the membrane to retain vital cell compo-
nents, the transport device had to be small, but large enough
for all small metabolites to cross it.' Subsequently, over bil-
lions of years of evolution, these transport mechanisms
evolved into highly sophisticated single file (the ion and wa-
ter cannot get past each other) transport devices such that
every living cell in nearly all organisms now has hundreds or
even thousands of different kinds of ion channels.” Ion chan-
nels are major drug targets because they are involved in cru-
cial physiological activities, such as heartbeat, breathing, and
thinking, by adjusting the electrical charges inside and out-
side of cells. Based on their medical importance and recently
discovered high-resolution structural information, many the-
oretical and computational studies using techniques such as
molecular dynamics (MD) and Brown dynamics (BD) simu-
lations or the Poisson—Nernst—Planck (PNP) model® have
been conducted to elucidate the molecular mechanisms un-
derlying ion conduction [K* channels conduct ions at a rate
approaching 10 ions s™! (Ref. 4)] and selectivity (conduct
their namesake ions while blocking others) at atomic level.
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To understand the conductance mechanism, the KcsA
(the K* channel from Streptomyces lividans®) K* channel
was chosen as the physical system. Since 1998, the structure
of the KcsA K* channel has been extensively investigated in
channel pharmacology research as a template for eukaryotic
K* channels. Also, the steady-state NP-type model was cho-
sen over an ion channel model, not only because the model
has the fascinating advantage of providing a concise elec-
trodiffusion theory of ions traversing through a channel, but
also because it can be computationally solved very effi-
ciently. However, the current obtained from the PNP model
in narrow ion channels has been known to be inaccurate.®™"!
There are three basic reasons: (1) the application of the stan-
dard PNP (SPNP) self-consistent approach to single file ion
channels is problematic because the mean-field approxima-
tion relating the electric potential to the ion concentration
breaks down; (2) in narrow cation channels, even a few resi-
dent cations significantly increase the positive electric poten-
tial because the continuum model unnecessarily redistributes
spurious self-energy inside the channel'? [see Fig. 6(a)]; and
(3) the explicit resident ions (ERI) potentials (the ERT Cou-
lomb and induced potentials) are disregarded because ions
are treated as if they are at an average concentration. To
overcome these weaknesses of the SPNP model, which does
not handle discrete ion properties, a quasicontinuum
(coupled atomistic and continuum) model was required. For
this reason, the ERINP model was formulated (see Fig. 1).

A major component of this study was the proposal of
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FIG. 1. The formulation of the ERINP model. In general, the dielectric
constants of the water and channel continua used to be set at 80 and 2 (Ref.
13), respectively, where the dielectric constant of vacuum is defined as 1. (a)
Water continuum. (b) KecsA K* channel continuum [this closed channel was
modeled as an open channel using the OPENDX software package (Ref. 14)].
Here, the potential arising from the membrane was ignored because it had
no apparent charges and was distant from the channel pore. (c) The ERI
potential zone. The black arrows denote the channel permanent potential
assigned to 45 small (1 X 1 X 1 A3) cubic boxes (the length of the channel is
45 A) lined up in the channel pore. The yellow arrows denote the ERI
potentials of the two resident ions. (d) The ERI blending zone. A K* ion
with a radius of 1.33 A, which is in fact fluctuating, occupies three grid
points.

plausible channel conductance mechanism by comparing two
channel models [the Goldman-Hodgkin-Katz (GHK) model
versus the ERINP model] and two ion states [the two-ion
state (with two resident ions) versus the three-ion state (with
three resident ions)]. A number of interesting questions were
addressed in the ERINP model. In particular:

(1) How many K7 ions reside in the channel and where do
they prefer to reside? (see Fig. 5.)

(2) Are the ion positions with minimum energy related to
high ionic throughput? (see Fig. 6.)

(3) How, and with what strategies, does the channel perma-
nent potential increase the current? (see Fig. 7.)

The purposes of this paper are to: (1) present a quasicon-
tinuum model (ERINP model) that is able to elucidate the
nonequilibrium potential (arising during ion flow) inside
single file ion channels; (2) investigate the intrinsic role of
the channel permanent potential for overcoming the dielec-
tric barrier presented by the cell membrane; and (3) establish
a structure-function system based on the K* ion dynamics.

The layout of the paper is as follows. In Sec. II, the
ERINP model and the GHK model' are introduced. In Sec.
III, the physical system and the method for obtaining the
channel permanent potential are illustrated. In addition, basic
concepts of the ERI induced potential as well as the mem-
brane potential and the ion concentration are described. In
Sec. IV, using the ERI Coulomb potential, the scaled ERI
induced potential, and the ERI dielectric constant, several
ion conductance tests (two channel models and two ion
states) are performed and their results are analyzed. In addi-
tion, a mathematical analysis of the K* ion dynamics is ap-
plied to relate the channel structure to its function. Finally,
conclusions and discussions are briefly summarized in Sec.
V.
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Il. THEORY AND METHODS
A. The NP-type model

Continuum NP-type models have fewer computational
degrees of freedom compared to MD and BD techniques. In
this NP-type model, the current depends on applied potential
and concentration differences across the channel. The ion
channel is so narrow that the motion in the x and y directions
reaches equilibrium rapidly,16 leaving the cations to navigate
along the channel solely in the central z-axis (the reaction
line).17 Therefore, the flux in 3D, which is defined as J(x, y,
z), is reduced to 1D J(z).

To apply the 1D steady-state NP-type model, the struc-
ture of the channel pore was defined as a cylinder of varying
cross-sectional area [A(z)] along its z-axis, and I (the current)
was assumed uniform across A(z), which can be expressed as
I=eJ(2)A(z) [where e denotes the electron charge, J(z) de-
notes the flux, and the monovalent cation valence is set at 1].
Thus, the NP equation' (or the current density equation),
using two electrochemical gradients (when a self-consistent
electric potential is applied to the NP equation, it becomes
the PNP model), is expressed as

__ep|Pr,ndd
I__eD(dz T dz )A(Z)’ M)

where D denotes the diffusion coefficient assumed indepen-
dent of z (obtained from the Einstein relation D=kT/my; k
denotes the Boltzmann factor, 7 denotes the temperature, m
denotes the ion mass, and y denotes the friction coefﬁcient)18
and n and ¢ denote the ion concentration and the electric
potential around the channel, respectively. Note that ¢ is the
nonequilibrium potential arising when ions flow and is not
constant because of thousands of charged atoms that com-
prise ion channels.

After A(z) was put on the left hand side of Eq. (1), the
modified equation was integrated from 0 to L (L is the length
of an ion channel) using the integrating factor ¢¥@[W¥(z)
=(e/kT)¢(z)]. Thus, in a cylindrical channel of varying A(z),
the NP current equation has the following relationship:

D [n(L)e"™ —n(0)e™”]

L V0 : (2)
fo A(z) -

I=-¢

When the electric field is constant, Eq. (2) becomes the GHK
current equation, which resulted in the following form:

[n(L) = n(0)e"]
_ D’1I‘ev[(+z)/L]e’ (3)
fo A(Z) @

1=

where V,ppiica="W(0)=W(L).

Then, the remaining problem is to find 1D nonequilib-
rium potential [W(z)] of the central z-axis. To handle the
discrete potential [W(z)] obtained from the Poisson solver,
the numerical composite trapezoidal rule was applied to both
Egs. (2) and (3). The SPNP model using a self-consistent
approach is well reviewed in recent PNP studies. >+
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FIG. 2. (a) Electrohydrodynamic process in the KcsA K* channel. (b) A set
of three K* ions in five binding sites.
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B. Formulation of the ERINP model

Figure 1 presents the ERINP model, which applies a
local explicit model where the continuum model fails. To
find W(z) without using a self-consistent approach, the model
treats a few resident K* in the selectivity filter (or filter) as
particles and the rest of the system as continua. Because
millions of ions cross this nanoscale channel every second,
the current can be measured statistically (e.g., the diffusion
coefficient is used for this purpose in the NP-type models).
The first step is working out the average of all possible po-
tentials arising from the position of each ion resident in the
channel pore. According to the Boltzmann equation, as
shown in Eq. (4), at equilibrium (or at quasiequilibrium), a
particle spends more time in lower energy states than in
higher energy states.

—2_ e—[(Uz—Ul)/kT], (4)

where P, and P; are the relative probabilities of finding a
particle in state 2 and in state 1, respectively, and U,—U, is
the energy difference between state 2 and state 1.

Thus, ions will reside in the binding sites [see Fig. 2(b)]
for a long time, but will pass by other sites instantaneously,
implying that the probability that ions reside in nonbinding
sites is almost zero. This line of reasoning led to the idea of
the ERINP model—that W(z) could be very similar to the
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sum of the channel permanent potential and the ERI poten-
tials, as shown in Fig. 1(c). To save CPU costs, the channel
permanent potential was obtained by using the DELPHI [a
continuum Poisson-Boltzmann (PB) solver] software
package.2l To find the positions of the resident ions, the en-
ergy minimization method was used [see Eq. (5)]. Also, the
ample experimental (electron density maps) and theoretical
(MD simulation®>*® and BD simulation®*) evidence that a
few (two or three) K* ions always reside in the filter in the
KcsA K* channel was adopted. Figure 1(c) shows how to
obtain the combined potential at point (or grid point) p by
adding the ERI potentials to the channel permanent potential
[see Egs. (6)—(8)]. However, as pictured in Fig. 1(d), it was
very difficult to determine the potentials at the grid points
inside (or around) a K* ion. For this reason, the ERI blending
zone and the ERI dielectric constant (egg;) were defined. The
zone has a short segment with five grid points. The potentials
at the two end points of the blending zone, which arise from
a K* ion located at a center point of the zone, were assigned
to three points inside the ion, making the potentials at all five
points in the ERI blending zone the same. Therefore, the
potential of the ERI blending zone was set at ke/2 Aegry
[k=1/41e,, where €, is the vacuum polarizability]. How-
ever, because an ERI blending zone of 4 A cannot even
accommodate an oxygen atom, the length of the blending
zone can be extended to 6 or 8 A to raise its reliability, in
which case the formula will be set at ke/3 Aegg or
ke/4 Aegg;. To find the realistic current, the ERI dielectric
constant in the blending zone is expected to be much smaller
than the pore dielectric constant.”

C. Calculation of resident ion positions
and their potentials

Because mobile ions move to minimize the free energy
of the channel system, their resident positions can be deter-
mined by finding points where the total energy of the system
is minimized. For instance, based on the superposition prin-
ciple, the following Eq. (5) (for the two-ion state) was for-
mulated to determine the two positions (z; and z;) where two
K" ions most prefer to reside in the central z-axis.

E= {¢zi+ b, + ke k—e{lr cos(gﬁx)f(x)dx

ji€w  TEy | Tido Ti

+ ljm cos(éﬁx>f(x)dx}]e, (5)
rj 0 rj

where r; and r; are the pore radii of the channel at positions
z; and gz;, respectively, d;=z;-z, f(x)=(¢,—¢€,)xKy(x)
K, (x)/[€,+(€,—€,)xK((x)],(x)], €, is the dielectric constant
of the channel pore, €, is the dielectric constant of the chan-
nel protein, Ky(x) and K,(x) are the modified Bessel func-
tions of the second kind, and 7;(x) is the modified Bessel
function of the first kind.

To find the positions with minimum energy, the cylindri-
cal channel pore was approximated as 45 infinite cylinders of
45 varying pore radii [the length of the KcsA K* channel is
45 A and 45 pore radii were extracted from 45 grids (1 grid
in each A)], then an analytical formula useful for calculating
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the ERI induced potentials of 45 infinite cylindrical channels
was adopted.%’27 The ERI induced potential depends on the
dielectric constant ratio of the channel protein to the pore
protein, which is shown in ¢i,guceq Of Eq. (6). The formula is
mathematically proven to have a solution independent of the
ion radius,”® which similarly can be applied to either a point
charge or a K* ion that has a finite size. However, because
the ERI induced potential calculated in infinite cylinders is
much reduced in finite cylinders,13 a scale factor was used to
reduce the analytic potential so that the known waiting
state>?>2* in K* channels is reproduced. In the two-ion state,
two K* ions should be in the filter separated by more than 6
A so that one water molecule is inserted between them,
whereas in the three-ion state, one additional K* ion should
be in the central cavity in a stable equilibrium. The math-
ematical concepts proposed for finding the combined poten-
tial at point p under the condition that two monovalent cat-
ions reside at positions i and j of the channel are utilized in

Egs. (6)—(8):

(1) If point p is not at i—2, i—1, i, i+1, and i+2 and j
-2,j-1,7j, j+1, and j+2, its electric potential is

ke ke
+ +
dipew d €

JpEw

+ ¢induced > (6)

where d;,=2,~z,, d;,=2;—2, and Ppqycea=(2ke/ me,,)
X{(1/r)fgeos((dy,/ r)x)f(x)dx+(1/r;) [5cos((d;,/r;)x)
X f(x)dx}. Here, the first term is the channel permanent
potential (obtained from DELPHI), the second and third
terms are the ERI Coulomb potentials, and the fourth
term is the ERI induced potential [see Fig. 4(b)], which
is about an order of magnitude larger than the ERI Cou-
lomb potential [usually less than 2 kT/e (Ref. 27)].

(2) Ifpointpisati-2,i—1,i,i+1,i+2, its electric poten-
tial is

ke ke

+ d + ¢induced’ (7)
jp €y

’
=¢, + —
5= % 2 A€
where the second term is the electric potential of the
ERI blending zone.
(3) If point p is at j—=2, j—1, j, j+1, and j+2, its electric
potential is

ke ke

+ d_ + Pinduced (8)
ip€w

!
=¢, + —
¢Z" d)z" 2 A
Similarly, the modified energy formula (for the three-
ion state) was formulated and applied to determine the
three positions where three K* ions are most likely to
reside.

lll. DEFINING THE MODEL SYSTEM
A. Setting-up the KcsA K* channel system

Figure 2(a) presents a 2D schematic of ion conductance,
showing that three negatively charged major dipoles, such as
the helix dipoles, the mouth dipoles, and the filter dipoles,
cooperate to help the ions cross the dielectric channel. If two
imaginary cubic cells are built with each side equal to 100 A
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(volume: 10° A?) in both cubic baths, there would be 84 K*
ions and six Na* ions in an intracellular cubic cell, whereas
there would be 84 Na* ions and three K* ions in an extracel-
lular cubic cell. If the channel has three K* ions, the K* ion
concentration of the channel becomes very high [3.51 M
=3/1440 A3 (Ref. 18)], implying that the channel structure
may be strongly related to its function. Figure 2(b) shows a
possible waiting state for the K* ion conductance in K* chan-
nels.

B. Channel permanent potential

In this section, the method for obtaining the channel per-
manent potential from DELPHI is illustrated in detail. When
using the grid-based PB solvers APBS and DELPHI, each
point charge is divided and mapped to the surrounding grids
with the dielectric constants to find the finite electric poten-
tial at every grid point. If aqueous ions are excluded, a PB
solver reduces to a Poisson solver. To apply the Poisson
solver to the KesA K* channel, a protein data bank (PDB)
file (1BLS.txt), which includes information about the KcsA
protein atoms (3504 atoms or 396 amino acid residues ex-
cluding polar hydrogen529), was created from a PDB file of
the channel (PDB accession code 1BL8). Using the Amber
software package and the PDB2PQR server,”’ the PQR (pro-
tein charge and atom radius) values were determined by add-
ing hydrogen atoms to the molecules of the channel protein
to obtain the correct partial charges. To match a cubic box
(201 X201 %201 A3) with the geometric coordinates of the
KcsA K* channel, the central pore line of the channel was
rotated to vertical. The rotated geometric center of the chan-
nel and the center (x=101, y=101, z=101) of a cubic box
were matched and reset to (0, 0, 0). The temperature and the
ion exclusion layer around the molecule were set at 298 K
and 2 A, respectively. Then, after the dielectric constants of
the channel protein and pore were set with the boundary
conditions, the electric potential of each cubic box was ob-
tained from the charge and dielectric constant information
assigned to all the small cubic boxes. Note that the inside of
the channel has a very strong negative electric potential
enough to attract a few cations. Also, six separate potential
wells were determined at an interval length of 45 A, which
ranged from point 76 to point 121 in the central z-axis [Fig.
3(b)]. The depth of the potential well progressively increased
as the pore dielectric constant was reduced.

C. Combined ERI induced potential in a varying
cylindrical channel

The purpose of using a varying cylindrical channel was
twofold: (1) to obtain uniform conductances along the chan-
nel pore irrespective of its irregular geometry. (2) To obtain
varying ERI induced potentials corresponding to the varying
imaginary cylinders. In Fig. 4(b), the pore radius and the
pore dielectric constant significantly affected the combined
ERI induced potential arising from two K* ions at points 110
and 116, which ranged from 16 to 218 kT/e. When the pore
dielectric constant increased, the ERI induced potential de-
creased, whereas, when the pore radius decreased, the ERI
induced potential greatly increased.
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FIG. 3. (a) A top view of the channel permanent potential map [determined
using the APBS software package (Ref. 31)] of the KcsA K* channel (3.2 A,
PDB ID: 1BL8). Red and blue denote negative electric potential and posi-
tive electric potential, respectively. (b) The channel permanent potential
graph in the central z-axis (x=101, y=101,z) of the KcsA K* channel
(determined from DELPHI). The six pore dielectric constants, ranging from 30
to 80 in steps of 10, were set while maintaining a channel dielectric constant
of €,=2 throughout.

D. Membrane potential and K* ion concentration

Setting the concentrations of the intracellular and extra-
cellular baths at 140 and 5 mM (using the physiological con-
centration in a mammalian K* channel™), respectively, pro-
duces a membrane potential (E) of —89.4 mV based on the
Nernst equation, E=(kT/e)In(|n|o/|n|;,). However, the rest-
ing potential of a typical animal cell is about —70-80 mV
because of the small number of Na* ions that enter the
channel. Setting the intracellular voltage at 100 mV and the
extracellular voltage at 0 mV (an electric field of 100 mV/
45 A), an average drift velocity [v=(—De/kT)(d¢p/dz)] of
1.62 m/s was obtained, which means a K* ion requires about
2.8 ns to cross a channel with a length of 45 A. Because the
diffusion coefficient (D) inside the channel is lower than the
bulk D, it is an approximate match to a physiological cross-
ing time of 10 ns for a K* ion.* This indicates that both the
potential and the binding time do not significantly affect the
crossing time of a K* ion. The higher the concentration of K*
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FIG. 4. The graph of the ERI induced potentials obtained by using three
different pore radii (R, R+0.5 A, and R+1 A) along the central z-axis. (a)
The graph of three different pore radii [determined using the Hole software
package (Ref. 32)]. The pore radius was restricted to extend up to R+1 A,
which is the minimum pore radius necessary for a K* ion to cross the
channel (Ref. 24). The significantly narrow pore radii of the filter indicated
that the selective ion conductance of K* ions could be related to RMS
fluctuations of the atoms lining the filter (Refs. 33-35). Additions of 0.5 A
and 1 A were made to the original pore radii of the channel. (b) The com-
bined ERI induced potential of two K* ions at points 110 and 116.

ions inside the cell, the greater chance that a K* ion will hit
the channel entrance, possibly reducing the waiting time
needed for a cation to reach the channel entrance. The wait-
ing time indicates that the ion concentration does not affect
the velocity of ions inside the channel [see Fig. 2(a)] because
cations in an intracellular bath cannot enter the channel until
a significant dielectric barrier in the channel is diminished.
Therefore, the crossing time of an ion depends on the mem-
brane potential and the channel permanent potential, whereas
the waiting time depends on the membrane potential and the
ion concentration on both sides of the baths. This reasoning
could be explored only by considering the ion concentration
a discrete entity.
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TABLE 1. The positions with minimum energy in both the two-ion and three-ion states (e: the dielectric

constant, the unit of energy: 107!° J). The positions of resident ions determined when

€,,=60 were very similar

to those of the other cases, when €,=80, 70, 50, 40, and 30. However, the results may be treated as reference
data because the external ion concentration, the membrane potential, and the chemical environments of the

channel were ignored.

State Two-ion state Three-ion state
Scale factor €, Position Energy Position Energy
1/6 60 (110, 116) —2.68 (80, 110, 116) —2.87
1/7 60 (110, 116) —2.72 (80, 110, 116) —2.93
1/8 60 (110, 116) —-2.75 (104, 100, 116) —3.00
1/9 60 (110, 116) —2.78 (104, 110, 116) —3.05
1/10 60 (110, 116) —-2.79 (104, 110, 116) -3.10

E. Technical details of channel conductance tests

The ion conductance tests on the two versus three K* ion
states were performed (the tests on more than four resident
ions were considered ineffectual) in the ERINP and GHK
models.>'®?? In both models, the membrane potentials inside
and outside the channel were set at 100 mV (at the left end
point) and 0 mV (at the right end point), whereas the ion
concentrations inside and outside the channel were set at
140 mM (at the left end point) and 5 mM (at the right end
point), respectively. Note that the units of current and con-
ductance were reported in picoampere (pA) and picosiemens
(pS), respectively; 1 pA is equivalent to a flow of 6.24
X 10% K* ions/s. To plot graphs of I-V and I-C with vary-
ing voltage and ion concentrations, the applied potential was
varied from —500 to 500 mV (keeping the right end point at
0 mV and changing the value at the left end point), whereas
the applied concentration ranged from —1 to 1 M (keeping
the right end point at 0.05 M and changing the value at the
left end point). In this study, unless otherwise stated, the
dielectric constants of the channel protein (€,) and pore (€,)
were set at 2 and 60 (obtained from BD simulation18’37),
respectively. Also, the diffusion coefficient (D), temperature,
and radius of the channel pore were set at 1.96
X107 m?/s (for a K* ion in the bulk bath'®), 298 K (room
temperature), and R+1 A, respectively. The computations,
including plots of I-V and I-C, were performed using the
mathematics software packages MATHEMATICA (Ref. 38) and
MAPLE.

IV. RESULTS
A. Positions of explicit resident ions

To shed some light on how the ERI Coulomb potential,
the ERI induced potential, and the ERI dielectric constant
affect ion conductance, computational comparisons were per-
formed on the two states (two-ion state and three-ion state).
Because the Pauling radius of a K* ion is 1.33 A (that of a
Na* ion is 0.95 A) and that of oxygen is 1.40 A, they occupy
three grid points in the given discretization. Thus, in a chan-
nel with a length of 45 A, there were eight positions to test
the ion-water configuration. The ion-ion configuration is ex-
cluded because two K* ions only very rarely occur with a
separation distance of less than 3.5 Al Using the ERI in-
duced potential [@Pingucea Of Eq. (6)] with scale factors of

1-1/10, all the possible combinations of the states were
tested to determine where two and three K* ions preferred to
reside. The positions of the two- and three-ion states with
minimum energy (when the scale factors are 1/6-1/10) are
shown in Table I. To reproduce the known waiting state in
both the two-ion and three-ion states, a scale factor of 1/8
was applied to each.

B. Two versus three K* ion states

First of all, when €,,,=60, the Born energy39 [Eg
=(e?/87eyRp)(1/ €pore—1/80)=0.6 KT, where Ry is 1.93 A
long for K* ions'®] effect was ignored because it was negli-
gible compared to a deep well energy in the channel [about
—44 KT, see Fig. 3(b)]. Here, the currents (I-V: at an applied
potential of 100 mV, I-C: at an applied concentration of 1 M)
used for the comparisons were reduced to 1/3-1/2 of the
currents displayed in the graphs of I-V and I-C because D
inside the channel is about 1/3—1/2 of the bulk D (D scales
linearly with the conductance).18’20’40 For instance, when one
I-V curve shows a current of 6 pA (at 100 mV), the current is
reduced to 2-3 pA (by 1/3-1/2 of 6 pA) and then it is con-
verted to a conductance of 20-30 pS (I pS=1 pA/V).

Figure 5 is focused on the significant current changes in
the I-V and I-C graphs when the ERI potentials (a scale
factor of 1/8) and the ERI dielectric constant (egg;) are ap-
plied. In Fig. 5(a), the effective dielectric permittivities that
arise from a K* ion at three points 104 (1), 110 (2), and 116
(3) are depicted. An empirical solution” for the dielectric
constant of water near an ion was adopted to observe the
empirical change in the pore dielectric constant with dis-
tance. When €,,,,=80 is assumed, the pore dielectric con-
stants of the channel entrance remained at around 80,
whereas the pore dielectric constants near a K* ion were
significantly reduced. This observation confirms that the ERI
dielectric constant may follow the empirical solution even
when €,,.=60, which was the setting in the ion conductance
tests. In Figs. 5(b)-5(f), the four colors (red, magenta, green,
and blue) show the corresponding electric potentials, which
would attract a third K* ion (in the two-ion state) or a fourth
K* ion (in three-ion state). In Figs. 5(b) and 5(c), one blue
I-V curve showed a conductance of about 37-55 pS, which
matched the experimental results (conductances of about 20—
250 pSZ4’18’41743) well, whereas the GHK model curve
showed a conductance of about 17-25 pS, which matched



215101-7 Explicit resident ions Nernst—Planck model

Effective dielectric permittivity graph

80 10 -

704

60 W

Electric potential graph (scale factor=1/8, R+1A)

J. Chem. Phys. 131, 215101 (2009)

I-V graph (scale factor=1/8, R+1A)
of asymmetric solutions (140 mM and 5 mM)
140 4

120 +

50+
(W) 40 Potential (KT/e) - 10 -

304

20 220

T T

90

T f
100 110 120 -30-

100 -

Axial positionNA)

Axial position (A)

—— (110, 116), e(ERT)=40
110 116]

— 104

— (104, 110, 116), &(ERI)=40 — (104, 110, 116), &(ERI)=60

Current (pA)
60
401
20+
/ T T
-400 -200 0 200 400
Voltage (mV)
— (110, 116), e(ERI)=40 — (110, 116), e(ERI)=60
—— (110, 116), e(ER))=60 — (104, 110, 116), e(ERT)=40 — (104, 110, 116), (ERIT)=60
— GHK model

(a) (b)

Electric potential graph (scale factor=1/8, R+1A)

Current (pA)

Potential (kT/e) 0 o i . i

o Iz

Axial positiom(A)

1201

1004

60 -

404

20

I-V graph (scale factor=1/8, R+1A)
of asymmetric solutions (140 mM and 5 mM)
140

©

I-V graph (scale factor=1/8, R+1A)
of symmetric solutions (140 mM and 140 mM)
254

204

Current (pA)

- 100 -50 0] 50 100

-15+ -400 -200

0.

T
200
Voltage (mV)

T Voltage (mV)
400

_5

—— (110, 116), e(ERD)=16
—— (110, 116), e(ERD=16  —— (110, 116), e(ERI)=17
—— (104, 110, 116), e(ERI)=16 —— (104, 110, 116), (ERI)=17

— GHK model

—— (104, 110, 116), e(ERI)=16 —— (104, 110, 116), e(ERI)=17

—— (110, 116), e(ERI)=17 —— (110, 116), e(ERD=16  —— (110, 116), e(ER)=17
—— (104, 110, 116), e(ERI)=16 —— (104, 110, 116), e(ER)=17

— GHK model

(d) (@

®

FIG. 5. (a) Effective dielectric permittivity (a function of distance from a K* ion) (Ref. 25). (b) The potential graph of two different states (when egg;=40 and
60) (c) The current-voltage (I-V) relationships of asymmetric solutions (when egg;=40 and 60). All I-V curves of the ERINP model are sublinear, which
matched the experimental results. Both the two-ion states (red and magenta) overlapped one magenta I-V curve, which appeared to be unrealistic. (d) The
potential graph of two different states (when egg;=16 and 17) (e) The current-voltage (/-V) relationships of asymmetric solutions (when egg;=16 and 17). (f)
The current-voltage (I-V) relationships of symmetric solutions (when egg;=16 and 17). When a low ERI dielectric constant was applied, the two-ion state was
much preferred over the three-ion state, which was in accord with the experimental result (Refs. 4 and 24).

the experimental results poorly. The others showed unrealis-
tic conductances. However, the blue curve also appeared to
be unrealistic because the ERI dielectric constant should be
much less than 60, as depicted in Fig. 5(a). On the other
hand, in Fig. 5(e), one red I-V curve showed a conductance
of about 3654 pS, whereas one magenta /-V curve showed
a conductance of about 82—123 pS, resulting in an approxi-
mate match to the experimental results [a cyan box in Fig.
5(d) shows that both the two-ion states (red and magenta)
still have enough negative potential to attract a third K* ion].
However, the I-V curves of both the three-ion states showed
no conductances (at 100 mV). In Fig. 5(f), the I-V curves in
symmetric solutions exhibited more reduced rectification
than in asymmetric solutions (see a cyan box). However, the
conductances (at 100 mV) in both the asymmetric and sym-
metric conditions had no significant difference. In addition,
when the scale factor was decreased or the ERI dielectric
constant was increased, both the /-V curves of the two- and
three-ion states shifted left along the horizontal axis, and the
rectification was reduced a little bit. This indicates that when

the scale factor and the ERI dielectric constant are properly
applied, most experimental results can be approximately re-
produced in the ERINP model.

C. Two K* ion state

Figure 6 shows the ion conductance (when a scale
factor=1/8 and eggy=15, 16, and 17) in the two-ion states
(110, 116) and (113, 119), which are the binding sites for the
concerted ion translocation [(1,3)—(2,4) mode, see Fig.
2(b)]. Based on a knock-on mechanism,>** if a third K* ion
overcomes the barrier behind a shallow well [see the cyan
box in Fig. 5(d)] and collides with the second K* ion, the
second one pushes the first one to exit. Thus, if the ERI
potentials exceed the binding potential barriers, the new two-
ion state replaces the previous one.’ In Figs. 6(a) and 6(b),
the state (110, 116) of the conditional Poisson (CP) model,
which was simulated using DELPHI under the condition that
two K* ions resided in the filter, produced no current in both
the I-V and [-C graphs because of two spurious
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FIG. 6. (a) The current-voltage (I-V) relationships of asymmetric solutions
(when egg;=15, 16, and 17) in the ERINP model, the GHK model, and the
CP model. (b) The current-concentration (/-C) relationships of asymmetric
solutions (when egg;=15, 16, and 17) in the ERINP model, the GHK model,
and the CP model. Note that the real shape of I-C curves (or lines) is
sublinear, so saturated, obeying the Michaelis—Menten function (Refs. 1 and
29), I=1I,,/ 1+[K,]/[K] where [K,] denotes the half-saturation point of the
ion channel and [K] is the concentration of the K* ions. Both the two-ion
states denoted in yellow and green overlapped one yellow /-C curve, show-
ing unrealistic conductances.

self—potentials12 at points 110 and 116, pointing out a weak-
ness of the continuum application of explicit resident ions. In
addition, when egry=16 and the pore R+1 A, state (110,
116) produced more conductance than state (113, 119), indi-
cating that state (110, 116) with minimum energy is related
to high ionic throughput. When egg;=16, the conductances
of state (110, 116) obtained by using three different pore
radii (R, R+0.5 A, and R+1 A) were proportional to the
corresponding pore radii. Like the red and magenta -V
curves, which matched the experimental results fairly well

J. Chem. Phys. 131, 215101 (2009)

[reported in Fig. 5(e)], one cyan I-V curve was an approxi-
mate match to the experimental results, showing conduc-
tances of about 23-34 pS (at 100 mV) and about 110-165 pS
(at 200 mV). In addition, one yellow I-V curve showed a
conductance of about 64-96 pS (at 200 mV), which was also
an approximate match to the experimental results. The others
showed more or less unrealistic conductances. In Fig. 6(b),
the red and cyan /-C curves showed conductances of about
256-384 pS and about 161-241 pS (at 1 M), respectively,
which approximately matched the experimental results [con-
ductances of 200-300 pS (Ref. 43)], whereas the others
showed more or less unrealistic conductances. However,
there is no state seeming to exhibit a realistically saturated
conductance, indicating that the ERINP model, like the other
continuum models, also fails to describe the saturated
current-concentration relationships. Note that the ion state
and the ion conductance appeared to be very sensitive to
small changes in the ERI potentials, the ERI dielectric con-
stant, the ERI locations, and the pore radius. In summary,
although the GHK model also provides some useful informa-
tion, the ERINP model has the following advantages over the
GHK model: (1) it matches most experimental results using
flexible parameters; (2) it provides an in-depth look into the
channel system using the discrete entities of ions such as the
ERI potentials and the ERI dielectric constant; and (3) it
provides biologically significant information that the tradi-
tional continuum model cannot, which is summarized in Sec
V.

D. Nonlinear dynamics of a K* ion crossing
the KcsA K* channel

The result stating that the ERINP model produces more
current than the GHK model gives rise to the question: What
is the intrinsic role of the channel permanent potential? To
address this question, a mathematical analysis of the K* ion
dynamics was performed. Assume that a single K* ion of
mass m crosses along the central z-axis of a cylindrical
vacuum channel under an electric field of 100 mV/45 A. As
the K* ion approaches the channel entrance with an initial
velocity of 1.62 m/s (about 0 A/ps), it is attracted by a shal-
low well (potential energy of about —14 KT) in the channel
entrance because the influential area of a deep well (potential
energy of about —44 kT) is limited only inside the channel.
Figure 7 illustrates the nonlinear dynamics of K* ions cross-
ing the channel. In Fig. 7(a), the graph of electric potential
obtained from DELPHI (when €,=2 and €,=60) was plotted.
Once a K* ion enters the channel, the ion (a filled green
circle) will proceed toward the bottom of a deep well that
holds two K* ions in a stable configuration by climbing over
a shallow well.' Also, when the ion enters the filter, its
velocity is at its maximum because of a deep well, following
the approximate conservation of energy [E=(1/2)my[z(¢)]?
+V[z(1)]; t denotes time, y denotes the velocity, and V de-
notes the electric potential energy]. Thus, a deep well not
only compensates for the ERI induced potentials that arise
because of traversing K* ions, but it also speeds up K* ions
so that they enter the filter with maximum Kkinetic energy. In
Fig. 7(b), the numerical electric force [V’'(z)] graph shows
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Electric force graph for a third potassium ion
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FIG. 7. (a) A K* ion in a double-well potential of the central z-axis (when there is no ion resident inside the channel). (b) Electric force of the central z-axis
(when there is no ion resident inside the channel). (c) Electric force of the central z-axis (when there are two K* ion resident at points 100 and 116 inside the
channel). (d) The phase portrait of a K* ion climbing over a shallow well produced by the ring of mouth dipoles (Ref. 18) (in three picoseconds). Because
there exists no deep well because of the ERI potentials, the ion can cross the channel.

that two stable nonlinear center points (filled red circles) are
found at points 76 and 116, whereas an unstable saddle point
(a filled red rectangle) is found at point 88. The graph also
shows that the channel has a strategic structure (or charge
distribution) that favors outward rectification of conduc-
tances, with a long length in the forward direction and a
short length in the backward direction. Here, the black ar-
rows denote the direction of a moving ion, and the positive
force helps the ion move forward, whereas the negative force
helps the ion move backward. In Fig. 7(c), the V'(z) graph
obtained from the condition in which two K* ions reside at
points 110 and 116 shows that the positive and negative elec-
tric forces in the cyan box appear to be canceled out. In Fig.
7(d), a phase portrait using the discrete V’'(z) graph in Fig.
7(c) was depicted. The phase portrait, which is based on the
conservation of energy, describes possible K* ion trajectories
in mathematical terms. To create a continuous function for
the discrete V'(z), the electric forces of four discrete points

within a shallow well, which ranged from point 70 to point
85 in the central z-axis, were selected and connected by us-
ing the Lagrange interpolation polynomials. Then a numeri-
cally approximated phase portrait was plotted using the vec-
tor field of dz/di=y and dy/di=-V'(z)/m. Given the
condition that the positive and negative electric forces in the
cyan box shown in Fig. 7(c) are approximately canceled out,
the phase portrait provides a possible pattern for how a third
K* ion climbs out of a shallow well and moves across the
remaining part of the pore mpidly24 to achieve the ion con-
ductance that is balanced by the channel permanent potential
and the ERI potentials.

V. CONCLUSIONS AND DISCUSSION

The current obtained from the 1D model was expected to
be similar to that in the 3D model because the channel per-
manent potential used in the ERINP model was extracted
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from the DELPHI 3D data. Current is thought of as an accu-
mulation of ion flow® affected by the specific chemical and
electrostatic interactions between atoms in the physical sys-
tem including the protein atoms, water, and ions. Thus, there
is no mechanism to perfectly integrate these phenomena into
a model. Most significantly, when calculating the ERI in-
duced potential, some errors must arise in approximating the
cylindrical channel pore using 45 infinite cylinders of 45
varying pore radii. However, the approximations of the
scaled ERI induced potential would be enough to elucidate
the conductance mechanism without losing crucial informa-
tion. Also, though the ERI dielectric constant was applied,
assigning a uniform pore dielectric constant to the entire pore
except the ERI blending zone was only an approximation; in
fact, a large approximation was made for the filter. The main
conclusions of the study can be summarized as follows:

(1) The ERINP model was formulated to reproduce a more
realistic electric field inside the channel using the ERI
potentials and the ERI dielectric constant in a cylindri-
cal channel of varying A(z).

(2) The ERINP model can explicitly take into account the
effects of resident ions inside the KcsA K* channel, and
maintain the advantage in computational efficiency of
the continuum modeling approach.

(3) The ion state and the ion conductance appeared to be
greatly influenced by the ERI potentials and the ERI
dielectric constant, as well as by the ERI locations and
the pore radius. In particular, when the ERI dielectric
constant was applied, the two-ion state was much pre-
ferred over the three-ion state, which was in accord
with the experimental result.

(4) Despite the simplifying assumptions of the ERINP
model, the model significantly improved data reliability
in the NP-type conductance model and reproduced
most experimental results with a realistic set of param-
eters including the ERI potentials and the ERI dielectric
constant.

(5) A mathematical analysis of the K* ion dynamics illus-
trated a tight structure-function system with a shallow
well, a deep well, and two K* ions resident in the filter.
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