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By considering the influence of volume exclusion on the solvent dielectric, a variable dielectric
Poisson-Boltzmann (VDPB) model is explored for molecular solvation studies by using a dielec-
tric as an explicit function of ionic sizes and concentrations. A finite element method is adopted
and an iterative strategy is introduced to numerically solve the VDPB equation. According to our
computations, the current dielectric model can result in considerable differences compared with
the traditional Poisson-Boltzmann (PB) solutions, especially for those systems with highly charged
biomolecule and/or under high salt concentration condition. The model to certain extent captures the
fact of dielectric decrement of electrolyte solutions, which is especially remarkable in the vicinity of
molecules. Counter-ion concentration very near the molecular surface in VDPB calculation is found
higher than that in PB. The new dielectric model may also influence the charge compensation be-
havior near biomolecular surface. For a spherical cavity solvated in a concentrated ionic solution,
charge inversion is observed in VDPB, which does not occur with the traditional PB model. Besides,
the solvation energy predicted by VDPB will always be greater than that by PB. Moreover, differing
from PB, the VDPB also allows non-monotonous dependencies of solvation energy on ionic strength.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4887342]

I. INTRODUCTION

Numerous processes involving the bending, folding,
melting, and binding of highly charged polyelectrolyte, are
of great importance for biological functions. These processes
are strongly influenced by changes in the ionic solvent envi-
ronment. Nonspecific salt-mediated electrostatic interactions
play a critical role in these biomolecular processes, and such
interactions largely govern the complex salt-dependent behav-
ior of the above-mentioned processes. Therefore, physically
realistic models of these electrostatic interactions are essential
to predict the physiochemical behavior of charged biomacro-
molecule in ionic solutions.

The Poisson-Boltzmann (PB) equation has been ex-
tensively used to model the ionic solvent environment of
biomolecule due to its simplicity and ability to accurately pre-
dict many thermodynamic properties.1–8 However, it is still
an approximation model and does not take into account finite
ion size and ion-ion correlation effects, which prohibit its ap-
plication to systems where these effects become pronounced
such as ionic layering, overcharging, or charge inversion, like-
charge attraction, and ion selectivity inversion.9–15 In partic-
ular, the assumption that the continuum dielectric medium is
homogeneous does not take into account the strong dielec-
tric response of water molecules around charged particles.
The discrete moments of water molecules will orient them-
selves close to charged particles and surfaces giving rise to

a)Author to whom correspondence should be addressed. Electronic mail:
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hydration shells, which can be measured at short distances.
These hydration phenomena are very important in many bio-
logical processes such as protein folding, protein crystalliza-
tion, and interactions between charged biopolymers inside the
cell.16 Theoretical and experimental evidences also show that
in a considerably wide region of the solution away from pro-
tein/membrane/DNA molecules the dielectric coefficient can
be much lower than pure water.17–20

In the past few decades, some works are devoted to mod-
ify the PB equation in a relatively simple way to consider the
strong dielectric response of aqueous salt solution. The ef-
fect of variable dielectric coefficient and finite ion size on PB
calculations is studied in 1993.21 In the work, the dielectric
coefficient is not a continuous function but takes piecewise
constants. In a recent work, a Gaussian-based approach was
implemented to deliver a smooth dielectric coefficient distri-
bution across the interface between protein and surrounding
water phase by utilizing the 3D structure of the correspond-
ing macromolecule.22 Besides, an alternative way of dealing
with the limits of PB is to consider ions explicitly in the PB
calculations. Their position can be predicted and to be consid-
ered as part of protein structure.23

So far there have been extensive studies of physical prop-
erties of aqueous electrolyte solutions. The first systematic ex-
perimental study of the dielectric properties of salt-water so-
lutions was conducted in 1948 by Hasted et al.24 In the work,
the static dielectric constant of a solution was observed to
decrease with the salt concentration, a phenomena called di-
electric decrement. Intuitively, the dielectric decrement stems
from the fact that the local electric field generated by each
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ion dominates the external applied field. The polar water
molecules tend to align with the local ionic field, creating a
hydration shell around the ion. The ions provide specific inter-
actions to the surrounding water molecules and thus restrict-
ing their motion and ability to respond to external electrostatic
field, hence lowering the dielectric permittivity. In dilute so-
lutions, the dielectric decrement is found linear,

εV = εw − αc, (1)

where εw is the relative permittivity of pure water, c is the
salt concentration, and α is a phenomenological ion-specific
parameter, known as the total excess polarization of the ionic
species. At higher salt concentrations, significant deviations
from linearity are observed and the dielectric decrement is ob-
served to saturate. The model was then refined by considering
the variation of the local dielectric constant near the ions25

and finite-size effects.26 Besides, Levesque et al.27 developed
a model for electrolyte solutions in which the dielectric per-
mittivity was determined from a part of the dipole fluctua-
tion of a solution by considering the contribution of the water
molecules only, which took the form

εE(c) = εw

1 + α · c
, (2)

where εw is the relative permittivity of pure water, c is the
salt concentration, and α is a fitted parameter. It turns out that
the physical effects of electrolyte solutions can be captured
well by εE(c).28 Considering the fact that at higher salt con-
centrations significant deviations from linearity are observed
and the dielectric decrement is observed to saturate,24 εE is
a more accurate dielectric permittivity model than the linear
εV . However, both models reflect the observed phenomenon
of dielectric decrement. And for dilute electrolyte solutions
the difference between εE and εV is negligibly small.

The above two dielectric models for electrolyte solution
have not been explored for biomolecular solution system, es-
pecially in PB solvation calculations. In this work, an effort
was made to find a continuum function of dielectric permit-
tivity with a more natural and physical basis that can capture
well the dielectric response of aqueous salt solution so that
such a variable dielectric permittivity can be applied to PB
calculations. By considering the ionic solution as a mixture
of high dielectric material (water dipoles) and low dielectric
material (ions and hydration shells), we obtain a variable di-
electric PB (VDPBV ) equation in which ε is an explicit func-
tion of ionic concentrations and ionic effective sizes that in-
corporates the hydration shell effects. Similarly, by simply
adopting the concentration dependent dielectric permittivity
of Levesque et al.,27 we obtain another variable dielectric
PB (VDPBE) equation (see Sec. II for details). Here, “sim-
ply adopting” means that the type of dielectric permittivity
form as by Levesque et al.27 or many others are derived for
pure electrolyte system, where there is no biomolecule ex-
isted and no external electric field considered, and the sys-
tem is locally neutral in charge everywhere. But in VDPBE

for biomolecular system, we still use the dielectric permit-
tivity form despite the brokenness of local neutrality (no bal-
ance in composition of positive charges and negative charges).
Whereas in VDPBV , it is relatively simple and there is no such

neutrality considerations in principle. Comparisons are made
between these two variable dielectric permittivity PB mod-
els and the traditional piecewise constant dielectric PB mod-
els. A finite element method is adopted to numerically solve
the equation. It is worth noting that in the VDPB equation
the dielectric coefficient depends exponentially on the elec-
tric potential, i.e., the solution of the equation. As a result,
the VDPB equation is of strong nonlinearity. Using Newton
method to directly solve the equation will encounter conver-
gence difficulty, an iterative strategy is introduced instead. We
aim to apply the VDPB equation to study the solvation of ir-
regular shaped biomolecules in ionic solution with possible
multiple ion species. Numerical experiments are carried out
for a spherical cavity and a DNA duplex. According to our
computations, the current variable dielectric models can re-
sult in considerable differences compared with the traditional
PB solutions, e.g., charge inversion and non-monotonous de-
pendencies of solvation energy on ionic strength can be ob-
served in VDPB results, which cannot occur in the traditional
PB model. The differences are especially significant for those
systems with highly charged biomolecule and/or under high
salt concentration conditions.

The rest of this paper is organized as follows. In
Sec. II, two VDPB models are introduced and discussed. In
Sec. III, comparisons are made between the predictions of the
two VDPB models and the traditional PB. Finally, conclu-
sions are drawn in Sec. IV.

II. METHODS

The nonlinear Poisson-Boltzmann equation takes the
form

−∇ · (ε(r)∇φ(r)) = ρf (r) + λ

K∑
i=1

qic
∞
i e−q

i
βφ(r), in �. (3)

Fig. 1 illustrates a biomolecular solution system occupy-
ing domain � with a smooth boundary ∂�. Domain �s de-
notes the solvent region that contains several diffusing species

FIG. 1. Schematic illustration of the computational domain.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

182.240.15.130 On: Fri, 18 Jul 2014 07:50:28



024115-3 H. Li and B. Lu J. Chem. Phys. 141, 024115 (2014)

and domain �m denotes the biomolecular region. Here,
� = �s ∪ �m and 
 denotes the boundary of �m. Besides,
c∞
i is the bulk ionic concentration of the ith ionic species,

λ = 0 in the biomolecular region �m and λ = 1 in the sol-
vent region �s, K is the number of ionic species considered,
β = 1/kBT is the inverse Boltzmann energy, kB is the Boltz-
mann constant, T is temperature, φ(r) is the electrostatic po-
tential, qi = ziec is the charge of each particle of the ith ionic
species, ec is the elementary charge, zi is the valence of the
ith ionic species, ρf (r) = ∑S

j=1 Qjδ(r − rj ) is an ensemble
of point charges Qj located at rj inside �m (j = 1, 2, . . . , S),
S is the number of point charges, δ( · ) is the Dirac Delta
function, and ε(r) is the dielectric coefficient distribution
function.

In most practically used PB models in computational
chemistry and biophysical communities, the dielectric coef-
ficient is usually taken as piecewise constants dependent on
regions

ε =
{

εm, in �m,

εs, in �s.

However, due to insertion of finite sized ions and the strong
dielectric response of water molecules around charges and
other effects, the static dielectric constant of a solution will
decrease with the salt concentration, a phenomena called di-
electric decrement.

Recall the linear dielectric permittivity, ε(c) = εw − αc,
α is a phenomenological ion-specific parameter which deter-
mines how fast the dielectric permittivity decreases with con-
centration. Note that the unit of α is Å3 if the unit of con-
centration c is Å−3, therefore we can rewrite α as α = a3,
where a can be regarded as an “effective” size. In fact, as in
Fig. 2 if we can simply consider the solution as a mixture of
low dielectric ion regions (say εm, the same as that inside pro-
tein region, as in common MD force fields ion is cavity with
a point charge and similar dielectric property as protein inte-
rior) and high dielectric water molecule region and ignore the

FIG. 2. Aqueous salt solution where water is mixed up with ions.

dielectric influences from each other, supposing the ith ionic
specie has an effective size ai, the space occupancy of the low
dielectric region is

∑K
i=1 a3

i ci , and that of high dielectric re-
gion is 1 − ∑K

i=1 a3
i ci . It is worth noting here that the effective

ionic size ai is not simply equal to its usual, say van der Waals
(VDW), size. Considering that an ion usually has a hydration
shell, in which region the relatively bounded water molecules
have little freedom of reorientation and thereby much small
polarizability, both the closely hydrated region and the ion
occupied region have low dielectric coefficient. Therefore, a
rough estimation of the effective size ai ∼ a∗

i + aw, where a∗
i

is the ionic VDW size (diameter), and aw is water size, say
2.5 Å. We will show later in Sec. III that this consideration is
reasonable, and taking ai = aVDW

i + 2.5 leads to good agree-
ment with Levesque et al.’s27 theory form and experimental
data. Suppose the interior permittivities of ions are uniformly
taken as εm, then by homogenization the effective dielectric
coefficient can be approximated as a linear combination of
the ionic permittivity εm and water permittivity εw weighted
by their volume occupancies

ε∗
V (c1, c2, . . . , cK ) = εw − (εw − εm)

K∑
i=1

a3
i ci . (4)

It turns out that in monovalent ionic solution such as NaCl,
ε∗
V = εw − (εw − εm)(a3

1 + a3
2) · c, making α = (εw − εm)

(a3
1 + a3

2) actually leads to the linear dielectric
permittivity.

It is worth noting that from a rigorous physical point of
view our current model only applies to electrolyte with not too
high ionic concentrations. Because it is observed experimen-
tally that in dilute solutions the dielectric decrement is lin-
ear, but at high concentrations the dielectric decrement would
slow down and approach saturated, which is mainly due to
ion-ion interactions.29–32 However, in Eq. (4) the decrease rate
of ε∗

V upon ionic concentration is constant. Therefore, for the
cases of unreasonably high ionic concentrations (over satura-
tion), the ε∗

V value may approach zero or even be negative. To
avoid the dielectric permittivity to be unphysical values, we
add a restriction to Eq. (4) to make εm as the lower bound of
the calculated εV . A similar linear dielectric approximation as
Eq. (4) was also applied in our previous work in order to de-
velop a molecular surface-free continuum model for studying
electro diffusion processes.33 The modified dielectric coeffi-
cient takes the form:

εV (c1, c2, . . . , cK ) =
{

εm, in �m,

max(εm, ε∗
V ), in �s.

(5)

As can be seen in Eq. (5), εV is always less than εw.
By substituting the dielectric permittivity in solu-

tion with εV and using the Boltzmann distribution ci =
c∞
i e−βq

i
φ in Poisson-Boltzmann equation, we obtain a VDPB

equation

−∇ · (εV (φ(r))∇φ(r)) = ρf (r) + λ

K∑
i=1

qic
∞
i e−βq

i
φ(r), in �,

(6)
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εV (φ(r))

=
{

εm, in �m,

max(εm, εw − (εw − εm)
∑K

i=1 a3
i c

∞
i e−βq

i
φ(r)), in �s.

Similarly, by substituting εV with εE by Levesque et al.27 in
PB equation, we can obtain another variable dielectric PB
equation. To distinguish the two models, we will denote them
by VDPBV and VDPBE , respectively.

According to the new model, in regions far from the
biomolecular surface, ci ≈ c∞

i , therefore a3
i ci is negligible,

and ε ≈ εw. Significant changes in ε only occurs in the
vicinity of biomolecular surface where ci can be largely
concentrated due to the electrostatic attraction of charged
biomolecule, and ε can approach as low as εm as inside the
solute region. Compared with traditional PB, the new models
take into account the effect of dielectric decrement.

Note that for both models, dielectric permittivity ε de-
pends exponentially on the electrostatic potential φ. Directly
solving the equation will encounter convergence difficulty. An
alternative strategy is to solve PB under a given position de-
pendent ε, then use the solved electric potential φ to update
ε, this process is repeated until φ converges. By applying this
strategy, we developed an iteration algorithm (see Table I).

As can be seen in Table I, VDPB is solved iteratively. For
the nth iteration step, εn is dependent on φn − 1 only. There-
fore, in each iteration step we only need to solve a regular
Poisson-Boltzmann equation with a given ε(r).

III. RESULTS

In this work, our results are obtained for a spherical cav-
ity of radius 1 Å containing a central positive charge of 1ec,
and an A-DNA duplex containing 8 base pairs and 778 atoms
and a total charge of −22ec.

Unless specified otherwise all calculation conditions and
parameters are taken as follows. Our computation region �

is taken as a sphere of radius 400 Å with the biomolecule
at its center. The salt solution consists of 1 : 1 monovalent
ions. The dielectric coefficient is set as 2ε0 for εm and 78ε0
for εw, where ε0 is the vacuum dielectric permittivity. For
VDPBV , the effective size for NaCl is set as 4.0 Å or 5.0 Å.
For VDPBE , α is set as 0.278, which is the fitted value for
NaCl.28 The temperature T is set as 298.15 K.

TABLE I. Iteration algorithm for VDPB.

Initialize error tolerance tol;
Initialize iterative step counter n = 0;
Initialize electric potential φ0 = 0;
Initialize dielectric coefficient ε0(r) = ε(φ0(r));
do
Determine φn +1 by solving the following equation:

−∇ · (εn(r)∇φn+1(r)) = ρf (r) + λ
∑K

i=1 q
i
c∞
i e

−q
i
βφn+1(r)

, in �.
Update the dielectric coefficient:
εn + 1(r) = ε(φn + 1(r)).
n++;
while ‖φn+1 − φn‖ > tol;

Software packages TMSmesh34 and Tetgen35 are applied
to generate the volume meshes required for finite element cal-
culation. Our finite element solver is based on the parallel
adaptive finite element package PHG.36 The parallel code is
written in C and uses MPI for message passing. The com-
putations are carried out on the cluster LSSC-III of the State
Key Laboratory of Scientific and Engineering Computing of
China, which consists of compute nodes with dual Intel Xeon
X5550 quad-core CPUs, interconnected via DDR InfiniBand
network. Our visual program VCMM37 is used for data anal-
ysis and visualization.

According to our numerical results listed below (see
Figs. 4–8), although εE and εV are two different dielectric
models, the solutions of VDPBE and VDPBV show some sim-
ilar behaviors.

A. Counter-ion concentration

For charged molecules in electrolyte solution, due to the
existence of condensed counter-ions and hydration shells, the
dielectric permittivity will be much lower than εw near the
biomolecular surface (see Fig. 3). As a result, the electro-
static field near the biomolecular surface will be stronger
than predicted by the traditional PB. Therefore, counter-ion
concentration near the molecular surface predicted by VDPB
should be higher than predicted by the traditional PB. This
point of view has been supported by our numerical results.
For both spherical cavity and DNA duplex, the counter-ion
concentration predicted by both variable dielectric models are
significantly larger than predicted by the traditional PB (see
Figs. 4 and 5). Besides, for the VDPBV model, the larger
the size of hydration shells are taken, the faster the dielec-
tric permittivity decreases with concentration. Therefore, the
larger the size is, the higher the counter-ion concentration will
be. It is worth noting that our calculations of DNA duplex
agree with the studies of Pack et al.21 in that changes in the
dielectric coefficient for the electrolyte solution substantially
increases the calculated surface concentration of counter-ions
of DNA. The strong dependence of the calculated distribution
of counter-ion density on the choice of dielectric coefficients
representing the solvent continuum suggests that care must
be taken to properly characterize the physical system when
studying electrostatic properties using PB models.

B. Charge inversion

It is worth noting that the variable dielectric coefficient
may cause interesting charge compensation surrounding the
biomolecule. The total compensated charges Q within a given
region V can be calculated as

Q =
∫

V/�
m

(q+c+ + q−c−)dV. (7)

As is discussed above, due to dielectric decrement, for both
variable dielectric models, the counter-ion concentration will
be higher and the co-ion concentration will be lower (but not
significant because the magnitude of co-ion density is negli-
gibly small) than traditional PB near the molecular surface.
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FIG. 3. The calculated dielectric permittivity distribution for VDPB
V

around
a spherical cavity is plotted in (a) and that around A-DNA is plotted in (b)
and (c), all results are obtained with 1:1 salt solution at ionic strength 1M and
ionic effective size 4 Å. (a) Spherical cavity, (b) A-DNA, (c) A-DNA.

FIG. 4. The electrostatic potential, i.e., the logarithm of counter-ion concen-
tration (in M) outside the spherical cavity in 1M NaCl solution, predicted by
traditional PB, VDPB

V
(ion size = 4, 5 Å), and VDPB

E
, are plotted against

the radial distance (in Å).

FIG. 5. The counter-ion concentration (in M) averaged over the middle of the
A-DNA duplex in 1M NaCl solution, predicted by traditional PB, VDPB

V

(ion size = 4, 5 Å), and VDPB
E

, are plotted against the radial distance
(in Å).

Therefore, the total compensated charges around the molec-
ular surface predicted by VDPBs will increase (in absolute
value) compared with that obtained by the traditional PB. Ac-
cording to our computations, when a positive charged spheri-
cal cavity is laid in monovalent salt solution, charge inversion
does not occur with the traditional PB model regardless of
how much the ionic strength is. However, for the VDPB mod-
els, charge inversion can be easily observed when the ionic
strength is not small (see Fig. 6).

FIG. 6. The compensated charges (in ec) outside the spherical cavity in
monovalent salt solution of ionic strength (a) 0.1M and (b) 1M, predicted by
traditional PB, VDPB

V
(ion size = 4, 5), and V DPB

E
, are plotted against

the radial distance (in Å).
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C. Electrostatic free energy

The electrostatic free energy of a biomolecule-electrolyte
solution system can be expressed as

G = G(φ, c1, c2, . . . , cK ) =
∫

�

{
1

2

(
ρf +

K∑
i=1

qici

)
φ

+β−1
K∑

i=1

ci[ln(�3ci) − 1] −
K∑

i=1

μici

}
dx. (8)

It was proved that Eq. (8) is convex and uniquely minimized
by the solution of Poisson-Boltzmann.38 Besides, the mini-
mum value of Eq. (8) is equal to the extreme value of the
expression in Eq. (9) although it is concave for all possible
potentials φ and unbounded below

E = E(φ) =
∫

�

{
− ε

2
|∇φ|2

+ ρf φ − β−1λ
∑

i

c∞
i (e−βq

i
φ − 1)

}
dx. (9)

The solvation energy of a molecule (denote by E) is the
change of energy when the molecule is taken from vacuum
into a electrolyte solution

E =
∫

�

{
− ε

2
|∇φ|2

+ 1

2
ρf φ − β−1λ

∑
i

c∞
i (e−βq

i
φ − 1)

}
dx. (10)

Since Evacuum is the same for all models considered here, sol-
vation energy has the same property as the electrostatic free
energy.

To compare the solvation energy predicted by PB and
VDPBV (which we denote by VDPB for simplicity, actually
all the following conclusions on solvation energy also hold
true for VDPBE), note that GVDPB is minimized by the so-
lution of Eq. (7) and GPB is minimized by the solution of
Eq. (3), thus we have

minGV DPB = EV DPB = E(εV DPB, φV DPB),

minGPB = EPB = E(εPB, φPB ). (11)

Therefore,

EV DPB − EPB = E(εV DPB, φV DPB) − E(εPB, φPB )

= E(εV DPB, φV DPB) − E(εPB, φV DPB)

+E(εPB, φV DPB) − E(εPB, φPB)

=
∫

−1

2
(εV DPB − εPB)|∇φV DPB |2

+E(εPB, φV DPB) − E(εPB, φPB). (12)

Note that
∫ − 1

2 (εV DPB − εPB)|∇φV DPB |2 ≥ 0 because
εV DPB ≤ εPB , and E(εPB, φV DPB) − E(εPB, φPB) ≥ 0 be-
cause minGPB = E(εPB, φPB). Thus EV DPB ≥ EPB , this con-
clusion also holds true for solvation energy E by subtract-
ing a constant from both sides of Eq. (12). Therefore, we can

FIG. 7. The solvation energy (in kcal/mol) of spherical cavity predicted by
the traditional PB, VDPB

V
(ion size = 4, 5 Å) and VDPB

E
are plotted against

the ionic strength (in M).

draw a conclusion that with the same parameters, the solva-
tion energy predicted by VDPB will always be greater than
traditional PB.

For monovalent 1:1 salt solution, c∞+ = c∞− = I . By ap-
plying variation method we have

∂EPB

∂I
= −β−1

∫
�

s

∑
i

(e−βq
i
φ − 1) < 0, (13)

∂EV DPB

∂I
= −β−1

∫
�

s

∑
i

(e−βq
i
φ − 1)

+ ∂

∂I

∫
−εV DPB(r)

2
|∇φ|2

= −β−1
∫

�
s

∑
i

(e−βq
i
φ − 1)

+
∫

�
s

εw − εm

2

∑
i

a3
i e

−βq
i
φ|∇φ|2. (14)

Note that the first term on the right hand side of Eq. (14)
takes the same form as the right hand side of Eq. (13) and
is therefore negative, and the second term on the right hand
side of the equation is positive. Equations (13) and (14) indi-
cate that although the solvation energy predicted by the tra-
ditional PB model monotonically decreases as ionic strength
increases, the dependence of solvation energy predicted by
VDPB on ionic strength may show non-monotonic tenden-
cies, especially for systems with strong electric field and/or
under high ionic concentration condition. Such different be-
haviors of VDPB models are illustrated in Figs. 7 and 8.

FIG. 8. The solvation energy (in kcal/mol) of A-DNA predicted by tradi-
tional PB, VDPB

V
(ion size = 4, 5 Å) and VDPB

E
are plotted against the

ionic strength (in M).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

182.240.15.130 On: Fri, 18 Jul 2014 07:50:28



024115-7 H. Li and B. Lu J. Chem. Phys. 141, 024115 (2014)

As can be seen in Figs. 7 and 8, due to dielectric decre-
ment, for both spherical cavity and DNA, the solvation en-
ergy predicted by variable dielectric models will be higher
than that obtained by the traditional PB. Besides, for VDPBV ,
the larger the size of hydration shell is taken, the larger the
effective size is, and the higher the solvation energy will be.

IV. CONCLUSION

In this work, an effort is made to find a function of di-
electric permittivity in PB calculations for molecular solva-
tion that can properly reflect the fact of dielectric decrement
of electrolyte solutions. By taking into account the influence
of the finite sized ions and their hydration shells on the sol-
vent dielectric and by introducing model of Levesque et al.,27

variable dielectric PB equations are obtained and applied to
studies of the molecular solvation in aqueous salt solution.
The VDPBV mode well explains and gives more details on
the linear dielectric behavior as studied by Hasted et al.24

To overcome the nonlinearity of the VDPB equations, an
iterative strategy between the dielectric coefficient and the
PB equation is introduced instead of using Newton method
to directly solve the VDPB equations. A parallel finite el-
ement algorithm is implemented for numerical calculations.
According to numerical experiments carried out for a spher-
ical cavity and a DNA duplex, the variable dielectric mod-
els can result in considerable differences compared with the
predictions of the traditional PB, especially for systems with
highly charged biomolecule and/or under high salt concen-
tration condition. The results of the variable dielectric models
VDPBE and VDPBV can lead to similar deviations from those
of the traditional PB. Due to dielectric decrement, counter-
ion concentration near the molecular surface in VDPB cal-
culation is found higher than that in the traditional PB. Our
calculations of DNA duplex agree with the studies of Pack
et al.21 in that changes in the dielectric coefficient for the
electrolyte solution substantially increases the calculated sur-
face concentration of counter-ions of DNA. The variable di-
electric permittivity may also influence the charge compensa-
tion behavior near biomolecular surface. For a spherical cav-
ity solvated in a concentrated ionic solution, charge inversion
occur with VDPB models, which does not occur with the tra-
ditional PB model. Besides, the solvation energy predicted by
current VDPBs will always be greater than that by the tradi-
tional PB. Moreover, differing from PB, the VDPB also al-
lows non-monotonous dependencies of solvation energy on
ionic strength. According to numerical results of DNA du-
plex, for the VDPBV model, when the “effective” size is large
enough, as the ionic strength increases, the solvation energy
first decreases to a minimum then starts to increase. Such a
non-monotonic phenomenon could not be observed by the tra-
ditional PB.

It is worth denoting that in VDPB model, the predicted
concentrations can be either higher or lower than regular PB
results, depending on the location. There are two balanced
factors influencing the concentration. According to the model,
a high concentration leads to low dielectric coefficient, which
in turn enhances the electric field and tends to attract more
counter ions. On the other hand, increased counter ion con-

centration leads to increased screening, which weakens the
electric field and tends to lower the ionic concentration. Usu-
ally in the region very near the charged surface, the VDPB
gives higher concentration prediction than the regular PB, but
a bit away from the surface, the concentration can be lower
than predicted by the regular PB. The phenomena is indicated
by the potential profile in Fig. 4. One common disadvantage
is that both the regular PB and VDPB models cannot avoid
over saturated ion concentrations if the potential is high. The
ion size effect is only considered in this work through its in-
fluence to the dielectric response of solvent medium, while its
effects on spatial packing (volume exclusion) are not explic-
itly included in this model. The defects is possible to be over-
come by combining VDPB with other models considering the
ionic volume exclusion effects such as in the size-modified PB
model39, 40 and hard sphere model,41 which will be explored
in the future and is not a focus of this work. And as aforemen-
tioned, if the concentration is really high, the new dielectric
model is not suitable. In this case, it is still hard to find a good
variable dielectric model so far, even for pure and homoge-
neously concentrated ionic solution without protein existed.
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