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Abstract

In this paper, we present an efficient and accurate numerical algorithm for calculating the electrostatic interactions in
biomolecular systems. In our scheme, a boundary integral equation (BIE) approach is applied to discretize the linearized
Poisson–Boltzmann (PB) equation. The resulting integral formulas are well conditioned for single molecule cases as well as
for systems with more than one macromolecule, and are solved efficiently using Krylov subspace based iterative methods
such as generalized minimal residual (GMRES) or biconjugate gradient stabilized (BiCGStab) methods. In each iteration,
the convolution type matrix–vector multiplications are accelerated by a new version of the fast multipole method (FMM).
The implemented algorithm is asymptotically optimal O(N) both in CPU time and memory usage with optimized prefac-
tors. Our approach enhances the present computational ability to treat electrostatics of large scale systems in protein–pro-
tein interactions and nano particle assembly processes. Applications including calculating the electrostatics of the nicotinic
acetylcholine receptor (nAChR) and interactions between protein Sso7d and DNA are presented.
Crown Copyright � 2007 Published by Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we discuss a numerical algorithm for the calculation of electrostatic interactions in biomolecular
systems in solution, in which the solvent has a substantial volume with numerous mobile ions making significant
contributions. Such systems are commonly encountered in biophysics, electrochemistry, and electrophoresis,
such as in the study of protein–protein interactions and nano particle assembly processes in drug design and
structural biology.
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Although the continuum Poisson–Boltzmann (PB) equation model for these systems was introduced almost
a century ago by Debye and Huckel [17] and later developed by Kirkwood [26], its numerical solutions have
only been extensively explored in the last two decades [13,16,19,23,24,27,40,46,48]. Traditional schemes
include the finite difference methods where difference approximations are used on structured grids describing
the computational domain, and finite element methods in which arbitrarily shaped biomolecules are discret-
ized using elements and associated basis functions. The resulting algebraic systems for both are commonly
solved using multigrid or domain decomposition accelerations for optimal efficiency. However, as the grid
number (and thus the storage, number of operations, and condition number of the system) increases propor-
tionally to the volume size, finite difference and finite element methods become less efficient and accurate for
systems of large spatial sizes commonly encountered in studying either macromolecules or interacting systems
in the association and dissociation processes. Alternative methods include the boundary element (BEM) and
boundary integral equation (BIE) methods. In these methods, only the surfaces (compared to the 3D volume)
of the molecules are discretized and hence the number of unknowns is greatly reduced. In addition, the bound-
ary elements (BEs) form a kind of surface ‘‘conforming’’ mesh (because they align with the surface), which
therefore allows the application of the BEM to biomolecules characterized by irregular geometries, while
maintaining a high level of calculation accuracy.

However, in practical biomodeling, the BEM is the least used relative to the other methods. In earlier ver-
sions of BEM, the integral equation formulations may not have been well-conditioned and the matrix was typ-
ically stored explicitly. The resulting dense linear system was often solved using direct matrix inversion such as
Gauss elimination or LU decompsition, so that OðN 2Þ storage and OðN 3Þ operations were required, where N is
the number of unknowns defined on the surface. This is extremely inefficient for any typical size system of
interest. To improve the BEM efficiency, some later studies improved the condition of the integral formulation
[2,24,29,30], reduced the number of the boundary elements [44] or introduced novel BEM [31]. It has been
demonstrated that when the system is well-conditioned or can be effectively preconditioned, the matrix equa-
tions can be solved efficiently using iterative Krylov subspace methods which are matrix-implicit, thus elimi-
nating the bottleneck of storage. As the number of iterations in these methods is independent of the system
size for well conditioned systems, the computational cost is then dominated by the matrix–vector multiplica-
tion calculations corresponding to the N-body electrostatic particle interactions of both the Coulombic (j = 0)
and screened Coulombic (j 6¼ 0) types, which require OðN 2Þ operations using direct methods for each itera-
tion. By introducing novel fast summation algorithms developed in the last twenty years, this cost has been
reduced to OðN log NÞ. These algorithms include the hierarchical ‘‘tree code’’ [4,6], fast Fourier transform
(FFT) based algorithms such as the precorrected FFT (pFFT) [3,28,35] and the particle-mesh Ewald
(PME) methods [15], the hierarchical SVD method [25], and FFT on multipoles [33,34]. Further improve-
ments show that asymptotically optimal O(N) complexity can be achieved by using the wavelet techniques
[41,43] or the fast multipole method (FMM) [20]. FMM algorithms for the screened Coulombic interaction
(Yukawa potential) have also been recently developed [9,22], which allows their direct application to the solu-
tion of the PB equation. The tree code algorithm and the FMMs based on the old scheme [20] have been
implemented in former BEM PB work [7,8,10,18,34,49]. However, as revealed by previous numerical experi-
ments, although asymptotically optimal, the original FMM [20] turns out to be less efficient for problem sizes
of current interest when compared with the tree code and FFT based OðN log NÞ techniques, due to the huge
prefactor in O(N) [18].

To further accelerate the numerical solution of the PB equation, in this paper, we present an efficient algo-
rithm using a well conditioned BIE formulation, for which the solution is accelerated by a new version of
FMM first introduced by Greengard and Rokhlin [21] for the Laplace equation. By proper coupling of single
and double layer potentials as in Ref. [38], a Fredholm second kind integral equation formulation for the PB
equation can be derived. Similar formulations were first introduced by Juffer et al. [24] who aimed to avoid the
singularity problem in deriving the complete BIE forms for the linearized PB equation. The well-conditioned
property has been discussed by Liang and Subramaniam [29] and also demonstrated in the work of Boschitsch
et al. [10]. We extend the formulation for systems with an arbitrary number of domains. Compared with tra-
ditional BEM formulations, the condition number of our BIE system does not increase with the number of
unknowns, hence the number of iterations in the Krylov subspace based methods is bounded. For the matrix
vector multiplication in each iteration, we use the new version FMM developed for the screened Coulombic
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interaction (Yukawa potential) [22]. Compared with the original FMM, the plane wave expansion based diag-
onal translation operators dramatically reduce the prefactor in the O(N) new version FMM, especially in three
dimensions where a break-even point of approximately 600 for 6 digits precision is numerically observed. Per-
haps due to its complexity in theory and programming, we are unaware of any previous implementations of
the new version FMM for the PB equation.

This paper is organized as follows. In Section 2, we discuss the methodological details of our algorithm,
including the well-conditioned integral equation formulation and the new version of FMM. In Section 3,
the resulting algorithm is applied to both a single protein and a two-molecule (protein–DNA) interaction cases
to illustrate the performance of the algorithm. Finally in Section 4, conclusions and discussion are presented.
We want to mention that some of the analyses were briefly reported previously in Ref. [30]. The purpose of this
paper is to present more technical details along with two new applications.

2. Methods

In this section, we discuss the technical details of the algorithm. In particular, the boundary integral equa-
tion formulation and its discretization, the new version of FMM and how it is applied to the BEM, the Krylov
subspace method, the mesh generation, and the system set up are discussed in order.

2.1. Boundary integral equation formulations

When Green’s second identity is applied, traditional boundary integral equations for the linearized PB
equation for a single domain (molecule) take the form
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where /int
p is the interior potential at surface position p of the molecular domain X, S ¼ oX is its boundary, i.e.,

solvent-accessible surface, /ext
p is the exterior potential at position p, Dint is the interior dielectric constant, t is

an arbitrary point on the boundary, n is the outward normal vector at t, and PV represents the principal value
integral to avoid the singular point when t! p in the integral equations. In the formulae, Gpt ¼ 1

4pjrt�rp j and
upt ¼ expð�jjrt�rp jÞ

4pjrt�rp j are the fundamental solutions of the corresponding Poisson and Poisson–Boltzmann equa-
tions, respectively, rk is the position of the kth source point charge qk of the molecule, j is the reciprocal
of the Debye–Huckel screening length determined by the ionic strength of the solution. These equations
can be easily extended to multi-domain systems in which Eq. (1) is enforced for each individual domain
and the integration domain in Eq. (2) includes the collection of all boundaries [32].

To complete the system, the solutions in the interior (Eq. (1)) and exterior (Eq. (2)) are matched by the
boundary conditions /int ¼ /ext and Dint

o/int

on ¼ Dext
o/ext

on , where Dext is the exterior (solvent) dielectric constant.
Using these conditions, we can define f ¼ /ext and h ¼ o/ext

on as the new unknowns and recover other quantities
using boundary integrals of f and h. Unfortunately, theoretical analysis shows that the corresponding equation
system for f and h is in general a Fredholm integral equation of first kind and hence ill-conditioned. i.e., when
solved iteratively using Krylov subspace methods, the number of iterations increases with the number of
unknowns, and the resulting algorithm becomes inefficient for large systems. Instead of this ‘‘direct formula-
tion’’, Rokhlin [38] introduced a technique where the single and double layer potentials are combined in order
to derive an optimized second kind Fredholm integral equation. We want to mention that a well-conditioned
form actually appeared in Juffer et al.’s work [24] when they tried to derive the complete BI form for linearized
PBE using a limiting process to avoid the singularity problem. The same form has been used and discussed in
later BEM PB work [10,29], and similar techniques have also been applied and discussed in engineering com-
putations [42].
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The derivative BEM (dBEM) can be obtained by linearly combining the derivative forms of Eqs. (1) and (2):
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where n0 is the unit normal vector at point p, e ¼ Dext=Dint. This set of BIEs leads to a well-conditioned system
of algebraic equations, which we will adopt.

For a system with an arbitrary number, e.g. J, of separate domains (molecules) surrounded by infinite homo-
geneous solvent, Eq. (1) holds and the integration can be performed only over one molecular surface where the
evaluation point p is located, while the integrand in Eq. (2) is the combination of all the molecular surfaces. Fol-
lowing the same treatment, and supposing p 2 Si, the derivative BIEs for multiple domains are extended as:
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However, it is noticed that in Eqs. (5) and (6) the integrand kernels for integration on surface Si (enclosed in
the first pair of square brackets) are not the same as those on molecular surface Sj (enclosed in the second pair
of square brackets). This is not convenient for application of the FMM. The FMM algorithm uses hierarchical
levels of boxes to group all the evaluation points (meshes), so it would be beneficial to have similar integral
formulae on all molecular surfaces for every evaluation point. If we apply Green’s second theorem to domain
Sj, and still let p 2 Si; i 6¼ j, it is found that the following set of equations hold
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Combining these equations for different boundary j, it is found that Eqs. (5) and (6) have another neat form
1

2e
þ 1

2

� �
fp ¼

XJ

j

Z PV

Sj
ðGpt � uptÞht �

1

e
oGpt

on
� oupt

on

� �
ft

� �
dSt

þ 1

Dext

X
j

X
kj

qkj Gpkj ; p 2 Si; i ¼ 1; . . . J ; ð9Þ

1

2
þ 1

2e

� �
hp ¼

XJ

j

Z PV

Sj

oGpt

on0

� 1

e
oupt

on0

� �
ht �

1

e
o2Gpt

on0on
� o2upt

on0on

� �
ft

� �
dSt

þ 1

Dext

XJ

j

X
kj

qkj

oGpkj

on0

; p 2 Si; i ¼ 1; . . . J : ð10Þ



1352 B. Lu et al. / Journal of Computational Physics 226 (2007) 1348–1366
Now, all the calculated points can treated uniformly by this set of equations, which is similar to the case of one
molecule. This is a set of well-conditioned Fredholm second kind integral equation formulations for multi-bio-
molecule systems. As a matter of fact, it can be more straightforward to obtain the derivative BIEs for multi-
domain cases from the single domain equations, because Eqs. (1)–(4) hold not only for a single closed bound-
ary surface, but also for any combination of separated boundaries. Compared with Eqs. (5) and (6), Eqs. (9)
and (10) add more operations in the integrals and summations. But these additional operations only account
for a very small part of the whole computational cost for solving the PB equation, and the summations in Eqs.
(9) and (10) are also efficiently accelerated by using the FMM. In addition, as mentioned above, the symme-
trized integral formulations also make the coding convenient and easy-to-maintain. It is worth noting that for
the case when the interior dielectric constants are different for different molecular domains, and are same in
exterior domain, a set of formulae very similar to Eqs. (9) and (10) are still available, except for that the coef-
ficient e is to be replaced by ej because it varies for different molecular surface integrals. In this case, the FMM
still applies because the Green’s functions are the same, but it needs to separate the terms associated with ej

and rescale f and h to absorb ej on different molecular surfaces, then use the FMM. The case with different
dielectric constants was studied in a recent BEM paper [47].

2.2. Discretization of the BIEs

Similar to our former work [32], the discretized form of the BIEs (9) and (10) can be written as
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where T is the total number of discretized patches of the combined boundaries, which is half of the total un-
knowns (f or h) of the system, and here the

P
k encompasses all the source charges in the considered system.

The coefficient matrices are defined as follows:
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where the integrations are performed on the small patch DSt. To obtain above form, it is assumed that the
solution f and h are constants in every small patch DSt. For nearby patches p and t, Eq. (13) is performed
by direct integration. For far field, the kernels for each patch integral are taken as constants (depending on
the relative positions of p and t). The linear system can be written in a matrix form:
1
2eþ 1

2

� �
I þ B �A

1
2
þ 1

2e

� �
I þ D �C

 !
f

h

� �
¼

1
Dext

P
kqkGpk

1
Dext

P
kqk

oGpk

on0

 !
; ð14Þ
where I is the identity matrix. The linear system is well-conditioned and can be solved efficiently using Krylov
subspace methods. As the number of iterations is bounded, the most time consuming part becomes the con-
volution type matrix vector multiplication in each iteration. In the following section, we discuss how this can
be accelerated by the new version FMM.

2.3. New version fast multipole method

The original idea of FMM is to subdivide the summation system of N particles into hierarchical groups of
particles, and the potentials produced by far-field particles for a given particle are approximated by using the
multipole expansions (Fig. 1a). The fundamental observation in the multipole expansion based methods is that



Fig. 1. Series expansion approximations of the function 1
r. (a) For any point RðR; h;/Þ located outside of a sphere Sa of radius a, the

potential generated by N charges located inside of Sa with spherical coordinates qðqi; ai; biÞ, respectively, can be described using multipole

expansions; (b) in the opposite case, for any point RðR; h;/Þ located inside of Sa, the potential generated by N charges located outside of Sa

with spherical coordinates qðqi; ai;biÞ, respectively, can be described using local expansions.
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the numerical rank of the far field interactions is relatively low and hence can be approximated by P terms
(depending on the prescribed accuracy) of the so-called ‘‘multipole expansion’’,
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where the multipole coefficients,
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where the spherical harmonic function of order n and degree m is defined according to the formula [1],
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For the Debye–Huckel (screened Coulombic) interaction, a similar expansion can be written as follows:
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where the multipole coefficients,
Mm
n ¼ 8j

XN

i¼1

qi � inðjqiÞ � Y �m
n ðai; biÞ; ð19Þ
where inðrÞ and knðrÞ are modified spherical Bessel and modified spherical Hankel functions respectively. The
modified spherical Bessel and modified spherical Hankel functions are defined in terms of the conventional
Bessel function via [1],
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For arbitrary distributions of particles, a hierarchical octree (in 3D) is generated so each particle is associated
with different boxes at different levels, and a divide-and-conquer strategy is applied to account for the far field
interactions at each level in the tree structure. In the ‘‘tree code’’ developed by Appel [4], and Barnes and Hut
[6], as each particle interacts with 189 boxes in its ‘‘interaction list’’ through P terms of multipole expansions at
each level and there are Oðlog NÞ levels, the total amount of operations is approximately 189P 2N log N . The
tree code was later improved by Greengard and Rokhlin [20]. In their original FMM, local expansions (under
a different coordinate system) were introduced to accumulate information from the multipole expansions in
the interaction list (Fig. 1b)
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where Lm
n are local expansion coefficients.
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For the screened Coulombic interaction, a similar expansion can be written as follows:
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As the particles only interact with boxes and other particles at the finest level, and information at higher levels
is transferred using a combination of multipole and local expansions as explained in Fig. 2, the original FMM
is asymptotically optimal O(N). However, because the multipole to local translation requires prohibitive 189P 4

operations for each box, the huge prefactor makes the original FMM less competitive with the tree code and
other FFT based methods. In 1997, a new version of FMM was introduced by Greengard and Rokhlin [21] for
the Laplace equation. Compared with the original FMM, a plane wave expansion based diagonal translation
operator is introduced and the original 189P 4 operations were reduced to 40P 2 þ 2P 3.

The incorporation of fast FMM into BEM-based PB models has been successfully pursued by several
groups [7,10,8,49]. However, all past implementations have used an older scheme of the FMM algorithm.
As we mentioned above, the cost associated with those types of algorithms is approximately 189P 2N log N
(the tree code) or 189P 3N (in the original FMM scheme). Although it scales better than the direct computa-
tion, considerable speed up can only be achieved for systems of over 20,000 particles due to the large value of
the prefactor. Recent work by Greengard and Rokhlin, which introduces a plane wave expansion during the
repeated multipole to local transitions, significantly reduces the cost and breaks even with direct calculation
for a reasonable value of N (�1000). The new version of FMM has subsequently been extended to screened
Coulomb interactions (corresponding to the linearized PB kernel) in three dimensions [22]. Although mathe-
matically more complicated, the new version of FMM makes it practical to be combined with the boundary
element based solution of the linear PB equation. In our algorithm, we adapt the new version of FMM for the



Fig. 2. Schematic showing the hierarchical divided boxes for recording the neighbor boxes and interaction list in the new version FMM.
The neighbor boxes (up to 27 including itself in three dimensions) of the target box b are darkly shaded, while its interaction list (up to 189
boxes in three dimensions) is indicated in yellow. The remaining far-field boxes are indicated in light blue. Also shown are the source points
qi and evaluation point R (field). In BEM implementation, the source particles are located at the centers of the surface triangular elements.

B. Lu et al. / Journal of Computational Physics 226 (2007) 1348–1366 1355
screened Coulomb interactions. Preliminary numerical experiments show that the overall break even point of
the new version FMM becomes 600 with 6-digit accuracy and about 400 for 3-digit.

Before proceeding to describe how the new version of FMM is used in the context of the BEM solution of
the linearlized PB equation, we first introduce how the gradient of the local expansion coefficients can be cal-
culated in FMM. If we define Qj

n;m ¼ inðjrÞ � Y m
n ðh;/Þ (in the limiting case when j = 0, then
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n ðh;/Þ), then a very useful recursive relationship for the gradient of Qj
n;m can be expressed as linear

combinations of Qj
n;m of different order and degree:
rQj
n;m ¼

j
2nþ 1

½B�
ðnþ m� 1Þðnþ mÞQj

n�1;m�1

ðnþ mÞQj
n�1;m

Qj
n�1;mþ1

0
B@

1
CA � 1

s
�

ðn� mþ 1Þðn� mþ 2ÞQj
nþ1;m�1

�ðn� mþ 1ÞQj
nþ1;m

Qj
nþ1;mþ1

0
B@

1
CA � s

0
B@

1
CA;
ð28Þ
where s is the scaling factor to avoid under-over flow (s = 1, if jr > 1 and s ¼ jr, if jr 6 1). Note that the
above relationship is applicable for all 0 < m < n� 1, for m = 0,
rQj
n;0 ¼

j
2nþ 1

½B�
Qj

n�1;�1

nQj
n�1;0

Qj
n�1;1

0
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0
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1
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0
B@

1
CA; ð29Þ
for m ¼ n� 1,
rQj
n;m ¼

j
2nþ 1
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for m ¼ n,
rQj
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where,
½B� ¼ � 1

2

1 0 �1

i 0 i

0 �2 0

0
B@

1
CA: ð32Þ
Higher order derivatives can be easily obtained by recursive application of Eq. (28). For example, the second
derivatives can be obtained by inserting the first order derivatives into the right side of Eq. (28). The recursive
relationship for Qj

n;m is a very useful property for applying FMM to the BEM solution of PB equation, which
will become apparent in the following section.

2.4. FMM in the context of BEM

The solution of the fi and hi can be obtained by inverting the 2N � 2N matrix in Eq. (14). As mentioned
above, direct methods such as Gaussian elimination and LU decomposition are too expensive in terms of both
CPU time and memory. To this end, an iterative procedure will be used in the present algorithm. Another
important feature of these iterative methods is that no explicit matrix needs to be stored or calculated; only
the calculation of matrix–vector multiplication is required. The multiplication of a matrix (A, B, C, and D)
and a vector (f and h) is analogous to calculating electrostatic potentials for 2N locations induced by 2N point
charges. In the present FMM implementation, for each evaluation point p, the evaluation of the left-hand side
of matrix Eq. (14) can be divided into two parts: (1) contributions from all of the far-field elements of element
p (located outside the finest level box encompassing the evaluation point p) will be calculated using local
expansions; (2) contributions from all remaining near neighbor elements (inside the same childless box that
contains evaluation point p) must be evaluated directly (Fig. 2).

It is convenient to convert the normal derivatives of functions G and u at q into the spatial gradients of G

and u at R (Fig. 3) using the following equations:
oG
on
¼ �rRGðR; qÞ � n; o2G

on0 on
¼ �n0 � r2

RGðR; qÞ � n;

ou
on
¼ �rRuðR; qÞ � n; o2u

on0 on
¼ �n0 � r2

RuðR; qÞ � n;
ð33Þ
where n ¼ ðnx; ny ; nzÞ is the unit normal vector at point q, n0 ¼ ðn0x; n0y ; n0zÞ is the unit normal vector at point
R. Substituting Eq. (33) into Eq. (13) yields,
Apt ¼ ðGpt � uptÞDSt; ð34Þ

Bpt ¼ � 1

e
rRGpt � nþrRupt � n

� �
DSt; ð35Þ

Cpt ¼ rRGpt � n0 �
1

e
rRupt � n0

� �
DSt; ð36Þ

Dpt ¼
1

e
ð�n0 � r2

RGpt � nþ n0 � r2
Rupt � nÞDSt: ð37Þ
Fig. 3. Schematic showing the location of the evaluation point Rð~rp;~n0Þ (Rp) and a BE location qt.
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Given an initial set of ft and ht at any element locations, then for any evaluation point p, the far-field contri-
bution to the left-hand side of Eq. (14) can be written as local expansions that sum contributions from a col-
lection of far-field elements (denoted as t 2 fLg),
U1p ’
XP

n¼0

Xm¼n

m¼�n

� 1

e
frRQ0

n;mðRÞgfE0
n;mg � fQ0

n;mðRÞgfH 0
n;mg þ frRQj

n;mðRÞgfEj
n;mg þ fQj

n;mðRÞgfHj
n;mg

� �
;

ð38Þ

U2p ’
XP

n¼0

Xm¼n
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fr2
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n;mg

þ 1

e
fn0x; n0y ; n0zgfrRQj

n;mðRÞgfF j
n;mg þ

1

e
fn0x; n0y ; n0zgfr2

RQj
n;mðRÞgfEj

n;mgÞ: ð39Þ
The local expansion coefficients fE0
n;m;H

0
n;m; F

0
n;m;E

j
n;m;H

j
n;m; F

j
n;mg for all of the elements t 2 fLg, are
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X
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ftL0
n;mðqÞdSt; fF j
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1

4p

X
t2fLg

ftLj
n;mðqÞdSt;

ð40Þ
where nxftDSt, nyftDSt, nzftDSt, htDSt can be considered as groups of effective charges respectively. In Eqs. (38)
and (39), the operation between two curly braces could be scalar–scalar product, or vector–vector dot product,
or matrix–vector/vector–matrix multiplication, depending on the property of the quantities in the curly braces.
It is worth noting that, for both o2G

on0on and o2u
on0 on, the first derivative is with respect to R (evaluation points) and

the second is with respect to q (source points), so there is only a little computational overhead (<10%) com-
pared to the original non-derivative formulation.

At this point, we are ready to summarize the FMM algorithm in the context of BEM solution of the PB
equation, which proceeds as follows (Fig. 2):

1. Develop an octree structure encompassing all of the boundary elements by recursively dividing each box
into eight child boxes until any child box contains no more than s BEs.

2. Compute multipole expansion coefficients at the tree’s finest level; for each parent box, form a multipole
expansion by merging multipole expansions from its eight children. (Note: eight sets of multipole coeffi-
cients will be needed considering four sets of effective charges nxftDSt, nyftDSt, nzftDSt, htDSt for both
j = 0 and j 6¼ 0 cases.)

3. Start at the tree’s coarsest level, compute local expansion coefficients by converting the multipole expan-
sions at any well-separated boxes (interaction list) into a local expansion around the target center and
by directly adding contributions due to local near source points (neighbor boxes).

4. For each parent box, translate the local expansion to each of its children.
5. Go to step 3 until the finest level is reached. (Note: again eight sets of local coefficients will be needed con-

sidering four sets of effective charges nxftDSt, nyftDSt, nzftDSt, htDSt for both j = 0 and j 6¼ 0 cases.)
6. For each childless box, evaluate the potential at each target location from the local expansions, and com-

pute the remaining near neighbor interactions directly.

2.5. Krylov subspace methods and mesh generation

In our algorithm, a parallel iterative methods package for systems of linear equations PIM23 [14] is used.
Several iterative schemes are available in the package including the GMRES method, BiCGStab method, and
transpose-free quasi-minimal residual (TFQMR) algorithm. Preliminary numerical experiments show that the
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GMRES method converges faster than other methods, which agrees with existing analyses. Because the mem-
ory required by the GMRES method increases linearly with the iteration number k, and the number of mul-
tiplications scales like 1

2
k2N , for large k, the GMRES procedure becomes very expensive and requires excessive

memory storage. For these reasons, instead of a full orthogonalization procedure, GMRES can be restarted
every k0 steps where k0 < N is some fixed integer parameter. The restarted version is often denoted as GMRES
(k0). For other alternative methods as BiCGStab method and TFQMR algorithm, the storage required is inde-
pendent of iteration number k, and the number of multiplications grows only linearly as a function of k. Cur-
rently a detailed comparison of different Krylov subspace methods is being performed and results will be
reported in later papers.

There are normally three types of ‘‘surface’’ used to define the molecular boundary dividing the low dielec-
tric (interior) and high dielectric (exterior) regions: the van der Waals surface is the surface area of the volume
formed by placing van der Waals spheres at the center of each atom in a molecule. The solvent-accessible sur-
face [36] is formed by rolling a solvent, or a probe, sphere over the van der Waals surface. The trajectory of the
center of the solvent sphere defines the solvent-accessible surface. Whereas, the solvent-excluded surface is
defined as the trajectory of the boundary of the solvent sphere in contact with the van der Waals surface.
The solvent-excluded surface is also referred to as the molecular surface. In our BEM, to discretize the bound-
ary integral equations, a triangular mesh of molecular surface is generated using the software MSMS [39], and
elements of zero and extremely small area are removed by a mesh checking procedure in our algorithm. The
node density and probe radius are input parameters of MSMS to control the fineness of the output mesh; the
typical values are 1.0 Å2 and 1.5 Å, respectively. Mesh generation is a fast step and takes only a few seconds
for medium-sized molecules. A typical mesh of a molecule with 8362 atoms is shown in Fig. 4, which contains
32,975 vertices and 65,982 triangles and is generated within 3 s of cpu time.

2.6. System set up

For all calculations, the AMBER [12] atomic charges and radii were assigned for protein atoms. A probe
radius of 1.5 Å was used to define the dielectric interface. The relative dielectric constants were taken as 2.0
for solute and 80.0 for solvent. In the protein–DNA interaction calculation, the ion concentration was set
to 50 mM, which is equivalent to a Debye–Huckel screening length of 13.8 Å. The meshes were generated at
a density of 1.0 Å�2. A single mesh was generated if two molecular surfaces were separated by less than
3 Å, while for the further separations the system was treated as two separate domains with two sets of
meshes.
Fig. 4. A typical surface triangulated mesh of a protein (Acetylcholinsterase).
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3. Results

3.1. Computational performance

As a first numerical experiment, we compared the speed and memory usage of the FMM to the direct cal-
culation in one GMRES iteration step. The position and parameters of BEs were randomly generated but uni-
formly distributed on the surface of a sphere of radius 40 Å. As expected, the error of the FMM calculation is
bounded when the number of multipole expansion terms P is set. Similar to what is observed in the original
FMM implementation [22], our algorithm breaks even with the direct calculation at about N = 400 for 6-digit
precision (P = 9), and N = 600 for 6-digit precision (P = 16). As shown in Fig. 5a, in contrast to the quadratic
increase in direct calculation, the actual CPU time required by our fast algorithm grows approximately line-
arly with the number of BEs. On the other hand, Fig. 5b displays some non-linearity for the growth of mem-
ory usage, whereas in theory it should also follow a linear growth. This is because we have used a non-adaptive
FMM. In the non-adaptive FMM, as the number of levels increases, there is a cubic increase of number of
boxes (storing the local expansion coefficients for each box is the main source of memory usage), leading
to a slightly non-linear growth of memory usage.

In our calculation, the majority of computer memory is allocated to store the neighboring list and the cor-
responding near-field coefficients, the size of which mainly relies on the total number of BEs and the level for
Fig. 5. The CPU time (a) and memory usage (b) of our fast BEM-PB algorithm as compared to those from the direct calculation in one
GMRES iteration step.
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box subdivision. Depending on a tradeoff between memory and speed, at each iterative step these coefficients
can either be saved as in a memory-intensive mode or be discarded as in a memory-saving mode. In a non-
adaptive FMM case, the number of neighboring boxes of a box (therefore any BE located within this box)
is 27 (including itself). If we further assume that the maximum number of elements per box at the finest level
is s, then it is easy to see that the number of near-field elements for each BE can normally be up-bounded by a
fixed number 27s. Hence, the size of neighboring list is also up-bounded by 27sN; this and the fact that there
are at most 2N/s boxes in the tree structure lead to O(N) overall memory usage.

When using the FMM, it is important to keep a load balance between the number of BEs in the local list
(calculated directly) and the number of BEs in the far-field (calculated using local expansions). If the number
of local BEs is too large, then the advantage of using multipole expansions is not fully taken. Conversely, if the
number of local BEs is too small, then more boxes will be needed, which usually means more operations of
expansions. We assessed the performance of the FMM on a 10,000 BE system (again in a single GMRES iter-
ation step) using various levels and terms (P); results are presented in Table 1. The total timing T total is broken
into the T fmm for far-field calculation and T local for local direct calculation. For both 3- and 6-digit accuracy,
the optimal level is 4. Having more levels (more boxes, fewer local BEs) and fewer levels (fewer boxes, more
local BEs) both slow down the overall speed because of the unbalanced T fmm and T total. Generally, the optimal
level of box subdivision depends on number of terms P, so that the maximum number of BEs in the lowest
level box s is comparable to P

3
2.

To assess the performance of the FMM BEM algorithm in solving the PB equation, we next calculate the
Born solvation energy of a point charge +50 e located at the center of a spherical cavity with a radius of 50 Å.
The surface is discretized at various resolution levels by recursively subdividing an icosahedron. Table 2 sum-
marizes the timing results (on a Dell dual 2.0 GHz P4 desktop with 2 GB memory) and some related control
parameters using a FMM accelerated BEM (denoted by FMM BEM) and a direct BEM without invoking any
fast algorithms (denoted by direct BEM). Due to memory constraints, the PC can not handle higher levels of
subdivision on the sphere (more than 300 k BEs). As for the efficiency, we noticed that regardless of the sur-
face resolution, all the GMRES iteration steps are below 5, which numerically confirms that the derivative
BEM formulations are well-conditioned. The CPU time for the new version of FMM linearly increases with
the number of BEs, while it quadratically increases for the direct integration method. Note that whenever
switching to a higher level of box division, there will be a small jump of CPU time due to the increased boxes,
Table 1
Timing results for the FMM on a 10,000-node-system (in one GMRES iteration step) using various levels and terms (P)

P Levels T fmm (s) T local (s) T total (s)

9 3 0.7 10.6 11.3
9 4 1.2 2.4 3.6
9 5 5.7 0.4 6.1

16 3 2.3 10.6 12.9
16 4 4.9 2.4 7.3
16 5 26.9 0.4 27.3

Table 2
BEM performance on a spherical cavity case with different surface mesh sizesa

Number of elements T direct BEM ðsÞ T FMM BEM ðsÞ Level Iteration steps Esolvation ðerror%Þ Error (%) in

f h

320 0.13 0.18 2 5 �4227.5 (4.5) 6.6 5.6
1280 1.56 0.82 3 5 �4134.5 (2.2) 2.8 2.5
5120 19.67 3.39 3 5 �4088.6 (1.1) 1.4 1.1
20,480 247.20 15.86 4 5 �4066.5 (0.5) 0.7 0.6
81,920 3122.10 87.96 5 5 �4050.6 (0.3) 0.2 0.4

a Of radius 50 Å with a point charge +50 e located at the center. The exact Born solvation energy Esolvation of the cavity is �4046.0
(energy is in kcal/mol).
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which leads to some deviation from performance linearity for the FMM. For a system with 81,920 surface
elements, the O(N) new version FMM is approximately 40 times faster than the direct method.

The numerical error of our BEM algorithm is on the first order of the grid size of the mesh. In the spherical
case in Table 2, when the mesh is refined to a higher level, the number of BEs is quadrupled, and the size of
each element is reduced by half. The relative errors of the calculated energy, f, and h compared with the ana-
lytical results also show that the computational accuracies are nearly linearly improved upon the refinement of
mesh scale. More discussion on the accuracies of BEMs can be found in Ref. [31].

To further illustrate the performance of our fast BIE technique on protein electrostatic calculations, we
computed the electrostatic solvation energies of fasciculinII, a 68 residue protein, and compared the algorithm
performance with the multigrid finite difference algorithm, as implemented in the widely used software APBS
[5] (see Table 3). We want to mention that the two program codes employ very different algorithms and data
structures, hence an exact comparison between them would be difficult. Also, APBS is designed primarily for
massively parallel computing; it has an integrated mesh generation routine, while the current BEM only runs
on a single CPU, and needs a pre-generated mesh as an input. Two sets of meshes at different resolutions were
generated for BEM and APBS calculations, respectively. Similar convergence trends are observed for both
energy calculations. At low mesh resolution (with small number of nodes and faces), the BEM seems to require
more memory than APBS does. The reason is that we use the same level of 4 of box subdivision for all the
BEM calculations, which consumes a large portion of the total memory, and may not be optimal for small
systems. When system size increases, the memory usage shows a slower increase, as does the CPU time cost.
It should also be noted that APBS solves the PB equation twice to obtain the solvation energy, while BEM
only solves it once. However, if the potentials and forces at the ‘‘volume’’ grid points away from the surface
are needed, they are readily available in APBS solutions, while in BEM it is necessary to calculate again by
integrating the PB equation solutions on the boundary.

3.2. Electrostatics of the nicotinic acetylcholine receptor (nAChR)

nAChR is one of ligand-gated ion channels that mediate fast synaptic transmission between cells. The roles
of electrostatic interactions in governing the agonist binding, ion conduction and anesthetic action in nAChR
have been implicated in many previous studies. As a test of our PB solver, we calculated the electrostatic
potentials of the human a7 nAChR. The receptor structure including both the extra-cellular and intra-cellular
domains was built up by homology modeling based on the cryo-electron microscopy structure of Torpedo

nAChR (PDB code: 2BG9) [45]. The modeled structure contains 1880 residues, has a total length of about
Table 3
Comparison between BEMa and APBSb

Methods Mesh Memory (MB) CPU (s) Esolvation (kcal/mol) Iteration steps

a b a b

8894 F, 4449 V 224 54 22 35 �556.1 14
12044 F, 6024 V 289 59 26 53 �540.3 13

BEM 15046 F, 7525 V 350 63 32 75 �534.6 13
18046 F, 9025 V 411 67 36 98 �525.5 13
21430 F, 10717 V 481 72 44 129 �522.0 13

65� 65� 65 78 39 �552.1 –
97� 65� 97 150 64 �542.3 –

APBS 127� 97� 127 341 131 �531.0 –
161� 129� 161 742 258 �525.0 –
225� 161� 225 1784 599 �522.8 –

F denotes the number of faces, V the vertices; a and b denote the memory-intensive and memory-saving calculation modes, respectively.
a Using the same level = 4 for all FMM calculations in BEM.
b APBS using focusing procedure, and solving the PB equation two times in each solvation energy calculation. When a much finer mesh
ð321� 321� 321, which can not be handled in a 2 GB memory PC) is used to run APBS again, a solvation energy 521.1 kcal/mol is
obtained. This could be taken as a reference solvation energy.
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160 Å and a diameter of about 40 Å parallel to the membrane surface. The BEM calculation was performed
with 194,428 triangular elements and 97,119 vertices.

In Fig. 6, the molecular surface of nAChR is colored according to electrostatic potentials such that the most
negative region is in red while the most positive region is in blue. The interior of the channel vestibule formed
by the pentameric assembly of the ligand-binding domains shows very negative potentials. This would be
expected to increase the local concentration of permeant cations (i.e. Na+ and K+ ions), and is consistent with
earlier suggestions [11]. Moreover, deeper inside the channel, more negative potentials are observed, which
reach the minimum roughly in the middle of pore. The existence of an electrostatic potential gradient across
the channel pore may facilitate passage of ions through the channel. The surface potentials can be divided into
two regions: the membrane-spanning domain that is dominated by positive potentials, and the extra/intra-cel-
lular domains that are dominated by negative potentials. The strong negative potentials on the extra-cellular
surface are expected to impose electrostatic steering attraction to positive ligands (e.g. acetylcholine) and
cations.

We also performed the calculation in the zero ionic strength condition. The results turn out to be very dif-
ferent where the surface potentials are almost all negative (data not shown). The difference indicates that the
ionic strength has a great impact on the electrostatic character of nAChR.

3.3. Electrostatic interactions between Sso7d and DNA

We studied the electrostatic interactions between two molecules: Sso7d and DNA based on a crystal struc-
ture (PDB code: 1AZQ) [37]. Sso7d is a small chromosomal protein from the hyperthermophilic archaeabac-
teria Sulfolobus solfataricus. The protein has high thermal, acid and chemical stability. It binds DNA without
marked sequence preference. In the crystal structure, Sso7d has 66 residues in complex with a short double-
stranded DNA with 8 bp. Sso7d binds in the minor groove of DNA and causes sharp kink in DNA. The pro-
tein–DNA complexes are normally highly charged. Sso7d is positively charged (+6), whereas the complex is
negatively-charged (�8) overall due to the additional 14 negative charges carried by the DNA phosphate
Fig. 6. The surface potential map of nAChR from different views. The increasing potential from negative to positive value is represented
by changing the color from red to blue.
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groups. To investigate the role of electrostatics in the Sso7d–DNA association process, the interactions
between Sso7d and DNA at different separation distances are calculated. These structures are generated by
displacing DNA away from the binding site along the center-to-center direction in the Sso7d–DNA complex.

The BEM calculation is performed on a two-domain system if two molecules move away and two separate
meshes are generated or on a single domain system if two molecules are close enough to ‘merge’ and only a
single mesh generated. For intermolecular electrostatics, the present BEM method provides the full PB inter-
action energy that takes into account both the desolvation and mutual polarization contributions from the two
molecules. Fig. 7a shows the electrostatic potentials mapped on the molecular surfaces of Sso7d and DNA at a
separation of 10 Å. The potential surfaces exhibit good electrostatic complementarity at the binding interface.
Electrostatic attraction governs the intermolecular interaction at distances larger than �5 Å (Fig. 7b, black
line). Nevertheless, the electrostatic interaction becomes repulsive at close distances. A closer inspection of
the complex structure suggests that a significant component of the binding free energy is due to the non-elec-
trostatic interactions, made in large part by the interfacial hydrophobic residues [37]. The origin of the large
unfavorable electrostatic interaction at close separations can be attributed to the electrostatic desolvation,
an effect due to the unfavorable exclusion of the high dielectric solvent around one protein when the other
one approaches. As a comparison, we also calculate the screened Coulomb interactions by summing up all
the atomic pair contributions between Sso7d and DNA (see Fig. 7b, red line). In this treatment, it is found that
the interactions are all attractive across the whole separations. The values are close to the full BEM calculations
at long distances, but the desolvation effects are obviously missed at close distances.
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Fig. 7. Electrostatics of Sso7d-DNA. (a) The surface potential map of Sso7d and DNA at separation of 10 Å. (b) The electrostatic
interaction energies as functions of separation along the center-to-center unbinding direction. U BEM is the full electrostatic interaction
energy determined by our BEM, and UCoulomb is the sum of all the atomic pair screened Coulomb interactions between Sso7d and DNA.
The curves connect the calculation points (denoted by the diamond and star symbols) consecutively by fitting with cubic splines.
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The electrostatic interaction characteristics displayed in Fig. 7 are very similar to the acetylcholinesterase
and fasciculinII complex system as has been demonstrated previously [30], which also shows long-range attrac-
tion ( J 5 Å) and close-range repulsion. Another common observation of these two systems is that the elec-
trostatic interactions start abruptly increasing from around 5 Å. This is the distance where the water
molecules between the two molecules are squeezed out, and the two molecules begin to collapse into a compact
complex structure. At the same time, the generated molecular surface meshes of the two molecules also begin
to merge into a single mesh. This implies that the interfacial non-polar interaction, hydrophobic packing, and
possibly local conformational rearrangement upon binding take effects from around 5 Å of association and
become dominant binding forces in the final stage of complex formation.

4. Conclusions and discussion

In this paper, an algorithm with an optimal computational complexity is presented by introducing the new
version of FMM. This is combined with the well-conditioned BIE formula to solve the linearized PB electro-
statics for systems of arbitrary numbers of biomolecules. This algorithm enhances our computational capabil-
ity to treat large and complex biological systems. The method could possibly be further developed for
applications to dynamical simulations (Monte Carlo, Brownian dynamics, and all-atom molecular dynamics,
etc.) of proteins with full PB electrostatics. However, although the speed has been greatly improved, the
dynamical computation for biosystems using the current algorithm still exceed the presently available com-
puter capability. For a typical Brownian dynamics simulation with tens of millions of steps, the one-step
PB solution needs to be completed within no more than a few tenths of a second to meet the total wall-clock
time constraint. Based on this estimation, the present BEM solver is still about one order slower. Several tech-
niques can be pursued to further increase the efficiency of the present algorithm. Using an adaptive FMM
scheme can greatly decrease the memory usage because most ‘‘volume’’ boxes away from the boundary need
not be stored and counted. Curvilinear boundary element methods can reduce the number of boundary ele-
ments by a few to several folds while achieving the similar calculation accuracy. Improvement on mesh gen-
eration can also help in dynamical simulation when changing boundaries occur due to conformational
flexibility, because the surface meshes need to be regenerated on the fly. Finally, another way to increase
the computational speed is to implement an efficient parallelization of the code. Very good scalability of par-
allelization is anticipated, due to the nature of both the BEM and FMM algorithms.
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