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A parallel finite element simulator, ichannel, is developed for

ion transport through three-dimensional ion channel systems

that consist of protein and membrane. The coordinates of

heavy atoms of the protein are taken from the Protein Data

Bank and the membrane is represented as a slab. The simula-

tor contains two components: a parallel adaptive finite ele-

ment solver for a set of Poisson–Nernst–Planck (PNP)

equations that describe the electrodiffusion process of ion

transport, and a mesh generation tool chain for ion channel

systems, which is an essential component for the finite ele-

ment computations. The finite element method has advan-

tages in modeling irregular geometries and complex boundary

conditions. We have built a tool chain to get the surface and

volume mesh for ion channel systems, which consists of a set

of mesh generation tools. The adaptive finite element solver in

our simulator is implemented using the parallel adaptive finite

element package Parallel Hierarchical Grid (PHG) developed by

one of the authors, which provides the capability of doing

large scale parallel computations with high parallel efficiency

and the flexibility of choosing high order elements to achieve

high order accuracy. The simulator is applied to a real trans-

membrane protein, the gramicidin A (gA) channel protein, to

calculate the electrostatic potential, ion concentrations and I –

V curve, with which both primitive and transformed PNP equa-

tions are studied and their numerical performances are com-

pared. To further validate the method, we also apply the

simulator to two other ion channel systems, the voltage de-

pendent anion channel (VDAC) and a-Hemolysin (a-HL). The

simulation results agree well with Brownian dynamics (BD)

simulation results and experimental results. Moreover, because

ionic finite size effects can be included in PNP model now, we

also perform simulations using a size-modified PNP (SMPNP)

model on VDAC and a-HL. It is shown that the size effects in

SMPNP can effectively lead to reduced current in the channel,

and the results are closer to BD simulation results. VC 2013
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Introduction

Ion channels are pore-forming proteins that help establish and

control the small voltage gradient across the plasma mem-

brane of cells by allowing the flow of ions down their electro-

chemical gradient.[1] Ion channels regulate the flow of ions

across the membrane in all cells. They are integral membrane

proteins; or, more typically, an assembly of several proteins.

They are present on all membranes of cell (plasma membrane)

and intracellular organelles (nucleus, mitochondria, endoplas-

mic reticulum, and so on). Ion channels are essential to cell life

and control a wide variety of important physiological proc-

esses, ranging from nerve and muscle excitation, muscle con-

traction, action potential generation and resting, sensory

transduction, cell volume and blood pressure regulation, cell

proliferation, hormone secretion, fertilization, maintenance of

salt and water balance, learning and memory, to programmed

cell death.[2] There are over 300 types of ion channels in

a living cell.[3] They may be classified by gating or by

selectivity.[4–7] Voltage-gated ion channels open or close depend-

ing on the voltage gradient across the plasma membrane, while

ligand-gated ion channels open or close depending on binding

of ligands to the channel. Different channels are selective for dif-

ferent ions and the flows and resulting concentration changes of

different ions carry different biological signals.
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Over the past decade, methodological developments in nu-

clear magnetic resonance (NMR), X-ray crystallography, and

electron spectroscopy have led to significant progress in

determining structures of integral membrane proteins that

form ion channels.[8–10] This accumulation of high-resolution

structural information has enabled better understanding of

channel conductance, gating, and selectivity. Various theoreti-

cal and computational approaches, from fundamental to

phenomenological, also help understand the biological mech-

anism of ion channels. The most commonly used theoretical

techniques in the field are stochastic models, ab initio molec-

ular dynamics (MD),[11] classical MD, and continuum descrip-

tions. Among these techniques, ab initio MD has played a

crucial role in revealing the complex mechanism of molecular

systems, such as chemical reactions. Due to its detailed

description of electronic structure and the extremely

demanding nature of coupling electronic structure to molec-

ular motion, ab initio MD is limited to small systems at pres-

ent. Classical MD utilizes empirical interaction potentials or

force fields calibrated by macroscopic data to describe mo-

lecular motions and is able to handle an entire ion channel,

including ions, counterions, solvent, lipids, and proteins.

Unfortunately, there are two issues for commonly used MD

methods: one issue is to develop appropriate force fields for

the ionic mixtures and concentrated solutions in and near

channels; another issue is a scale problem. It is quite difficult

to run up to the time scale of ion permeation across most

real channel membranes and to determine ion conductance.

As a result, approaches that reduce the dimensionality of the

ion channel systems play important roles in ion channel dy-

namics and transport. One of these approaches is Monte

Carlo (MC) methods[12] which rely on repeated random sam-

pling to compute the probability of movement of a selected

set of particles. MC approaches simulate the ion permeation

across the membrane over long time-scales without having

to treat all the solvent molecules explicitly. Another class of

important reduced models is Brownian dynamics (BD),[13–15]

which is based on the stochastic equation of motions of ion

particles driven by some effective potential functions. Both

MC and BD approaches provide an explicit representation of

ions while treating solvent and lipids as featureless dielec-

trics. These reduced models are simpler and computationally

less expensive than all-atom MD and have been some of the

main workhorses in ion channel transport modeling and pre-

diction for many years. There are many successful applica-

tions of BD in ion channel systems. Several biological pores

such as OmpF,[16,17] potassium channels,[18] a-HL,[19] and the

voltage dependent anion channel (VDAC)[20] have been inves-

tigated utilizing BD simulations.

A further simplification in the ion representation, that is, the

so called mean-field approximation of ionic solution, leads to a

fully continuous model, Poisson–Nernst–Planck (PNP) equa-

tions,[21,22] in which ions are not treated as microscopic dis-

crete entities but as continuous charge densities. The PNP

system is a combination of Nernst–Planck (NP) equations intro-

duced by Nernst and Planck[23,24] and Poisson equation (PE).

PNP can be derived by explicit averaging of correlated

Brownian trajectories.[25] In the context of ion flow through a

membrane channel, the flow of ions is driven by their concen-

tration gradients and by the electric field modeled together by

the NP equations, and the electric field is in turn determined

by the concentrations through PE. PNP theory has previously

been applied to the study of ion transport in electrochemical

liquid junction systems[26] and electron transport in semicon-

ductor devices,[27] as well as ion permeation through biological

membrane channels.[28,29] It is well known that the PNP theory

neglects discrete particle effect. The size-modified PNP

(SMPNP) model was applied to simulate biomolecular diffu-

sion-reaction processes.[30–32] In this article, we tested a

SMPNP model to simulate ion transport through 3D ion chan-

nel system.

Mathematical analyses of the PNP equations have been

developed in the last few decades, but most are limited to

1D cases.[33–36] The reduction of the dimensionality greatly

simplifies the mathematical analysis of the electrodiffusion

systems, and the results provide useful guidelines for the

analysis of the corresponding fully 3D systems in some limit-

ing cases. As a trade-off, they are generally unable to repro-

duce the diffusion and reaction processes that critically

depend on the geometry of the system and complicated

boundary conditions. In contrast to the limited amount of

work on the mathematical analysis of the PNP equations for

biophysical applications, a number of numerical algorithms,

including finite difference,[37,38] finite element,[39–41], spectral

element,[42] and finite volume methods,[43] have been utilized

in the past two decades for solving the PNP equations. A lat-

tice relaxation algorithm in conjugation with the finite differ-

ence method was developed by Kurnikova and coauthors to

solve the PNP equations for ion transport with the three-

dimensional (3D) realistic geometry of the gA dimer. The

accuracy of their method was calibrated with simple parallel

plate and cylindrical pore geometries but convergence was

not easy or automatic. Hollerbach et al.[42] applied a highly

accurate and quite convergent spectral element method for

solving the 3D PNP equations with various sensitivity analysis

to determine the impact of the PNP model parameters on I–V

curves. Mathur and Murthy[43] developed a multigrid

algorithm based on an unstructured cell-centered finite vol-

ume method for solving the PNP equations. However, it is a

challenging numerical task to solve PNP and SMPNP

equations for simulating ion transport through large ion

channels.

The object of this article is to develop a parallel finite ele-

ment simulator for ion transport through ion channel systems.

To our best knowledge, no finite element algorithms for solv-

ing the 3D PNP equations for ion channel systems have been

reported in the literature. The finite element method (FEM)

has advantages in modeling irregular geometries with complex

boundary conditions. In our finite element approach, the ion

channel surface (boundary) is identified and discretized; this

discretization is used as the boundary of the volume mesh

generation. Such meshes are said to be boundary or surface

“conforming” because they are aligned with the “real” ion

channel surface, whereas in the finite difference method, the
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mesh is nonconforming because it is allowed to “cut through”

the ion channel surface. The advantage of adopting conform-

ing mesh in our study is that it is convenient to use and=or

accurately treat proper specification of boundary conditions

on the surface for the modeling of reaction-diffusion proc-

esses. However, due to the complexity of ion channel struc-

tures, the surface meshes are often of poor quality, and even

have defects. This makes it difficult to get high-quality tetrahe-

dral meshes. In addition, the embedding of a membrane slab

representation in a tetrahedral mesh is also a tricky task. We

have built a tool chain to generate high-quality meshes for ion

channel systems by combining a few mesh generation tools.

The tool chain has essentially four components: surface mesh-

ing,[44,45] quality improving, volume mesh generation,[45] and

membrane mesh construction. A parallel adaptive finite ele-

ment method (AFEM) is implemented and high parallel effi-

ciency is shown in our numerical studies.

This article is organized as follows. The method for ion

transport simulations is introduced in the section entitled

Methods. First, we briefly review the 3D ion channel model

and the PNP equations system. Then, we present our finite ele-

ment algorithms for solving a set of PNP equations in which

an iterative scheme is used for solving the coupled nonlinear

discrete equations. Finally, we introduce our tool chain for get-

ting the surface and volume meshes for ion channel systems.

In the section Numerical Test, first, we present some numerical

results and assess the performance of our ion channel simula-

tor in ion transport simulations. The electrostatic potential, ion

concentrations, ion conduction profiles, and I2V curves are

computed with certain range of ion concentrations and

applied voltages. Moreover, the simulator is applied to VDAC

and a-HL ion channels, and the simulation results are com-

pared with BD simulation results. Finally, we perform a simula-

tion with our SMPNP model on the above two ion channels to

show improved results by including the finite size effects in

the model. The article ends with a summary section.

Methods

Mathematical models of ion channel system

The model system consists of a protein, a membrane sur-

rounding it, and a simulation box. The coordinates of heavy

atoms of the protein were taken from the Protein Data Bank.

Partial charges for the protein atoms were taken from the

AMBER force field. Here, the membrane is represented as a

slab and no charge is assigned to the membrane in the pres-

ent work.

The PNP model combines the Nernst–Planck theory describ-

ing electrodiffusion of ions in the transmembrane channel

with the Poisson theory describing the electrostatic potential

whose gradient serves as a driving force of the ion motion.

Consider an open domain X 2 R3, �X5�Xm [ �Xs, Xm \ Xs51
where Xm represents the protein and membrane region and

Xs represents the solvent reservoirs and the channel region.

We use C to denote the interface between the two regions,

such that �C5�Xm \ �Xs, and Cm to denote the membrane

boundary on the simulation box. We obtain the PNP equations

by coupling the Nernst–Planck equation

oci

ot
52r�Ji; x 2 Xs; 1 � i � N; (1)

Ji52Diðrci1�qicir�Þ; (2)

and the electrostatic PE with internal interface C:

2r�ð2 r�Þ5k
X

i

qici1qf ; x 2 X; (3)

�m5�s; x 2 C;

2m
o�m

on
52s

o�s

on
; x 2 C;

where ciðx; tÞ is the concentration of the ith ion species carry-

ing charge qi. Di is the spatial-dependent diffusion coefficient,

and u is the electrostatic potential. N is the number of diffu-

sive ion species in solution that are considered in the system.

The constant b51=ðkBTÞ is the inverse Boltzmann energy

where kB is the Boltzmann constant and T is the absolute tem-

perature. We assume that the dielectric permittivity is piece-

wise constant with �5�m�0 in Xm and �5�s�0 in Xs, where e0 is

the dielectric constant of vacuum. Typical values of em and es

are 2 and 80, respectively. The permanent (fixed) charge

distribution

qf ðxÞ5
X

j

qjdðx2xjÞ

is an ensemble of singular atomic charges qj located at xj

inside biomolecules. The characteristic function k is equal to 1

in Xs and 0 in Xm, implying that mobile ions are present only

in the solvent region.

Regularization and transformation of PNP system

In this article, we only consider the steady-state PNP equa-

tions. An effective strategy for solving eq. (3) is to decompose

the solution of the PE into a singular component, a harmonic

component and a regular component,[39,46] that is,

/5/s1/h1/r. The singular component us is the restriction

on Cm of the solution of

22mD�sðxÞ5qfðxÞ; x 2 R3; (4)

uhand the harmonic component /h is the solution of a Lap-

lace equation:

2D�hðxÞ50; x 2 Xm; (5)

�hðxÞ52�sðxÞ; x 2 C [ Cm:

It is seen that /sðxÞ can be given analytically by the sum of

Coulomb potentials. This /sðxÞ is then used to compute the

boundary condition for /hðxÞ, the latter is to be solved

numerically from eq. (5), for which we use FEMs in this study.
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Subtracting these two components from eq. (3), we get the

governing equation for the regular component /rðxÞ:

2r�ð2 r�rðx; tÞÞ5k
X

i

qiciðx; tÞ; x 2 X; (6)

and the interface conditions

�r
s2�

r
m50;

2s
o�r

s

on
22m

o�r
m

on
52m

oð�s1�hÞ
on

; x 2 C:

It is worth noting that there is no decomposition of the

potential in the solvent region, thus /ðxÞ5/rðxÞ in Xs. For the

steady-state of the system, the final regularized PNP equations

consist of the regularized Poisson eq. (6) and the steady-state

Nernst–Planck equations

r�DiðxÞðrciðxÞ1�qiciðxÞr�rðxÞÞ50; x 2 Xs; (7)

Physically there is no ion penetration through the interface

C, that is, a zero macroscopic normal flux

Diðrci1�qicir�rÞ�n50; on C: (8)

To get a symmetric weak form for Nernst–Planck equations,

the Slotboom variables, which are widely used in the study of

semiconductor devices, can be employed. It is seen that by

introducing the Slotboom variables

~ci 5cie
qi��

r

; D̂i 5Die
2qi��

r

; (9)

the PNP equations can be transformed as

2r�ð2 r�rÞ5k
X

i

qi ~ci e2qi��
r

; (10)

r�ðD̂ir~ci Þ50

We will refer to numerical algorithms based on the trans-

formed equations as the transformation method, while those

based on the original equations as the primitive method. In

our numerical computations, both primitive and transforma-

tion methods were used for solving the PNP equations. Nu-

merical results indicate that the transformation method

converges at a much higher rate than the primitive method.

Finite element discretization

The PNP equations are solved using the FEM and the algo-

rithms are implemented with the parallel adaptive finite ele-

ment package PHG. We now describe the numerical

algorithms employed for the static PNP equations. For the

boundary condition, fixed electric potential and ion concentra-

tions are set on the upper and lower faces of the computa-

tional box. The channel is normal to these two faces (along

the z-axis). On the side faces, the potential is a linear function

of the vertical coordinate. The concentrations of the positively

and negatively charged ions are equal to each other on both

top and bottom faces to ensure charge neutrality in the reser-

voirs. Moreover, there is a no-flux boundary along the interface

C. Let u5/r, then consider the transformed PE

2r�ð2 ruÞ5k
X

i

qi ~ci e2qi�u; (11)

u5’; on oX; (12)

½u�50; 2 ou

on

� �
52m

oð�s1�hÞ
on

; on C: (13)

Let H1
bðXÞ5fu 2 H1ðXÞju5u on @Xg, here u denotes

the boundary function, and H1ðXÞ is a Sobolev space of

weakly differentiable functions. First, multiply both sides of eq.

(11) by v that is a vector in H1
0ðXÞ and integrate them on the

global domain X:

ð
X
2r�ð2ruÞvdX5k

ð
X

X
i

qi ~ci e2qi�uvdX; 8v 2 H1
0ðXÞ; (14)

where H1
0ðXÞ is a Sobolev space of weakly differentiable func-

tions which vanish on the boundary of the domain X. Then,

integrating by parts, the weak form of eq. (11) is obtained as

follows:

Find u 2 H1
bðXÞ which satisfies:

ð
X
ð2 rurvÞdX5

ð
Xs

X
i

ðqi ~ci e2qi�uÞvdXs

22m

ð
C

oð�s1�hÞ
on

vdS; 8v 2 H1
0ðXÞ (15)

Compared with the original PE, these transformations lead

to a nonlinear part of the potential field and a Newton or

inexact-Newton method is used here to solve eq. (15). Denote

by fU1; � � � ;UMg the finite element basis, where M denotes

the number of bases (or degrees of freedom, DOF). Let un be

the finite element approximation of u at the nth Newton itera-

tion, which can be expressed by its expansion in the finite ele-

ment space with respect to the given bases and regarded as a

vector in RM, that is, un5
XM

k51

un
kU

i , where un
k is the kth degree

of freedom (DOF) in the nth Newton iteration. We define a

nonlinear function FðunÞ (RM ! RM) whose jth component is

given by:

FjðunÞ5
ð

X
ð2 runrUjÞdX2

ð
Xs

X
i

ðqi ~ci e2qi�unÞUjdXs

12m

ð
C

oð�s1�hÞ
on

UjdS; j51 � � �M: (16)

Then the Newton iteration of the PE reads

F0ðunÞðun2un11Þ5FðunÞ;

where F0ðunÞ is the (M 3 M) Jacobian matrix whose j,k-th

element is given by:
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Fj;k0ðunÞ5
ð

X
ð2 rUkrUjÞdX1

ð
Xs

X
i

ðq2
i �~ci e2qi�unÞUkUjdXs:

(17)

In each Newton iteration, we need to solve a linear system

of equations of the form

Au5f; (18)

where the stiffness matrix A5½Aj;k�M3M5½Fj;k0 ðunÞ�M3M, the vec-

tor f5½fj�M5½FjðunÞ�M, and the solution vector u5½uk
n2uk

n11�M.

We start from an initial guess u0, which should satisfy the

boundary condition u05u on X, and carry out a certain num-

ber of Newton iterations until a given criterion for conver-

gence is met, to obtain the final solution un.

The NP equations are linear equations, whose weak form is

obtained as follows:

For each i, 1 � i � N, find ~ci 2 H1
aðXsÞ which satisfies

ð
Xs

ðDie
2qi�ur~cirvÞdXs50; 8v 2 H1

c ðXsÞ; (19)

where H1
aðXÞ5f~ci 2 H1ðXÞj~ci 5gi on Csg, here gi denotes

the dirichlet boundary function, and H1
c ðXÞ5

fv 2 H1ðXÞjv50 on Csg.
For a discrete solution to eq. (19), we denote the discretized

approximation of ~ci by ~ci
h. We employ a finite element space

Vh5spanfw1; � � � ;wLg, with L denoting the number of DOF in

the finite element space, and denoting a subspace of H1
aðXsÞ

by ~V
h
5spanfw1; � � � ;wL;wL11; � � � ;wL1Tg, with wL11; � � � ;wL1T

referring to the finite element bases on the vertex

AL11; � � � ;AL1T of the dirichlet boundary.

Denoting the approximate solution ~ci
h by its expansion with

respect to the finite element bases as follow:

~ci
h
5
XL

j51

~ci
jwj1

XT

s51

hiðAL1sÞwL1s 2 ~V
h
; (20)

where ~ci
j is the jth DOF of the ion concentration, and the dis-

crete weak form is given by

ð
Xs

ðDie
2qi�ur~ci

hrwjÞdXs50; 8wj 2 fw1; � � � ;wLg (21)

To formulate eq. (21) into a matrix equation, we write its left

hand side as

ð
Xs

ðDie
2qi�ur~ci

hrwjÞdXs5
XL

k

~ci
k

ð
Xs

ðDie
2qi�urwjrwk

� �
dXs

(22)

1
XT

s

hiðAL1sÞ
ð

Xs

ðDie
2qi�urwjrws1L

� �
dXs: (23)

Then we get a linear system of equations in the following form

Bx5y; (24)

where the stiffness matrix B5½Bj;k�L3L5ð
Xs

ðDie
2qiburwjrwkÞdXs

� �
L3L

, the vector

y5½yj�L5 2
XT

s

giðAL1sÞ
ð

Xs

ðDie
2qiburwjrws1L

� �
dXs

" #
L

and the

solution vectors x5½~ci
k�L.

Iteration procedure between the coupled NP equations

and PE

For the steady-state case, in order to make the iterations

between the diffusion and electrostatic equations to converge,

it was found necessary to employ under-relaxation, especially

when macromolecules exist. In other words, variables are

updated with a linear combination of old values and calcu-

lated new values, rather than just using the new values. The

under-relaxation scheme[41,47] is described by

unew5auold1ð12aÞunew

~ci
new5a~ci

old1ð12aÞ~ci
new; i51; . . . ;N

where the relaxation parameter 0 < a < 1 is a predefined con-

stant. We have noted that without under-relaxation, the itera-

tions may not converge.

Mesh generation for ion channel system

Our finite element algorithms use tetrahedral meshes. Mesh

generation is a prerequisite for FEMs. However, it has been a

long-existing and challenging task for meshing biomolecular

systems due to their highly irregular shapes, which, historically,

was actually a great impediment to using the FEM in contin-

uum molecular modeling. A reasonable strategy to generate

biomolecular meshes follows two steps: first generate a molec-

ular surface conforming mesh, then generate a volume mesh

based on the surface mesh.[41] Among the two steps, surface

meshing is the more difficult one. Recently, we have devel-

oped a tool called TMSmesh that is potentially capable of gen-

erating manifold surface meshes for arbitrarily large molecular

systems,[44,45] which, we hope, will facilitate the finite element

simulations of biomolecular systems.

In this work, we have built a tool chain for high-quality bio-

molecule volume mesh generation by using TMSmesh and a

few other meshing tools. The tool chain has essentially four

components: surface meshing, quality improving, volume

mesh generation, and membrane mesh construction. First, a

triangulation of the Gaussian surface is generated using our

recently developed program TMSmesh,[44] which is a robust

tool for meshing molecular Gaussian surfaces and has been

shown to be capable of handling molecules consisting of

more than one million atoms. It reads a PQR file as an input

file and exports a molecular surface mesh in OFF file format.

The surface meshes generated by the old version of TMSmesh

for large molecules sometimes have geometric defects such as

containing intersecting, overlapping, and other nonmanifold

surface triangles. Recently, we have improved TMSmesh by
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developing a method that avoids intersections, ensuring mesh

manifoldness and preserving the topology of the molecular

Gaussian surface.[45] The surface meshes produced by the new

version of TMSmesh are manifold meshes without intersec-

tions, but their quality still needs to be improved. Here, a

manifold mesh means that the surface formed by all the ele-

ments of the mesh is a manifold. Therefore, in the second

step, we first used the program ISO2Mesh[48] to simplify the

surface mesh by reducing the number of faces or adding

some nodes while preserving its manifoldness, volume, and

boundary shape. ISO2mesh is a free matlab=octave-based

mesh generation and processing toolbox, which can read the

OFF file format exported from TMSmesh and export the fil-

tered molecular surface in OFF file format. Subsequently, if

self-intersecting faces exist, then the program TransforMesh,[49]

which can robustly handle topology changes and remove self-

intersections, is used to find and remove self-intersecting

faces. Finally, in the third step, a tetrahedral volume mesh is

generated using the program TetGen,[50] which consists of

four-node tetrahedral elements and is ready for 3D finite ele-

ment simulations. TetGen provides a set of switches to control

its behavior. We generally use the “-pq” switch to get a high-

quality tetrahedral mesh, where the “-p” switch reads a piece-

wise linear complex (PLC) stored in a “.poly” file and generates

a constrained Delaunay tetrahedralization (CDT) of the PLC,

and the “-q” switch performs quality mesh generation by using

the Shewchuk’s Delaunay refinement algorithm.[51]

Additionally, the membrane meshing also contains tricky

tasks, such as how to find the set of tetrahedra belonging to

the membrane region and get the membrane boundary. The

membrane mesh is obtained by three steps. In the first step,

two planes z 5 z1 and z 5 z2 are used to mark the position of

the membrane region, and tetrahedra with all their four verti-

ces located between z 5 z1 and z 5 z2 are marked as belong-

ing to the membrane region. In the second step, tetrahedra

which intersect with the planes z 5 z1 or z 5 z2 are first

marked as the “interface tetrahedra” between the membrane

region and the bulk region, then the faces of these “interface

tetrahedra” are picked up and connected together to form the

membrane boundary. Finally in the third step, the membrane

boundary is submitted to a careful topology check to ensure

its continuity, closedness, etc.

In order to facilitate the simulation of ion transport through

ion channel systems, in the generated tetrahedral mesh, tetra-

hedra belonging to different regions are properly marked with

different numbers. The triangles on the faces of the simulation

box and the membrane boundary are also marked with differ-

ent numbers. The final mesh is exported to a file in the

Medit[52] file format which can be read by PHG.

Adaptive finite element method

The AFEM was originally proposed by Ivo Babuska et al.[53] It

provides an efficient and systematic way of drastically improv-

ing the accuracy of finite element simulations by repeatedly

adjusting the finite element mesh using a mesh adaptation

strategy and an a posteriori error estimate, which would

eventually lead to a quasi-optimal mesh for the given prob-

lem. For steady-state problems, the AFEM consists of starting

from an initial mesh and performing the following loop to get

a final adaptive mesh and a solution on it:

� Step 1: compute an approximate solution on the current

mesh.

� Step 2: compute an error indicator using the a posteriori

error estimate on each element. If the error estimate

meets the convergence criterion then stop.

� Step 3: mark (select) the elements to be refined (adjust-

ed) using the error indicators with a prescribed marking

strategy.

� Step 4: refine the marked elements, plus possibly a few

more to maintain mesh conformity, and goto Step 1.

In AFEM literature the above loop is often called the Solve–

Estimate–Mark–Refine loop, which represents the standard

mesh adaptation procedure in AFEM. There are traditionally

three ways to refine an element: (a) divide the element into

smaller elements (h-refinement); (b) increase the polynomial

order of finite element bases in the element (p-refinement); (c)

a combination of (a) and=or (b), that is, perform one of or

both h- and p-refinement on the element (hp-refinement). The

a posteriori error estimate also plays an important role in

AFEM. It should give an accurate estimation of the error of the

approximate solution on each element and can be computed

using known data such as the numerical solution and other

given data.

For the PNP system, we use the following a posteriori error

estimate: [54]

hs5ðh2
s k
X

i

qici1qf 1r�ðer�hÞ k2
L2ðsÞ

1
1

2

X
f2FðsÞ

hf k ðer�hÞ�nf½ � k2
L2ðf ÞÞ

1=2 ð25Þ

where s represents an arbitrary element in the mesh and gs is

the error indicator on s, F(s) denotes the set of (nonboundary)

faces of s, hs denotes the diameter of s, and hf and nf denote

the diameter and normal vector of the face f, respectively. This

error estimate is similar to a well-known a posteriori error esti-

mate for the Poisson–Boltzmann equation introduced by Holst

et al.[55] if we consider steady-state diffusion process.

Our adaptive finite element solver for the PNP system is

implemented using the toolbox PHG.[56] PHG is a parallel tool-

box for writing adaptive finite element programs. It was devel-

oped at the State Key Laboratory of Scientific and Engineering

Computing of Chinese Academy of Sciences and its key fea-

tures include supporting bisection-based conforming parallel

adaptive tetrahedral meshes and the ability to scale to thou-

sands of Message Passing Interface (MPI) processes (or tens of

thousands of CPU cores through MPI1OpenMP two level par-

allelism). For parallel processing, PHG partitions a mesh into

submeshes, which are then distributed onto MPI processes.

PHG supports fully parallel local mesh refinement and coarsen-

ing based on a tetrahedron bisection algorithm. It has an
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object-oriented design which hides parallelization details,

allowing the users to concentrate on the modeling and nu-

merical algorithms. Although PHG provides full hp-refinement

support, only h-refinement is used in this work.

Numerical Test

In this section, we apply our parallel finite element simulator,

ichannel, to gA ion channel to compute the electrostatic

potential, ion concentrations, and I2V curve under various

combinations of inputs. To further validate the effectiveness of

our simulator, the simulator is also applied to other two ion

channels, VDAC and a-HL, and the simulation results are com-

pared with BD simulation results and experimental data. The

convergence rate of the solver and its parallel efficiency are

also investigated. In the computations, only MPI parallelism is

used and the parallel efficiency for p processes is defined as

Ep5
p0Tp0

pTp
; (26)

where Tx denotes the execution time (wall-clock time) when

using x processes in the computation, and p0, 1 � p0 � p,

denotes the smallest number of processes used in the compu-

tations (due to memory requirement p0 may be greater than 1).

The computations were carried out on the cluster LSSC-III of

the State Key Laboratory of Scientific and Engineering Com-

puting of China, which consists of compute nodes with dual

Intel Xeon X5550 quad-core CPUs, interconnected via DDR

InfiniBand network.

Numerical test with gA ion channel

Gramicidin A system setup. One of the most widely studied

ion channels is gA channel (PDB code: 1MAG) which forms

aqueous pores in lipid bilayers that

selectively pass monovalent cati-

ons.[57,58] GA is a small 15-amino-

acid b helical peptide with a narrow

pore. As it is relatively small and

well characterized experimentally, a

wide variety of theoretical models

have been applied to the gA chan-

nel. In the present work, we utilize

the PNP equations to calculate the

current as a function of voltage

applied across the channel. The

whole domain of the gA channel

consists of the membrane protein

region, bulk region, and the channel

region. The layout of the gA channel

on the grid is shown in Figure 1.

The partial charges and atomic radii

for each atom in the protein are

obtained by using the PDB2PQR

software.[59] The gA channel pore

region is along the z direction. The

box size is 30 Å 330 Å 345 Å .

The membrane layer is represented as a slab.

The triangular surface mesh and tetrahedral volume mesh

are generated using the methods mentioned above. The mo-

lecular surface mesh of the gA channel protein is generated

by the TMSmesh program and the mesh quality is improved

through topology check and smoothing. Then the volume

mesh is generated using TetGen. Finally, the membrane region

is extracted and the involved tetrahedra and boundary faces

are properly marked, which end the mesh construction for the

whole ion channel systems. Figure 2 shows an example of the

unstructured tetrahedral volume mesh and triangular surface

mesh of the gA ion channel. The mesh over the whole domain

has a total of 22,753 vertices and 142,954 tetrahedra.

In the following computations, the membrane and protein

regions (red area in Fig. 1) are described by low dielectric con-

stant �m52. The high dielectric constant �s580 is assigned to the

aqueous region, that is, the volume outside of the protein-mem-

brane region (blue region in Fig. 1). The diffusion coefficients for

cation and anion, for example, K1 and Cl2, in the bulk region are

set to their experimental values: DCl50:203 Å
2
=ps,

DK 50:196 Å
2
=ps. While there is no experimental measurement

of appropriate values for the diffusion coefficients inside the

channel, it is known that the diffusion coefficients in the bulk

region and the channel pore region should be different, particu-

larly for narrow pores.[60] GA is a narrow ion channel with a diam-

eter of about 4 Å. Here, we present a case where the diffusion

coefficients of ions continuously change inside the channel. The

diffusion coefficient function is given as follows: [61]

D rð Þ5

Dbulk; r 2 bulk region;

Dchan1ðDchan2DbulkÞf ðrÞ; r 2 buffering region;

Dchan; r 2 channel region;

8>><
>>: (27)

Figure 1. GA dimer (left column). A 2D cut through the center of the simulation box along the z axis

illustrates the mesh representation of the protein and the membrane. The membrane and the protein

region are shown in red, solvent reservoirs and the channel region are shown in blue (right column).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com]
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where the function f(r) is given by

f ðrÞ5f ðzÞ5n
z2zchan

zbulk2zchan

� �n11

2ðn11Þ z2zchan

zbulk2zchan

� �n

; (28)

where n is an integer and we set n 5 9 in our computations.

zchan is the boundary value of channel region on z axis and

zbulk is the boundary value of bulk region on z axis. For the

bottom boundary, zchan 5 11 and zbulk 5 9. For the top

boundary, zchan 5 32 and zbulk 5 34. This profile for the

diffusion coefficients ensures that D(r) is differentiable in the

Nernst–Planck equation.

For the boundary condition, the voltage applied to the sys-

tem, Vapplied, is given by the potential difference along the z

direction. On the box side boundary faces, the potential is set

by interpolating linearly between top and bottom potential

values. Ion concentrations on the top and bottom side boun-

daries are set to their bulk values. Additionally, there is a no-

flux boundary surrounding the peptide and membrane that

prevents ions from penetrating through the region occupied

Figure 2. Triangular boundary mesh conforming to the gA ion channel surface: a) top view. b) lateral view. c) Boundary surface mesh of ion channel with

the membrane which is represented as a slab. d) A view of cross section of the whole tetrahedral volume mesh. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com]
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by the peptides and lipids. Throughout the remainder of this

manuscript, the z-direction will refer to the direction along the

axis of the channel. Letting Lx, Ly, and Lz represent the length

of the computational domain, we can summarize the above

boundary conditions as:

�ðx; y; z5LzÞ50;�ðx; y; z50Þ5Vapplied; (29)

�ðx50; y; zÞ5�ðx5Lx ; y; zÞ5ð12z=LzÞ�Vapplied; (30)

�ðx; y50; zÞ5�ðx; y5Ly ; zÞ5ð12z=LzÞ�Vapplied; (31)

ciðx; y; z50Þ5ciðx; y; z5LzÞ5ci;bulk; (32)

ciðx50; y; z 2 bulk regionÞ5ciðx5Lx; y; z
2 bulk regionÞ5ci;bulk; (33)

ciðx; y50; z
2 bulk regionÞ5ciðx; y5Ly ; z
2 bulk regionÞ5ci;bulk;

(34)

Ji�n50 on C: (35)

Comparison with experimental

data. We solve the coupled eqs.

(9) and (10) to obtain the

steady-state ion concentrations

and electrostatic potential. For a

given boundary condition (Vap-

plied 5 100 mV and ci, bulk 5 1.0

M), a cross section view of the

potential and ion concentration

of the whole domain region are

shown in Figure 3. It can be

seen that the concentration of

K1 is higher than that of Cl2 in

the pore. To obtain a rough idea

of the difference between the

Poisson–Boltzmann (PB) electrical

potential (equilibrium state) and

the potential resulted from PNP

calculation (nonequilibrium

state) for the same channel sys-

tem, Figure 4 shows a compari-

son between these two potential

profiles.

The electrical current across

the pore can be calculated as:

Iz52
X

i

qi

ð
S

Di
oci

oz
1

qi

kBT
ci

o�

oz

� �
dxdy

(36)

where S is a cut plane at any

cross section inside the pore.

Equation (36) can be applied at

any z-position along the pore

axis, and shows only minor dif-

ferences in the current value Iz due to numerical inaccuracies.

In most cases presented here, these variations are on the order

of ~2%.

To get I2V curve and compare with the experimental data,

the PNP equations are computed for a variety of voltages and

concentrations. For example, Vapplied 5 0 mV, 50 mV, 100 mV,

150 mV, and 200 mV, and ci, bulk 5 0.1 M, 0.2 M, 0.5 M, 1.0 M,

and 2.0 M. The potential profile for five different bulk concen-

trations with the same voltage (Vapplied 5 100 mV) is pre-

sented in Figure 5. It is shown that the potential with a higher

concentration boundary condition is larger than that with a

lower concentration boundary condition in the channel pore

region due to ionic screening effect.

Figure 6 shows K1 and Cl2 concentration profiles for five

different applied voltage values, while the bulk concentration

Figure 3. Electrostatic potential (kBT=ec) and ion concentration (M). (a) is a cross section view of the electro-

static potential of the whole domain. (b) is a cross section view of K1 ion concentration of the whole domain.

(c) is a cross section view of Cl2 ion concentration of the whole domain.

Figure 4. Comparison of electrostatic potential (kBT=ec) between PB and PNP calculations. (a) is a cross section

view of the electrostatic potential obtained from PB calculation with the Debey–H€uckel boundary condition

and with the same bulk ion concentrations as in the compared PNP calculation. (b) is a cross section view of

the electrostatic potential obtained from PNP calculation with Vapplied 5 200 mV and ci,bulk 5 0.5 M. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 2065–2078 2073

http://onlinelibrary.wiley.com/


is the same (ci, bulk 5 0.5 M). It is seen that although different

voltage values as boundary condition are applied, the changes

of concentrations have almost the same tendency. It is seen

that the Cl2 concentration inside the gA is not exactly zero in

our simulation, though it is thought to be zero experimentally.

But we think this would be a common problem of traditional

mean-field continuum model, such as PNP model.

The experimental I2V data are obtained from Cole et al.,[62]

which are used as the reference data for comparison. The dif-

fusion coefficient in the bulk region can be got from the ex-

perimental data. However, there are no experimental data

available for the diffusion coefficient in the channel pore.

Here, we obtain the diffusion coefficient in the channel pore

by matching the experiment data, that is, the current value at

V 5 100 mV. We find that a reasonable match will be obtained

with a diffusion coefficient which is 18 times smaller than the

bulk coefficient, that is, DCl51:1331022 Å
2
=ps,

DK51:0931022 Å
2
=ps. We use the same data in all the simu-

lations performed in this work. Comparisons between the sim-

ulation results and experimental data are shown in Figure 7.

Table 1 shows the standard error of the current between the

simulation results and experimental data. It is seen that

although there are some deviations between them, overall the

agreement is good between these two sets of data.

Convergence rate and parallel efficiency. With the transforma-

tion method, the PE is nonlinear and is solved by Newton iter-

ations, thus it costs more internal iterations than with the

primitive method. However, the external iterations between

NP and the PE can converge much faster with the transforma-

tion method than with the primitive method. This is true

when solving the PNP equations for gA channel, as demon-

strated by the number of iterations in Table 2, in which a

same relaxation parameter a 5 0.8 is used in the external iter-

ations of all the computations.

Figure 5. Electrostatic potential at the center of the gA channel plotted

along z-axis obtained from the PNP calculation with Vapplied 5 100 mV.

Figure 6. K1 (top) and Cl2 (bottom) concentrations at the center of the gA

channel plotted along z-axis obtained from the PNP calculation with ci,bulk

5 0.5 M.

Figure 7. Comparisons of the computed I–V curves with experimental data.

I–V curves are plotted for five bulk ion concentrations and the dashed rep-

resent the experimental data.
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In our numerical study of gA ion channel, with the transfor-

mation method, the number of internal Newton iterations for

solving the PE ranges from 2 to 4, and the total number of

iterations is about 50 for each PNP solution, which is fewer

than with the primitive method.

To assess the parallel efficiency of our parallel code, we

introduce a much larger system with a mesh containing a total

of 1,523,013 vertices and 9,149,056 tetrahedra, on which we

solve the PNP equations using the transformation method. Ta-

ble 3 gives the wall-clock time and parallel efficiency for differ-

ent number of MPI processes. The smallest number of

processes used is p0 5 8, whose parallel efficiency is regarded

as 100%. The parallel efficiencies obtained are satisfactory. A

rapid drop in the parallel efficiency can be noted when going

from 512 processes to 1024 processes, which we believe is

related to the interconnection topology of the underlying

InfiniBand network. The code is expected to be able to solve

larger systems with more CPUs by using computers with faster

interconnection network and=or exploiting the MPI1OpenMP

two level parallelism provided by PHG.

Further validation of our method

In this subsection, to further validate the effectiveness of our

simulator, we apply our method to two proteins as described

in the reference,[63] VDAC and a-HL, and compare our PNP

results with the BD simulation and experimental results. In

addition, we have also performed a simulation with our

SMPNP model on above two ion channels to show improved

results by including the finite size effects in the model. It is

known that it is still a big challenge to solve the PNP=SMPNP

equations for large ion channel system due to the algorithm

stability and mesh quality. We found there is still some difficul-

ties for us to simulate the biggest ion channel listed in the ar-

ticle.[63] Exploration of more powerful numerical methods and

extensive studies on finite size effects are our future tasks and

are underway.

Comparison with BD simulation and experimental results.

VDAC are a class of porin ion channel located on the outer mi-

tochondrial membrane. VDAC provides a permeation pathway

for metabolites and electrolytes between cell cytosol and the

mitochondria. Among three isoforms found in many eukaryotic

cells, the prototype isoform, VDAC1, shares a sequence identity

up to 75% and the characteristic electrophysiological features.

Initial coordinates for VDAC1 were taken from the protein data

bank (code 2JK4).[64] The partial charges and atomic radii for

each atom in the protein are obtained by using the PDB2PQR

software. The PQR file of VDAC1 contains 4393 atoms. The dif-

fusion coefficients for K1 and Cl2 in the bulk region are set to

their experimental values: DK50:196 Å =ps, DCl50:203 Å =ps.

In the channel pore region, we set 0.4 DK and 0.4 as the diffu-

sion coefficients which are used for the simulation. The protein

pore is aligned with the z axis. The layout of the VDAC1 chan-

nel on the grid is shown in Figure 8. Table 4 summarizes the

conduction properties of VDAC1 obtained from BD simula-

tion[63] and PNP simulation. Figure 9 shows I2V curves

obtained from BD and PNP simulations of VDAC1 for the

asymmetric solution cases. It is seen that the simulation results

agree well with BD simulation results and experimental results.

a-HL is a bacterial exotoxin protein involved in many dis-

eases including urinary infection in human body. This toxin

causes cell death by binding with the outer membrane, with

subsequent oligomerization of the toxin monomer and water-

filled channels. It forms a heptametric transmembrane channel

with a relatively wide pore and a 17e net charge in the host

Table 1. The standard error between the simulation results and experi-

mental data.

Ion concentration

(M)

Voltage

(mv)

Experimental

data (pA)

The simulation

results (pA)

Standard

error

0.1 50 0.65 0.52 0.1169

100 1.2 1.03

150 1.71 1.56

200 2.12 2.12

0.2 50 1.06 0.81 0.2049

100 1.89 1.62

150 2.72 2.48

200 3.51 3.39

0.5 50 1.66 1.31 0.6980

100 3.46 2.64

150 4.94 4.07

200 6.55 5.61

1.0 50 2.08 2.21 0.0853

100 4.18 4.29

150 6.49 6.51

200 8.86 8.77

2.0 50 2.49 3.1 0.6169

100 5.12 6.05

150 8.12 8.93

200 11.86 11.76

Table 2. Number of external iterations between the NP and the PE under

different combinations of ion concentration (M) and voltage (mV).

Ion concentration and

voltage (M, mV) Primitive Transformed

0.1, 50 156 16

0.1, 100 156 16

0.1, 200 159 16

0.5, 50 154 21

0.5, 100 154 21

0.5, 200 156 21

2.0, 50 158 23

2.0, 100 154 23

2.0, 200 155 23

Table 3. Parallel efficiency in solving the PNP equations using the trans-

formation method.

Number of

processes

Number of

iterations

Time

(s)

Efficiency

(%)

8 11 3755.6 100

16 11 1840.7 102.0

32 11 836.5 112.2

64 11 428.3 109.6

128 11 280.1 83.8

256 11 160.3 73.2

512 11 94.3 62.2

1024 11 76.4 38.4
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cell membrane. Initial coordinates for a-HL were also obtained

from the protein data bank (code 7AHL).[9] The partial charges

and atomic radii for each atom in the protein are obtained by

using the PDB2PQR software. The PQR file of a-HL contains

32,305 atoms. The protein pore is also aligned with the z axis.

The layout of the a-HL channel on the grid is shown in Figure

8. BD and PNP simulation results of a-HL are summarized in

Table 5. Figure 10 shows I2V curves obtained from BD and

PNP simulations of a-HL for the symmetric solution cases. It is

seen that while there are some deviations between the PNP

and BD simulation results, overall, the PNP simulation results is

close to BD simulation results.

A test of a SMPNP model for finite size effects. The standard

PNP neglects ionic finite size effects and resulting correlations

that are expected to be important factors to determine the

selectivities of some ion channels. Such effects, to some

extent, now can be included in PNP model.[30] In our previous

work, a SMPNP model was developed and applied to simulate

biomolecular diffusion-reaction processes.[30] The SMPNP can

also be adopted here to study the ionic size effects to ion

transport in ion channel. Because the finite size effects are not

the focus of this article, and they need extensive and

systematic studies in the future, here, as a demonstration, we

only perform a few SMPNP simulations on VDAC1 and a-HL to

show the performance of a size-included version of PNP. The

SMPNP equations add a nonlinear term to each of the Nernst–

Planck equations to model the steric repulsion: [30]

oci

ot
5r�Diðrci1�qicir�1

kici

12
X

l

a3
l cl

X
l

a3
l rclÞ;

x 2 Xs; 1 � i � N;

(37)

2r�ð2 r�Þ5k
X

i

qici1qf ; x 2 X; (38)

where ki5
a3

i

a3
0

and ai denote the size

of ith ion species and a0 of the water

molecule. In SMPNP, all the size val-

ues should be obtained through a

parameterization procedure and fit-

ted with experimental data or other

theoretical results. Here, we simply

choose one dataset a0 5 6.5 and a1

5 a2 5 5.0 as an example to test the

size effects to ion transport. More

details and discussion can be found

in Refs. [30,65].

Figure 9 compares I2V curves

obtained from BD, PNP, and SMPNP

simulations of VDAC1 in asymmetric

0.1:1.0 M and 1.0:0.1 M KCl solutions.

Figure 10 compares I2V curves for a-

HL in symmetric 1.0:1.0 M KCl solu-

tions. It is seen that, compared with

PNP model, SMPNP model can effec-

tively reduce the current due to

steric exclusion effects, and the

results are closer to BD simulation

results.

Summary

The PNP theory is a well-established

electrodiffusion model for a wide va-

riety of chemical, physical, and bio-

logical applications. It has been

extensively used in the ion channel

analysis to compute the electrostatic

and concentration profiles, as well as

I2V curves.

Figure 8. a) VDAC1 dimer. b) Triangular boundary mesh conforming to the VDAC1 surface. c) a-HL dimer.

d) Triangular boundary mesh conforming to the a-HL surface. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com]

Table 4. Ion conduction properties of VDAC1: Conductance (G), ion

selectivity from current ratio (GCl = GK).

Method Voltage (mV) G GCl=GK

PNP 2 100 3.68 1.79

1 100 3.21 1.41

BD 2 100 3.77 6 0.11 1.92

1 100 3.1560.09 1.94

Exp. 3.9–4.5

FULL PAPER WWW.C-CHEM.ORG

2076 Journal of Computational Chemistry 2013, 34, 2065–2078 WWW.CHEMISTRYVIEWS.COM



In this article, we present a parallel adaptive finite element

simulator, ichannel, for ion transport through ion channel sys-

tems. Due to the complexity of molecular structure, there is

no software so far that can solely finish the task of generating

high-quality molecular surface mesh and tetrahedral volume

mesh for the whole channel system for FE simulation. We have

built a tool chain for high-quality biomolecule mesh genera-

tion by using a few of mesh generation tools including the

surface meshing tool developed by us recently. Numerical test

is carried out to the gA channel protein. The electrostatic and

concentration profiles, as well as I2V curves are obtained

under certain range of ion concentrations and applied vol-

tages. A good agreement is achieved between the computed

I2V curves and the available experimental data. To further vali-

date the effectiveness of our method, numerical test is also

carried out to other two ion channels, VDAC1 and a-HL. The

PNP simulation results agree well with BD simulation and ex-

perimental results. Moreover, because ionic finite size effects

can be included in PNP model now, we also perform simula-

tions using a SMPNP model on VDAC and a-HL. It is shown

that the size effects in SMPNP can effectively lead to reduced

current in the channel, and the results are closer to BD simula-

tion results.

By comparing the primitive and the transformed formula-

tions of the PNP equations applied to gA system, it is found

that the number of iterations between the PE and the NP

equations is significantly reduced using the transformed for-

mulation. Our code is based on the parallel adaptive finite ele-

ment package PHG, which provides the simulator with the

ability of using large scale parallel processing, parallel mesh

adaptation, and high order elements. High parallel efficiency

of the code is confirmed by the numerical results.

To solve PNP and SMPNP equations for large proteins

and=or arbitrary size, it is so far still a numerical challenge.

Exploration of more powerful numerical methods and exten-

sive studies on finite size effects are our future tasks and

are underway. We aim to develop an user-friendly software

platform for studies of ion transport through 3D ion chan-

nel systems. Including the correlations produced by the fi-

nite size of ions is likely to allow PNP to deal with the

selectivity phenomena of calcium, sodium, and Ryr

channels.[66]
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Figure 9. I2V curves for VDAC1 in asymmetric 0.1:1.0 M (dashed) and

1.0:0.1 M (solid) KCl solutions obtained with BD model (square), PNP model

(circle) and SMPNP model (triangle).

Figure 10. I2V curves for a-HL in symmetric 1.0:1.0 M KCl solutions

obtained with BD model (square), PNP model (circle) and SMPNP model

(triangle).

Table 5. Ion conduction properties of a-HL: Conductance (G), ion

selectivity from current ratio (GCl = GK).

Method Voltage (mV) G GCl=GK

PNP <0 0.87 6 0.11 1.79 6 0.19

>0 0.99 6 0.21 1.65 6 0.25

BD <0 0.76 6 0.01 2.13 6 0.32

>0 0.81 6 0.01 1.96 6 0.23

Exp. <0 0.80 6 0.04

>0 1.00 6 0.05
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