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Abstract. Mesh generation is a bottleneck for finite element simulations of
biomolecules. A robust and efficient approach, based on the immersed boundary
method proposed in [8], has been developed and implemented to generate large-scale
mesh body-fitted to molecular shape for general parallel finite element simulations.
The molecular Gaussian surface is adopted to represent the molecular surface, and
is finally approximated by piecewise planes via the tool phgSurfaceCut in PHG [43],
which is improved and can reliably handle complicated molecular surfaces, through
mesh refinement steps. A coarse background mesh is imported first and then is dis-
tributed into each process using a mesh partitioning algorithm such as space filling
curve [5] or METIS [22]. A bisection method is used for the mesh refinements accord-
ing to the molecular PDB or PQR file which describes the biomolecular region. After
mesh refinements, the mesh is optionally repartitioned and redistributed for load bal-
ancing. For finite element simulations, the modification of region mark and boundary
types is done in parallel. Our parallel mesh generation method has been successfully
applied to a sphere cavity model, a DNA fragment, a gramicidin A channel and a huge
Dengue virus system. The results of numerical experiments show good parallel effi-
ciency. Computations of electrostatic potential and solvation energy also validate the
method. Moreover, the meshing process and adaptive finite element computation can
be integrated as one PHG project to avoid the mesh importing and exporting costs,
and improve the convenience of application as well.
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1 Introduction

Continuum model uses a continuum description of the discrete particles (e.g., water
molecules, ions, or protein molecule), which has been widely used in molecular simu-
lations as an effective way to reduce the computational cost. The Poisson-Boltzmann
equation (PBE) represents a typical continuum model describing the electrostatic interac-
tions and ionic density distributions of a solvated molecular system at equilibrium state.
The most commonly and practically used numerical methods to solve the PBE include
finite difference (FD) method [2, 33], finite element method (FEM) [20, 29, 35, 37, 39], and
boundary element method (BEM) [4, 25, 27, 42].

So far, mesh generation is still a bottleneck for usage of FEM/BEM due to the highly
irregular shape of biomolecular systems. For biomolecular simulations, this task is fur-
ther complicated by the identification of the irregular molecular surface and an appropri-
ate description of this surface for resolving the molecular structures in sufficient details.
For boundary element method a molecular surface mesh suffices; while for finite element
method or its coupling with boundary element methods, a volume mesh in the solvent re-
gion and/or the solute region is also needed [28]. Triangular and tetrahedral meshing are
most widely used forms of unstructured mesh generation [32]. There have been a num-
ber of free programs developed to generate surface triangular meshes for biomolecules.
However, few free software can be used to generate tetrahedral meshes for biomolecules
directly. A frequently-used package, Tetgen [36], is able to generate tetrahedral meshes
based on the surface triangular meshes. A common strategy to obtain the tetrahedral
meshes for biomolecules is generating the surface triangular meshes first and then ob-
taining the tetrahedral volume meshes based on the surface meshes.

We have built a tool chain to generate high-quality meshes for practical protein sys-
tems by combining a few mesh generation tools which are based on Delaunay meshing.
The tool chain has essentially these components: surface meshing, quality improving,
volume mesh generation, and membrane-protein mesh construction is necessary. First,
a triangulation of the Gaussian surface is generated using our recently developed pro-
gram TMSmesh [6], which is a robust tool for meshing molecular Gaussian surfaces and
has been shown to be capable of handling molecules consisting of more than one mil-
lion atoms. In the second step, the program ISO2Mesh [17] is first used to simplify the
surface mesh by reducing the number of faces or adding some nodes while preserving
its manifoldness, volume, and boundary shape. If self-intersecting faces exist, then the
program TransforMesh [41], which can robustly handle topology changes and remove
self-intersections, is used to find and remove self-intersecting faces. Finally, in the third
step, a tetrahedral volume mesh is generated using the program TetGen, which consists
of four-node tetrahedral elements and is ready for 3D finite element simulations. More
details can be found in [7]. With this tool chain we have successfully generated meshes
for many protein systems and performed finite element simulations on them [37, 40].

Today’s parallel computers enable us to solve a problem with a mesh containing tens
of millions of vertices. However, CPU time and memory limitations still make it a chal-
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lenging task to generate such a large high-quality mesh on a single machine. Obviously,
a parallel environment significantly reduces the amount of time required for large scale
mesh generation [21]. Although there is no widely-used free parallel mesh generator by
now, parallel techniques for distributed-memory machine are described in many research
papers focusing on Advancing Front methods [13,26,31], Delaunay methods [11,34] and
Octree-based methods [14] respectively. In order to generate high-quality meshes for
finite element simulations, a powerful mesh generator should satisfy the following re-
quirements:

1. High parallel efficiency for meshing;

2. Easy implementation;

3. The meshing process and finite element computation can be integrated in the same
program to avoid the mesh importing and exporting costs.

In this paper, we propose a method to generate in parallel tetrahedral meshes directly
from the initial molecules instead of from existing surface triangular meshes. Our code
is based on the parallel adaptive finite element package PHG [43], which is written in C
and uses MPI for message passing. PHG provides many interfaces for computation and
meshing and hides the parallelization details for easy implementation with thousands of
CPU cores. Based on the adaptive mesh refinement interfaces in PHG, we successfully
develop and implement parallel unstructured mesh generation algorithms for a given
molecular PQR file.

In the following section, we elucidate the framework of mesh generation and describe
the details of parallelization and implementation techniques. After the whole meshing
process, the final mesh is exported to a file in the Medit [18] file format. Some protein sys-
tems and ion channels are taken as examples in Section 3, and the parallel efficiency and
NPBE simulations are given in the subsections. Final conclusions are given in Section 4.

2 Automated parallel and body-fitted mesh generation in finite

element simulation of macromolecular systems

2.1 Region for meshing

Solvated biomolecular systems are usually modeled by dielectric distinguished regions
with singular charges distributed in the molecular region. Systems without singular
charges or dielectric jump are usually found in simplified models with planar or cylin-
drical boundary geometries in electrochemistry and biopolymer science, and can be re-
garded as a special case of the systems in this investigation. Fig. 1 schematically illus-
trates a solvated biomolecular system occupying a domain Ω with a smooth boundary
∂Ω. The solute (molecule) region is represented by Ωm and the solvent region by Ωs.
The dielectric interface Γm is defined by the molecular surface. The process of generating
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Figure 1: Two-dimensional illustration of the region for meshing.

tetrahedral meshes is done in all regions as showed in Fig. 1. For finite element com-
putation, the generated mesh should capture important geometric characteristics and
correctly mark regions and boundary types.

2.2 Parallel unstructured mesh generation

Our mesh generation scheme follows these steps: 1) Import a background mesh, partition
it and distribute it to processes. Read PQR file (see Appendix A) meanwhile; 2) refine
the mesh and mark the regions by applying adaptive refinement interfaces of PHG; 3)
add Gaussian surface into the mesh; 4) check and modify region marks to guarantee
nonexistence of incorrect marks; 5) mark inner and outer surfaces and export the mesh
in Medit format. Step 3 is optional which can be skipped as users prefer. The framework
is illustrated in Fig. 2.

Figure 2: The framework of parallel adaptive mesh generation.



586 Y. Xie et al. / Commun. Comput. Phys., 19 (2016), pp. 582-602

2.2.1 Load and partition the mesh

Firstly, we load a mesh file and partition the mesh for parallel processing and load balanc-
ing. In order to distribute a mesh T on a distributed memory computer, it is partitioned
into P submeshes Ti, i=0,··· ,P−1, where P is the number of MPI processes. The partition-
ing is computed using either a PHG’s built-in mesh partitioning method such as Hilbert
space filling curve [5], or existing tools like METIS [22]. The partitioning is element-
based, i.e., the set of tetrahedra of T is divided into P disjoint subsets and each subset is
assigned to an MPI process. Every time after mesh refinement, if the load imbalance factor
(LIF, the maximum number of tetrahedra in a submesh over the average number of tetra-
hedra in the submeshes) exceeds a given threshold, a new mesh partitioning is computed
and the submeshes are redistributed to maintain load balance.

2.2.2 Mark the regions

The region mark of each element in the mesh is used to distinguish the solute and sol-
vent regions. All elements intersecting with the molecule surface are regarded as in the
solute region, while others are in the solvent region. An intuitive strategy to get the re-
gion mark is that each process checks the intersections of elements with the molecular
surface by traversing the atoms in the PQR file. The region mark is set to 1 if the ele-
ment intersects with the molecular surface and 0 otherwise. The time complexity of this
method is O(NM

n ), where N denotes the number of atoms of the molecule, n the number
of processes, M the number of tetrahedra in the submesh. A molecular volume mesh
sometimes contains millions or even more tetrahedra and updating the region mark can
cost minutes or even hours, which is unacceptable.

The process of computing the region marks is accelerated by dividing the atoms into
a given number of buckets. Then only atoms in a limited number of buckets instead of all
atoms need to be traversed for each element, using a look-up table. The pseudo codes are
given in Algorithm 1. The time complexity of Algorithm 1 is O(NM

nk ), where k denotes
the number of the buckets. In our implementation, process 0 creates the look-up table
and broadcasts it to all processes. Suitable values for dx, dy and dz are determined such
that the number of buckets is around 104-105. Timing results with Algorithm 1 will be
shown in Section 3.3.

2.2.3 Refine the mesh

In this step, our target is to refine the mesh to get a discretized molecular representation
with a high resolution. In practice, only the elements near the interface, i.e., those whose
region mark is different from one of its neighbours, are refined for saving memory. Ele-
ments are refined using the bisection method as illustrated in Fig. 3. The parallel mesh
refinement is done in two phases. In the first phase, the submeshes are refined indepen-
dently, with the shared faces of any two submeshes treated as if they were boundaries.
This step creates locally conforming submeshes, but nonconforming across submeshes.
In the second phase, nonconforming faces between submeshes are exchanged and ele-
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Algorithm 1 Create a look-up table for atoms of a molecule.

Read the PQR file and update coordinates ranges (int)x min, x max, y min, y max,
z min and z max;
dx, dy, dz denote the length in each direction of the bucket box, kx= x max−x min

dx +1,

ky= y max−y min
dy +1 and kz= z max−z min

dz +1 denote the number of the buckets in each

direction;
Define map<int, vector<int> > Buckets, the key of map denotes the index of the
bucket, the value of map denotes the PQR atoms in the specific bucket.
for i=0 to N−1 do

index=ky∗kz∗ pqr[i].x−x min
dx +kz∗ pqr[i].y−y min

dy + pqr[i].z−z min
dz ;

if Buckets.find(index) != Buckets.end() then
Buckets[index].push back(i);

else

vector<int> tmp;
tmp.push back(index);
Buckets[index] = tmp;

end if

end for

Algorithm 2 Mesh Generation Based on PHG Adaptive Refinement Interfaces.

Load an initial background mesh M0;
Set the maximum iteration N;
k=0;
while k<N do

Update the region mark of each element in Mk;
Refine the element according to the marks and keep conformity. Mk denotes the
new mesh;
Check load balancing and repartition the mesh if necessary.
k= k+1;

end while

ments having inter-submesh nonconforming faces are refined. The process is repeated
until the global conformity of the mesh is reached. Algorithm 2 shows the parallel mesh
refinement process. This algorithm is easy to implement using PHG’s adaptive mesh
refinement interface. A sample mesh is shown in Fig. 4 for a sphere cavity model with
a radius of 200Å and a solvent region of a unit sphere. The background mesh, which
contains 498 vertices and 1810 tetrahedra, is generated by TetGen. Fig. 4(a,b) shows the
surface changes while the mesh is repeatedly refined using Algorithm 2. Obviously, the
solute surface fits the curve better but is bumpy even if the mesh gets very fine. A valida-
tion of the mesh generation method is demonstrated by solving the Nonlinear Poisson-
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Figure 3: Bisection of a tetrahedron.

(a) (b) (c)

Figure 4: The surface of the solute region for the sphere cavity model. (a) 20 refinements; (b) 30 refinements;
(c) 20 refinements and use phgSurfaceCut to fit the analytical surface.

Boltzmann equation on the sphere cavity model. It is found that the electrostatic potential
is radial symmetric and the maximum value is 3.78 kcal/mol·e locating near the surface,
which is consistent with [29].

2.2.4 Fit the surface (surface cut)

After the above steps, the surface of the solute region is zigzag and bumpy, so we need to
smooth the surface for fitting the actual interface and avoid possible numerical problems
in finite element computation. Our method follows these steps: 1) Calculate all inter-
section points (cut points) between the analytical surface and edges in the mesh, since
the surface is locally approximated by planes, at most one cut point is allowed on each
edge. 2) Add the cut points to the mesh and subdivide elements containing cut points
while maintaining the conformity of the mesh. 3) Approximate the analytical surface
with cut planes. PHG provides a tool, phgSurfaceCut, to create a new conforming tetra-
hedral mesh with respect to a given set of cut points by locally subdividing all tetrahedra
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containing cut points into smaller tetrahedra. That tool was used in [8] and it worked
well for the test cases with simple surfaces presented in [8], but is not robust enough and
may crash for complicated surfaces as those addressed in this paper. Thus we have re-
vised and improved the underlying algorithm used in the phgSurfaceCut function and
it’s now robust and can reliably generate a new mesh with any given surface. Below we
give a brief description of the new algorithm.

Our new algorithm for computing the intersection of a surface with a mesh is divided
into two steps. The first step consists of computing the cut points and the second step
consists of subdividing the tetrahedra with respect to the given cut points. To ensure
robustness of the algorithm, the cut points generated in the first step must satisfy the
constraints on the distribution of the cut points in each element required in the second
step. We will first describe the second step, then the first step of the algorithm.

In the second step of the algorithm, a set of cut points is taken as input and elements
containing cut points are subdivided to create a new conforming mesh. The cut points are
given on the edges. Since in each element the surface is locally approximated by a plane,
at most one cut point is allowed on each edge, and in each element only the following
cases are considered:

1. There is no cut point on the element. The element is unchanged.

2. There is 1 cut point on the element. The element is bisected into 2 tetrahedra
(Fig. 5(a)).

3. There are 2 cut points on the element. The element is subdivided into 3 tetrahedra
by first subdividing it into a tetrahedron and a pyramid and then subdividing the
pyramid into 2 tetrahedra (Fig. 5(b)).

4. There are 3 cut points on the element, in this case the 3 edges containing the cut
points must have a common vertex. The element is subdivided into 4 tetrahedra by
first subdividing it into a tetrahedron and a prism and then subdividing the prism
into 3 tetrahedra (Fig. 5(c)).

5. There are 4 cut points on the element, in this case the four cut points must lie on
two pairs of opposite edges. The element is subdivided into 6 tetrahedra by first
subdividing it into two prisms and then subdividing each prism into 3 tetrahedra
(Fig. 5(d)).

(a) (b) (c) (d)

Figure 5: Intersections between a plane and a tetrahedron.



590 Y. Xie et al. / Commun. Comput. Phys., 19 (2016), pp. 582-602

All other distributions of cut points on an element are not allowed.
Now we describe the first step of our algorithm, which is responsible for generating

a set of cut points satisfying the requirements above. In this step, a user function defined
in the domain is taken as input which defines the surface, it has positive values on points
at one side of the surface, negative values on points at the other side of the surface, and
zero on the surface. A set of cut points is generated using the user function as follows:

1. A ‘signness’ of −1, +1, or 0 is assigned to each vertex of the mesh depending on
whether the value of the user function on it is negative, positive or zero.

2. On each edge whose two vertices have different and nonzero signness, a cut point
is computed using the user function with either bisection or linear interpolation (in
the latter case the user function is assumed continuous).

3. If a cut point is closer to a vertex than a given threshold, then the signness of the
vertex is changed to 0 and all the cut points on the edges connected to the vertex
are removed. This is to avoid very close vertices in the new mesh.

It can be shown that the set of cut points thus generated fully satisfies the requirements in
the second step of the algorithm, thus the robustness of the whole algorithm is ensured.

For the sphere cavity model, the solute surface has an analytical formulation and the
user function can be analytically given using the distance between the center and the
vertices. Fig. 4(c) illustrates the solute surface generated by using phgSurfaceCut after
20 refinements. For practical molecules, the molecular surface may be defined in various
ways [12, 19]. The most widely used molecular surfaces are 1) the van de Waals surface,
which is the smallest envelope enclosing a collection of spheres representing all the atoms
in the system with their van de Waals radii, 2) the solvent accessible surface (SAS), which
is the trace of the centers of probe spheres rolling over the van de Waals surface, 3) the
solvent excluded surface (SES), which is the surface traced by the inward-facing surface
of the probe sphere, 4) Skin surface [9, 16, 24], which is defined by a set of weighted
points representing the atoms and a scalar called the shrink factor controlling hyper-
boloidal connections between neighboring spheres, 5) Gaussian surface [38, 44], which
is a level-set of the summation of the spherically symmetrical Gaussian density distri-
butions centered at each atom of the biomolecular system, 6) the boundary of a domain
enclosing the molecule such that certain energy is minimized over this boundary, such as
the surface free energy [3]. In this paper, we use the Gaussian surface to generate molec-

ular surface, which is given by: ∑
N
i=1e−d(‖x−xi‖

2−r2
i )−1= 0. We use the Gaussian surface

as its real protein surface and approximate it with piecewise planes with phgSurfaceCut.

2.2.5 Modify region marks

In the above steps, it is difficult to avoid producing wrong region marks. More precisely,
a correct mesh in our case should guarantee that there exists only one connected solute
region (if the solute has no separate parts) and one solvent region respectively. However,
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many isolated regions may occur after region marking. To find out all isolated regions,
we modify the region marks according to the following steps:

• Step 1: Mark all connected elements in each process and assign specific tags.
In each process, find out all connected elements with a same region mark and gener-
ate tags for them. Connected elements share a common tag. The tags represent the
region mark, the process rank and the ID. Taking a tag ’1 2 1’ for example, it tells
that all elements with this tag are marked as the solute region and they are from
process 2 and the ID is 1. After tagging, we merge the tags around the submesh
boundaries as tag pairs and send them to the process 0.

• Step 2: Process 0 gathers all tag pairs on the submesh boundaries and allocates
representative tags. The process 0 gathers lots of tag pairs. A tag pair, like (a,b),
denotes that the region tagged as a is connected with the region tagged as b. A
tag pair has different tags only because the elements are owned by different sub-
meshes. Therefore we should allocate representative tags for all connected regions
and then broadcast these mapping between initial tags and representative tags to
all. This process can be modeled as finding connected subgraphs. Each node de-
notes a specific tag and each tag pair represents an edge. After the graph is built,
we use Breadth First Search (BFS) method to find all connected subgraphs. For each
subgraph, we randomly choose one tag as a representative tag and all tags in this
subgraph are mapped to it. Process 0 then broadcasts the mappings to all processes.

• Step 3: Each process receives the representative tags from process 0 and modifies
wrong region marks.
After Step 2, all representative tags and mapping relations are broadcasted to all
processes. Then we find out the top 2 tags with the most number of elements. In
this paper, only two regions are taken into consideration, thus the top 2 tags are the
solvent and solute regions respectively. Meanwhile, the other tags are isolated and
regarded as wrong region marks, and we change the region mark as 1 if the initial
value is 0, and vice versa.

2.2.6 Mark inner and outer surfaces

After the regions are correctly marked, we mark the outer surfaces as DIRICHLET and
the inner surfaces as BDRY USER1. Finally, the mesh is exported in Medit format. It’s
worth noting that the output mesh file is in text (not binary) format so that we use the
root process to receive the data from each process and write them into the output file sep-
arately rather than using MPI I/O for parallel I/O. Actually, our codes of finite element
computation are integrated with the meshing process, therefore the mesh exporting can
be omitted in FEM modeling.
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3 Numerical experiments and analysis

The implementation of the algorithms is based on the parallel adaptive finite element
package PHG. The computations were carried out on the cluster LSSC-III of the State
Key Laboratory of Scientific and Engineering Computing of China, which consists of
computing nodes with dual Intel Xeon X5550 quad-core CPUs, interconnected via DDR
InfiniBand network. In this section, we give some examples to describe the applications
and performance of our mesh generation method.

3.1 Mesh generation for a DNA fragment

One of the protein systems introduced here is the DNA fragment embedded in a spherical
computational domain with a radius of 200Å. The molecular surface is schematically
illustrated in Fig. 6. This system carries out a total fixed charge of −22 e. The mesh
over the whole domain has a total of 99093 vertices and 620117 simplices. The molecular
surface contains 24503 vertices and 49002 triangles.

(a) (b)

Figure 6: An example of mesh generation for a fragment of A-form DNA. (a) A close-up view of the fine mesh
around the molecule. (b) The triangular boundary mesh conforming to the molecular surface.

3.1.1 Generated tetrahedral meshes

The meshes in Fig. 7 start from a background mesh which contains 129 vertices and 342
tetrahedra and are obtained after completing 6, 12 and 18 mesh refinements respectively
after 8 uniform refinements using Algorithm 2. Different from the sphere cavity model,
the DNA fragment does not have an analytical molecular surface, therefore we use the
Gaussian surface to approximate it. Figs. 8(a) and 8(b) show the molecular surfaces by
adding phgSurfaceCut after 12 and 18 refinements respectively. The surface meshes
showed in Fig. 8 are smoother than the ones in Fig. 7.

3.1.2 Application to the PBE

In order to facilitate understanding of the results, we give a brief introduction to PBE.
The nonlinear Poisson-Boltzmann equation (NPBE) reads:
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(a) (b) (c)

Figure 7: The solute surfaces of the DNA fragment after (a) 6 refinements; (b) 12 refinements; (c) 18 refine-
ments.

(a) (b)

Figure 8: Approximate the solute surface by the Gaussian surface via phgSurfaceCut. (a) Add the Gaussian
surface in the mesh of Fig. 7(b). (b) Add the Gaussian surface in the mesh of Fig. 7(c).

−∇·ǫ∇φ+κ2sinh(φ)=ρ f , (3.1)

where ǫ is a spatial-dependent dielectric coefficient, κ absorbs all the related parame-
ters, and ρ f and φ are the scaled singular charged distribution and electrostatic potential
respectively. An effective strategy for solving the NPBE is to decompose φ into three
parts, the singular component G, a harmonic component H and the regular component
ur as [10, 30]

φ=G+H+ur. (3.2)

We use inexact Newton iterative method to solve the nonlinear problem and more details
can be found in [28, 40].

Solvation energy is a reasonable metric to validate the accuracy of the mesh genera-
tion method. The definition of the solvation energy is given as Eq. (3.3), where qi denotes
the i-th atom’s charge in the PQR file, ui and Hi denote the regular component and har-
monic component values at the center of the i-th atom respectively.

Esolvation=
1

2 ∑
i

qi(ui+Hi). (3.3)
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Table 1: Electrostatic potential range and solvation energies of the DNA fragment with different meshes.

Mesh
Electrostatic potential

(kcal/mol·e)

Solvation energy

(kcal/mol)

Mesh A [-9.99, 5.08] −4.5396×103

Mesh B [-7.29, 0.01] −3.0991×103

Mesh in Fig. 6 (Baseline) [-7.72, 0.63] −3.5160×103

The electrostatic potential and solvation energy values calculated from the NPBE re-
sults are listed in Table 1. Mesh A represents the mesh obtained by 18 refinements while
Mesh B represents the mesh using phgSurfaceCut based on Mesh A. To get high-quality
mesh, the cut points are set to the centers of the cutting edges when using phgSurfaceCut.
It is found that all the solvation energies and electrostatic potentials are comparable, but
the results of the mesh with introducing the Gaussian surface are much closer to those
from obtained with the baseline. That is to say, the shape of the interface affects both the
extreme values and the statistical values such as solvation energies.

3.2 Add membrane for ion channel

The mesh generation algorithm can also be applied to ion channels. Ion channels are set
on the cell membrane, therefore creating the membrane for the channels is indispensable
in the process of simulations for ion channels. The mesh generation algorithm is applied
to a Gramicidin A (gA) channel protein (PDB code: 1MAG), which forms aqueous pores
in lipid bilayers that selectively pass monovalent cations [1, 23]. gA is a small 15-amino-
acid β helical peptide with a narrow pore. As it is relatively small and well characterized
experimentally, a wide variety of theoretical models have been applied to the gA chan-
nel. The whole domain of the gA channel consists of the membrane-protein region, bulk
region, and the channel region. The partial charges and atomic radii for each atom in the
protein are obtained by using the PDB2PQR software [15]. The gA channel pore region
is along the z direction. The box size is 30Å×30Å×45Å. The background mesh has a
total of 773 vertices and 3264 tetrahedra. A close-up view of the gA channel after 8 re-
finements is shown in Fig. 9(a), and Fig. 9(b) and (c) show the y−z plane and x−y plane
view respectively.

phgSurfaceCut is used to smooth the solute surface and also can be applied to embed
a membrane slab for ion channels. Since the membrane slabs in the z direction are analyt-
ical determined within: z= z1 and z= z2. Our method is to use phgSurfaceCut to embed
the two faces and mark all the elements between these two faces as membrane region
excluding the channel region and protein region, which is shown in the Fig. 10. Obvi-
ously, the membrane surface obtained by this method is very smooth and the processing
is quite efficient and trivial. As for modifying region marks, users can utilize recursive
method via starting from one element of the membrane region and visiting the neighbors.
Users can also add more limitations as stop rules to control the marking process. Once
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(a) (b) (c)

Figure 9: Mesh of the gA channel after 8 refinements based on 5 times uniform refinements. (a) The triangles
of the solute surface; (b) y−z plane at x=0; (c) x−y plane at z=−3.5.

(a) (b)

Figure 10: Embedding a membrane slab for the gA channel. (a) Gramicidin A channel; (b) Embedded membrane
slabs and marked regions.

the region mark process ends, we should guarantee that the whole domain is composed
of one membrane region, one protein region together with the membrane region and no
isolated regions exist.

3.3 Mesh generation for the Dengue virus system

1K4R is the Dengue virus PDB code and the PQR file contains 1082160 atoms in the solute
region. To generate a high resolution mesh for such a huge molecular system, users have
to parallelize the generation process efficiently. 1K4R has a total of −360e charges, the
coordinates range (data type: int) is [−251,251]Å×[−251,251]Å×[−251,251]Å. Because
of memory limitation in Paraview, a mesh with more than 20 million vertices is hard to
visualize. Fig. 11 illustrates a small mesh containing a total of 2015192 tetrahedra and
363561 vertices, and the molecular surface contains 553702 triangles. Fig. 12(a) is the
molecular surface of the virus and it looks like a spherical envelope with pores scattered
on it. Fig. 11 is a close-up view of the mesh, which shows the pores formed by the gaps
among proteins.
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Figure 11: A close-up view of Dengue virus.

(a) (b)

Figure 12: Electrostatic potential distributions of 1K4R system. (a) Around the molecule; (b) at the x−y plane
through the center of domain.

As the numbers of atoms of 1K4R exceeds 1000000 and it costs several tens of minutes
in each refinement if we use the first method in Section 2.2.2 to mark the elements. By
contrast, Algorithm 1 is very robust and only costs seconds for each refinement. Table 2
elucidates the efficient refinement process, from which we can also observe the volume
and area changes of the solute region during refinement. It’s worth noting that the time
complexity of phgSurfaceCut is O(MN

k ), where N denotes the number of atoms, M the
number of edges and k the number of processes. Because the optimization of the user
function for phgSurfaceCut is nontrivial, we skip the surface cut process for 1K4R case
as its abundant atoms.

Using the generated mesh, we solve the nonlinear Poisson-Boltzmann equation in the
same main() function and calculate the electrostatic potential distribution in the domain.
The NaCl solution and the ionic strength is set as 50 mM. Fig. 12 shows the electrostatic
potential around the molecule. The potential range is from −5.59 to 5.24 kcal/mol·e and
is from −3.61 to 4.57 kcal/mol·e on the x−y plane through the point (0,0,0). From the
figures, we can find that strong potentials are all distributed around the molecular sur-
face and they debilitate in the solvent region and in the cavity. These simulation results
are comparable to our numerical results obtained by Boundary Element Method with
triangular meshes [42].
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Table 2: Mesh refinements for a Dengue virus envelope (PDB code: 1K4R) based on Algorithm 1. 1K4R
contains 1082160 atoms, and the coordinates ranges are x : [-251, 251]Å, y : [-251, 251]Å, z : [-251, 251]Å. The
following refinements use 32 processes.

Elements # Volume(Å3) Area(Å2) CPU time(ms)

68827 3.0127e+07 3.0706e+06 1.604e+01

94134 2.7047e+07 3.0896e+06 2.798e+01

150092 2.4125e+07 3.1815e+06 5.500e+01

240304 2.1615e+07 3.2827e+06 1.007e+02

424142 1.9452e+07 3.4084e+06 1.998e+02

749231 1.7680e+07 3.6384e+06 3.761e+02

1307192 1.6210e+07 3.7901e+06 6.906e+02

2380102 1.5006e+07 3.9862e+06 1.326e+03

4249181 1.4069e+07 4.2311e+06 2.444e+03

7445395 1.3274e+07 4.4063e+06 4.576e+03

13404398 1.2584e+07 4.6462e+06 8.912e+03

23608643 1.1989e+07 4.9825e+06 1.701e+04

3.4 Parallel efficiency of mesh generation method

In our paper, all the unstructured meshes are generated on distributed-memory computer
systems. To demonstrate the scalability, the same finer volume mesh is created using
different numbers of processors. The original coarse volume mesh is partitioned and
distributed into each processor. After mesh refinements, surface improvement (Surface
Cut, optional), region mark modification and surface type marking, the fine volume mesh
with specific boundary types is generated for finite element computation.

The numerical test is performed on the 1K4R case because of its large scale. It starts
from a coarse background mesh with 773 vertices and 3264 tetrahedra. After many times
refinements, the finer volume mesh has a total of 4207955 vertices and 23608643 tetrahe-
dra. To validate the efficiency and scalability of our algorithm, we use different numbers
of processors to get the volume mesh. The CPU times are shown in Table 3. Except for the
cases in which the total number of processes is not a multiple of 8, 8 processes are used
on each compute node so that we have exactly 1 process per core. Table 3 shows that
our algorithm can generate a mesh containing more than 20 million tetrahedra within a
minute by using 64 processors, which indicates a high efficiency of the algorithm.

Fig. 13 shows the speedup of the algorithm. Our test starts from 4 processes, thus it is
the baseline of the speed-up. During the calculation, the CPU time consumption is mainly
on the mesh refinement to generate a larger mesh. Fortunately, the parallel mesh refine-
ment achieves good scalability, which reduces the computing time much. The speed up of
mesh refinement is up to 24.8 when we use 64 processors. However, the performance of
modifying the region marks becomes worse when the number of processors is increased
because only the master processor handles the surface tags and the tags number increases
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Table 3: The CPU times using different numbers of processors.

Processors
CPU Time (s)

Mesh Refinement Modify Region Marks Overall

4 116.510 63.166 179.676

8 51.394 40.562 91.956

16 45.087 33.454 78.541

24 26.967 28.755 55.722

32 31.925 34.283 66.208

48 23.288 35.895 59.183

64 18.792 34.040 52.832

Figure 13: A Dengue virus model: speedups obtained for the whole mesh generation process.

as the number of processors grows. Fortunately, the time is still manageable because the
process of modifying region marks is only done to the final mesh. The overall speedup
is 13.6 when the number of processes is 64, which is also a good result.

4 Conclusion

This paper provides another approach for tetrahedral mesh generation besides our
previously developed standalone tool chain [37] for biomolecules. The mesh genera-
tion method takes advantage of the adaptive refinements interfaces of PHG. Moreover,
phgSurfaceCut in PHG is used to approximate the molecular Gaussian surface to im-
prove the refined meshes and is also used to set the membrane for ion channels. An effec-
tive marking strategy is also carried out to ensure the topological correctness. Our mesh
generation method is successfully applied to a sphere cavity model, a DNA fragment,
a gramicidin A channel and a huge virus molecular system 1K4R. The mesh generation
method is validated by the calculated results from FE solutions of the PBE, including elec-
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trostatic potential and solvation energy. The results of numerical experiments also show
good scalability of our parallel mesh generation algorithm. The most important advan-
tage is that the meshing process and finite element computing can be integrated in the
same program for convenient application for biomolecular simulations. In the future, the
geometric flow based methods can be taken into consideration for further improvement
of the quality of the generated meshes.
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A Appendix

Protein Data Bank (PDB) format is a standard for files containing atomic coordinates,
which is used for structures in the Protein Data Bank. PQR format is a modification of the
PDB format that allows users to add charge and radius parameters to existing PDB data
while keeping it in a format amenable to visualization with standard molecular graphics
programs. We read the data on a per-line basis from PQR files, the field names and
descriptions are given in Table 4.

Table 5 shows partial lines of the DNA fragment PQR file. It has 778 atoms in total
and the field of chainID is omitted here.

Table 4: Field names and descriptions of PQR format.

recordName Type of PQR entry, either be ATOM or HETATM

serial Atom index

atomName Atom name

residueName Residue name

chainID Chain ID of the atom, optional

residueNumber Residue index

X Y Z Three floats which provide the atomic coordinates

charge Atomic charge (in electrons)

radius Atomic radius (in A)
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Table 5: PQR file of the DNA fragment.

ATOM 1 O5’ G 1 -0.799 8.456 10.751 -0.6223 1.7210
ATOM 2 C5’ G 1 -0.046 9.672 10.891 0.0558 1.9080
ATOM 3 C4’ G 1 1.439 9.368 10.951 0.1065 1.9080
ATOM 4 O4’ G 1 1.747 8.741 12.221 -0.3548 1.6837
ATOM 5 C3’ G 1 1.947 8.370 9.911 0.2022 1.9080
ATOM 6 O3’ G 1 2.202 8.995 8.651 -0.5246 1.6837
ATOM 7 C2’ G 1 3.195 7.823 10.581 0.0670 1.9080
ATOM 8 C1’ G 1 2.760 7.766 12.041 0.0191 1.9080
ATOM 9 N9 G 1 2.216 6.444 12.461 0.0492 1.8240
ATOM 10 C8 G 1 0.910 6.017 12.481 0.1374 1.9080
ATOM 11 N7 G 1 0.758 4.782 12.911 -0.5709 1.8240
ATOM 12 C5 G 1 2.061 4.364 13.181 0.1744 1.9080
ATOM 13 C6 G 1 2.535 3.124 13.671 0.4770 1.9080
ATOM 14 O6 G 1 1.905 2.116 13.971 -0.5597 1.6612
ATOM 15 N1 G 1 3.931 3.131 13.811 -0.4787 1.8240
ATOM 16 C2 G 1 4.760 4.200 13.511 0.7657 1.9080
ATOM 17 N2 G 1 6.065 4.014 13.711 -0.9672 1.8240
ATOM 18 N3 G 1 4.310 5.370 13.051 -0.6323 1.8240
ATOM 19 C4 G 1 2.956 5.375 12.911 0.1222 1.9080
ATOM 20 H5’ G 1 -0.248 10.325 10.029 0.0679 1.3870

...
...

...
...

...
...

...
...

...
...

ATOM 768 H1’ C 12 8.785 -0.021 15.486 0.2029 1.2870
ATOM 769 H2’ C 12 7.636 0.310 17.963 0.0972 1.3870
ATOM 770 H3’ C 12 7.383 -2.032 18.406 0.0615 1.3870
ATOM 771 H6 C 12 6.426 -2.714 16.075 0.1958 1.4090
ATOM 772 H5 C 12 4.059 -2.603 15.413 0.1928 1.4590
ATOM 773 H41 C 12 2.570 0.576 14.223 0.4234 0.6000
ATOM 774 H42 C 12 2.305 -1.155 14.564 0.4234 0.6000
ATOM 775 O2’ C 12 9.754 -0.064 17.086 -0.6139 1.7210
ATOM 776 H5” C 12 9.009 -2.991 17.238 0.0679 1.3870
ATOM 777 H3T C 12 8.648 -1.160 20.194 0.4376 1.2000
ATOM 778 H2” C 12 9.723 0.799 16.668 0.4186 1.2000
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