
Computer Physics Communications 190 (2015) 173–181
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Parallel AFMPB solver with automatic surface meshing for calculation
of molecular solvation free energy✩

Bo Zhang a, Bo Peng b, Jingfang Huang c, Nikos P. Pitsianis d,e, Xiaobai Sun e, Benzhuo Lu b,∗

a Center for Research in Extreme Scale Technologies, Indiana University, IN, USA
b State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of
Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
c Department of Mathematics, the University of North Carolina at Chapel Hill, NC, USA
d Department of Electrical and Computer Engineering, Aristotle University, Greece
e Department of Computer Science, Duke University, NC, USA

a r t i c l e i n f o

Article history:
Received 11 August 2014
Received in revised form
23 November 2014
Accepted 25 December 2014
Available online 23 January 2015

Keywords:
Poisson–Boltzmann equation
Boundary integral equation
Automatic surface meshing
Solvation free energy
Fast multipole methods
Parallelization
Cilk Plus

a b s t r a c t

We present PAFMPB, an updated and parallel version of the AFMPB software package for fast calculation
of molecular solvation-free energy. The new version has the following new features: (1) The adaptive
fast multipole method and the boundary element methods are parallelized; (2) A tool is embedded
for automatic molecular VDW/SAS surface mesh generation, leaving the requirement for a mesh file at
input optional; (3) The package provides fast calculation of the total solvation-free energy, including
the PB electrostatic and nonpolar interaction contributions. PAFMPB is implemented in C and Fortran
programming languages, with the Cilk Plus extension to harness the computing power of both multicore
and vector processing. Computational experiments demonstrate the successful application of PAFMPB to
the calculation of the PB potential on a dengue virus systemwithmore than onemillion atoms and amesh
with approximately 20 million triangles.

Program summary

Program title: Parallel AFMPB
Catalogue identifier: AEGB_v2_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEGB_v2_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU General Public License, version 2
No. of lines in distributed program, including test data, etc.: 40558
No. of bytes in distributed program, including test data, etc.: 2349976
Distribution format: tar.gz
Programming language: Mixed C and Fortran, Compiler: Intel or GNU with Cilk Plus enabled.
Computer: Any, but the code is mainly designed for multicore architectures.
Operating system: Linux.
RAM: Depends on the size of the discretized biomolecular system.
Classification: 3.
Catalogue identifier of previous version: AEGB_v1_1
Journal reference of previous version: Comput. Phys. Comm. 184 (2013) 2618
External routines: Users are allowed to use external routines/libraries (e.g., MSMS [6] and TMSMesh [4])
to generate compatible surface mesh input data if they choose not to use the embedded automatic mesh
generation tool in the package. Post-processing tools such as VCMM [5] and VMD [3] can also be used for
visualization and analyzing results.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
∗ Corresponding author.

E-mail address: bzlu@lsec.cc.ac.cn (B. Lu).
http://dx.doi.org/10.1016/j.cpc.2014.12.022
0010-4655/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2014.12.022
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2014.12.022&domain=pdf
http://cpc.cs.qub.ac.uk/summaries/AEGB_v2_0.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:bzlu@lsec.cc.ac.cn
http://dx.doi.org/10.1016/j.cpc.2014.12.022

174 B. Zhang et al. / Computer Physics Communications 190 (2015) 173–181

The package uses two subprograms: (1) The iterative Krylov subspace solver, SPARSKIT, from Yousef Saad
[2]; and (2) Cilk-based parallel fast multipole methods from FMMSuite [1].
Does the new version supersede the previous version? Yes
Nature of problem: Numerical solution of the linearized Poisson–Boltzmann equation that describes
electrostatic interactions of molecular systems in ionic solutions.
Solution method: The linearized Poisson–Boltzmann equation is reformulated as a boundary integral
equation and is subsequently discretized using the node-patch scheme. The resulting linear system is
solved using Krylov subspace solvers iteratively. The reformulation of the equation provides an upper
bound for the number of iterations. Within each iteration, thematrix–vector multiplication is accelerated
using the adaptive plane-wave expansion based fast multipole methods. The majority of the codes are
parallelized using the Cilk runtime.
Reasons for new version: New functions are added and a few old functions like force calculations are
removed. The algorithm is parallelized and most parts of the code are rewritten.
Summary of revisions: The computation is parallelized and an automatic mesh generationmethod for BEM
is added.
Restrictions: The program has only been tested on machines running Linux operating system.
Additional comments: The Cilk runtime used in the development and testing is from the Intel compiler
Suite. The GNU Cilk Plus and Cilk Plus/LLVM branches have not been tested.
Running time: The running time depends on the number of discretized elements (N) and their distribution.
It also depends on the number of cores used in the computation.
References:
[1] http://www.fastmultipole.org/.
[2] http://www-users.cs.umn.edu/~saad/software/.
[3] http://www.ks.uiuc.edu/Research/vmd/.
[4] http://www.continuummodel.org.
[5] S. Bai, B. Lu, VCMM: A visual tool for continuum molecular modeling. J. Mol. Graph. Model. 50 (2014)
44–49.
[6] Scanner, F. Michel, Olson, J. Arthur, Spehner, J. Claude, Reduced surface: An efficient way to compute
molecular surfaces. Biopolymers 38 (1996) 305–320.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The Poisson–Boltzmann (PB) equation has been widely used to
model the electrostatic properties of biomolecules, membranes,
colloids, polyelectrolytes, and macromolecular objects. Efficient
numerical solution of PB equations has been an active research
topic in scientific computing. Many algorithms have been in-
troduced, including the multigrid method [1], precorrected-FFT
method [2], tree code [3], and the fast multipole method (FMM)
[4–7]. These algorithms reduce the computational complexity from
O(N2) to O(N logN), or asymptotically optimal O(N), where N
is the problem size. However, the efficiency was not satisfactory
when the PB calculation was applied to the macromolecular sys-
tems or an ensemble of molecular structures.

Substantial progress has beenmade in improving the efficiency
of PB calculations, such as the use of many-core graphic process-
ing units (GPUs) accelerators [8,9], distributed and shared mem-
ory programming via MPI and OpenMP [1,10–12]. In the work by
Geng et al. [10], a parallel higher-order boundary integral equation
method is implemented using MPI.

In this paper, we present a parallel version of the adaptive fast
multipole Poisson–Boltzmann equation solver (PAFMPB). Signifi-
cant differences from the previous sequential AFMPB package [6]
are: (1) PAFMPB targets multicore computer architectures and
utilizes Cilk Plus [13] for parallelization. (2) PAFMPB adds an in-
tegrated automatic mesh generation option to handle the circum-
stance when an external mesh file is not easily obtainable or the
mesh quality is not satisfactory for numerical simulation. (3) The
computation of the total solvation-free energy contains both polar
and nonpolar energy terms. (4) PAFMPB is written in mixed C and
Fortran programming languages. In preliminary numerical experi-
ments with PAFMPB, we have observed substantial improvements
in terms of parallel efficiency and memory usage.

The rest of the paper is organized as follows. In Section 2, we
briefly describe the individual elements of the PAFMPB package,
namely, the PB model, the boundary integral equation (BIE) re-
formulation, the surface mesh generation method, the node-patch
discretization approach, the Krylov subspace method, fast multi-
pole method with plane-wave expansion, and the Cilk Plus sys-
tem for parallelization. We present the code structure in Section 3.
Preliminary numerical results are presented in Section 4 to demon-
strate the accuracy and parallel performance of the solver.We con-
clude the paper in Section 5.

2. Mathematical models and discretization methods

We first give a brief review of the mathematical theories and
computational methods that underlie the PAFMPB package. We
then detail the new features in PAFMPB, in addition to that in [6]
and references therein.

2.1. Continuum electrostatic models and boundary integral equations

Electrostatic interactions within and between molecules in
electrolyte solution have long been recognized as playing a variety
of important roles in determining molecular structure and binding

http://www.fastmultipole.org/
http://www-users.cs.umn.edu/~saad/software/
http://www.ks.uiuc.edu/Research/vmd/
http://www.continuummodel.org

B. Zhang et al. / Computer Physics Communications 190 (2015) 173–181 175
activity. Consider a molecule immersed in an electrolyte solution.
The interior region (molecule) and the exterior region (solvent) are
denoted by Ω1 and Ω2, respectively. The interior potential φint(r)
is governed by the Poisson equation

− ∇ · (ϵint∇φint(r)) =

M
i=1

qiδ(r, ci) for r ∈ Ω1. (1)

The exterior potential φext(r) is governed by the Poisson–
Boltzmann equation [14]. In this work, we use an approximated
form of the PB equation, specifically, the linearized PB (LPB) equa-
tion as follows:

− ∇ · (ϵext∇φext(r)) = −κ2φext(r) for r ∈ Ω2. (2)

Here, ϵint denotes the dielectric constant inside the molecule, and
the molecule (the right-hand side of Eq. (1)) is represented by M
point charges qiec at positions ci, i = 1, 2, . . . ,M . The reciprocal
of the Debye length 1/κ characterizes the screening effect due to
the surrounding electrolyte solution. At molecular surface Γ , the
potential and the normal component of the electric displacement
must be continuous,

φint
= φext and ϵint

∂φint

∂n
= ϵext

∂φext

∂n
, (3)

where n denotes the outward unit normal vector to the molecular
surface and ϵext is the dielectric constant of the electrolyte solution.

Both equations in (1) and (2) can be recast into boundary in-
tegral equations (BIEs) using Green’s second identity. In fact, a
well-conditioned second kind Fredholm integral equation can be
obtained through a combination of the BIEs and derivative forms
of the BIEs [6]:

1
2ϵ

+
1
2

fp =

S

(Gpt − upt)ht

−

1
ϵ

∂Gpt

∂n
−

∂upt

∂n

ft

dS +

1
ϵext

k

qkGpk
1
2ϵ

+
1
2

hp =

S

∂Gpt

∂n0
−

1
ϵ

∂upt

∂n0

ht

−
1
ϵ

∂2Gpt

∂n0∂n
−

∂2upt

∂n0∂n

ft

dS +

1
ϵext

k

qk
∂Gpk

∂n0
. (4)

Here, ϵ =
ϵext
ϵint

, n0 and n are the unit normal vectors at point p ∈

Γ and t ∈ Γ , respectively.We denote by fp and hp the values ofφext

and ∂φext

∂n at point p, respectively. Wemake use of the fundamental
solutions to the Poisson equation Gpt and the LPB equation upt ,

Gpt =
1

4π |rt − rp|
, upt =

exp(−κ|rt − rp|)
4π |rt − rp|

.

2.2. Molecular surfaces and mesh generation

Numerical solution of the BIEs in Eq. (4) requires a discretization
of the molecular surfaces, namely, a mesh. The previous version of
AFMPB requires a mesh file as an input file. The mesh may be gen-
erated using existing packages such as MSMS [15] (for solvent ex-
cluded surface (SES) mesh generation). The mesh generation may
be considered as a preprocessing step, separated from the AFMPB
execution. Besides the inconvenience, some inconsistencymay oc-
cur between the mesh generation and the AFMPB requirement. In
PAFMPB, in addition to accepting external mesh files as input, we
provide an embedded meshing procedure that can discretize both
themolecular van derWaals (VDW) surface and solvent-accessible
surface (SAS) into triangular or quadrilateral patches, which are to
be used directly in the node-patch discretization discussed in the
next section. For large molecules, we make use of the recently de-
veloped TMSmesh package for generating triangular surface mesh
for the molecular Gaussian surface [16], which is smooth and an-
alytically differentiable with respect to the position of atoms. In
the rest of this section, we describe the automatic mesh genera-
tion procedure for VDW/SAS surface mesh and TMSmesh [17,16]
for Gaussian surface mesh generation, respectively.

Different definitions of themolecular surface (the boundary be-
tween the solute and the solvent) can affect the PB calculation re-
sults. Zhou et al. [18] compared theVDWsurface andmolecular SES
when applied in the PB calculations and concluded that the VDW
surface may yield better results than the molecular SES.

2.2.1. An auto-meshing procedure
In PAFMPB, an auto-meshing option is provided to conveniently

generate meshes for either the SAS or VDW molecular surfaces.
The latitude–longitude based method discretizes the surface into
either triangular or quadrilateral patches. These patches can be
directly used in the node-patch BEM [19], which needs only the
normal, area, and centroid coordinates for each node patch. The
method shares similar features as the program developed by Lee
and Richard [20], including the estimate of the SAS area and static
accessibility.

Following the convention in the study of biomolecular sys-
tems, we represent a molecule as a set of overlapping spheres,
and define the VDW or SAS surface as the topological boundary
of the spheres as follows: the set of atomic spheres is denoted as
{O1,O2, . . . ,OM}, each with radius ρi = RVDW

i + Rp, where RVDW
i is

the VDW radius, and Rp is a user-controllable parameter for differ-
ent types of surfaces. When Rp = 0, the surface is the VDW surface
and when Rp = Rwater = 1.4 Å, the surface is the SAS surface.

Our mesh generation subroutine consists of two stages. In the
first stage, each spherical surface is discretized using suitable lat-
itude and longitude lines to form surface elements and their ar-
eas and normal directions are calculated. For each sphere Oi, the
spherical surface is discretized by dividing the azimuthal angle β
(from 0 to 2π) into n equispaced intervals, 0 = β0 < β1 < · · · <
βn−1 < 2π , and dividing the sine of the polar angle θ (from −1
to 1) into m equispaced intervals, −

π
2 = θ0 < θ1 < · · · <

θm =
π
2 . We define [βj, βj+1] × [θk, θk+1] as one element. Its area

is ρ2
i (sin θk+1 − sin θk)(βj+1 − βj), and its normal direction is

cos
θk + θk+1

2
cos

βj + βj+1

2
, cos

θk + θk+1

2

sin
βj + βj+1

2
, sin

θk + θk+1

2

.

The surface discretization in this step generates l elements ei,1,
. . . , ei,l for sphere i, l = mn.

In the second stage, we modify any element whose central
point is located inside any sphere(s). Such elements are referred
to as ‘‘buried elements’’. For each Oi, we find all its intersecting
sphere(s), and then check whether each element ei,j is a buried el-
ement, 1 6 j 6 l. Non-buried elements are added to the surface
patch list directly. A two-atom system using the above method is
illustrated in Fig. 2.

This algorithm is simple, but has quadratic complexity inM , the
number of patches. We thereby recommend this automatic mesh-
ing option only formodest sizemolecules. Formacromolecules, ex-
ternal mesh generation tools should be applied, as in the original
AFMPB package. Particularly, we recommend the recently devel-
oped TMSmesh package for generating macromolecular surface
meshes for the BIE formulation.

Efficient generation of a high-qualitymesh has been a challeng-
ing problem to the scientific computing community for decades.

176 B. Zhang et al. / Computer Physics Communications 190 (2015) 173–181
Mesh generation remains a major bottleneck for computationally
intensive electrostatic analysis. To further improve efficiency, we
are currently investigating (1) octree-structure based schemes to
reduce the complexity of the latitude–longitude based method;
(2) proper parameterization procedure and higher order geomet-
ric representation to reduce the number of elements; and (3) fast
mesh modification strategies when the shape of the molecule
changes slightly at each time step. New resultswill be incorporated
in future releases of the PAFMPB package.

2.2.2. TMSmesh and Gaussian molecular surface
For a macromolecular system, it has been a long-standing chal-

lenge to generate a high-quality mesh. We recently developed
a robust program, TMSmesh [16], for generating macromolecular
Gaussian surfaces and the corresponding meshes.

The Gaussian molecular surface is defined as a level set of the
summation of the Gaussian kernel functions as follows:

Φ(x) =

M
i=1

e−d(|x−ci|2−ρ2
i)

= 1, x ∈ R3, (5)

where ci and ρi are the location and radius of atom i, respectively,
and d is a positive parameter controlling the decay speed of
the kernel functions. Compared to the VDW and SAS surfaces,
the Gaussian surface is usually smooth, without corner or edge
singularities. In addition, it is possible to adjust the parameter d
to approximate other types of surfaces.

In TMSmesh, a trace technique is used to mesh the Gaussian
surface. The program has a linear computational complexity in the
number of atoms, and is capable of treating arbitrarily largemacro-
molecules. An example of Gaussian surface mesh for the dengue
virus system consisting of 1082160 atoms is shown in Fig. 3(a),
with 9758 426 vertices and 19 502 784 elements. TMSmesh has
also been used to stably generate meshes for other systems such
as the 70S ribosome [16]. The mesh quality has been validated by
comparisonswithmeshes fromother programs, and by the simula-
tion results for the BIE-based newversion of the AFMPB solver. Fur-
ther details of the algorithms and comparisons can be found in [16].

2.3. Discretization and the ‘‘node-patch’’ method

We adopt a ‘‘node-patch’’ approach to discretize the BIEs in
Eq. (4). The approach can be considered as a modified linear el-
ement method in accuracy but it takes advantage of the ease of
programming as for the constant element method. Using the gen-
erated closed mesh approximation of the molecular boundary Γ ,
the unknowns in the traditional linear elementmethod are defined
at the vertices, and the surface function f (r), r ∈ Γ , is approxi-
mated by f (r) =

V
k=1 fkNk(r) using the linear element basis func-

tions {Nk(r), k = 1, 2, . . . , V }, where V is the number of vertices
in the mesh of Γ , fk is the value of f (r) at vertex k, and Nk(r) is a
piecewise linear functionwhich equals 1 at node k and 0 at all other
nodes. Similarly, we have h(r) =

V
k=1 hkNk(r). The discretized

form of Eq. (4) becomes
1
2ϵ

+
1
2

fp =

1
ϵext

k

qkGpk

+

V
k=1

t∈ϕ(k)

hk

St

Gpt − upt

NkdSt

− fk

St

1
ϵ

∂Gpt

∂n
−

∂upt

∂n

NkdSt

1
2

+
1
2ϵ

hp =

1
ϵext

k

qk
∂Gpk

∂n0
+

V
k=1

t∈ϕ(k)

hk

St

∂Gpt

∂n0
−

1
ϵ

∂upt

∂n0

NkdSt

−

V
k=1

t∈ϕ(k)

fk

St

1
ϵ

∂2Gpt

∂n0∂n
−

∂2upt

∂n0∂n

NkdSt (6)

where ϕ(k) is the set of indices for surface elements that contain
vertex k on themesh forΓ . Notice that in Eq. (6), one needs to com-
pute the nearly-singular and singular integrals representing the
convolution of Green’s function (and its derivatives) with a linear
function. For efficiency, in the ‘‘node-patch’’ BEM approach [19], a
patch is formed around each vertex (node), and the function is as-
sumed to be a constant on the node-patch, namely, the function
on each element is a piecewise constant (non-continuous) func-
tion.When the node-patch is carefully designed, one should expect
comparable accuracy to that with the linear elementmethods. One
needs to compute only the convolution of theGreen’s functionwith
a piecewise constant function. The node-patch discretization leads
to a linear system Ax = b, where x denotes the unknowns, A and
b are the coefficient matrix and right hand side of Eq. (6), respec-
tively.

The node-patch approach has several advantages. (1) The total
number of unknowns is reduced for a prescribed accuracy require-
ment when compared with the constant element method, hence
reducing the computational cost when solving the resulting linear
system. (2) When the matrix is split into the near and far fields
A = Anear + Afar, the calculation and storage process of Anear by
the node-patch approach are more economic compared with the
linear element approach. (3) The source and target points are the
one and same set of nodes, like the constant element method, al-
lowing the application of the symmetric FMM from the FMMSuite
package [19].

2.4. The Krylov subspace method for solving a linear system

For the discretized linear system, the PAFMPB solver searches
for the optimal least-squares approximation of the solution in the
Krylov subspace Km(A, r0) = span{r0, Ar0, . . . , Am−1r0} for m > 1,
where r0 is the initial residual. As the resulting linear system is in
general nonsymmetric, the GMRES, biconjugate gradient stabilized
(BiCGStab), and transpose-free Quasi-Minimum Residual (TFQMR)
can be applied. In the current version of PAFMPB, the subroutines
from the open source package SPARSKIT [21] are used, which
follow the ‘‘reverse communication protocol’’ with a simple and
effective interface for integrating the iterative subroutines with a
user-customized matrix–vector product procedure.

The convergence of a Krylov subspace method depends on the
initial guess and eigenvalue distribution of the linear system. In
the current implementation, the right hand side is used as the
initial guess, as the formulation is already a Fredholm second
kind equation.We are investigating possible approaches to further
improving the efficiency of the Krylov iterative approach, by nu-
merically preconditioning the linear system resulting from the
Fredholm second-kind integral equation formulation, and by fur-
ther exploiting the parallel potential of the Krylov subspace
method.

2.5. The fast multipole method with plane wave expansion

Each step of the Krylov subspace method involves a ma-
trix–vector multiplication, for which the FMM takes O(N) opera-
tions while the direct evaluation takes O(N2) operations, where N
is the dimension of linear system. In the PAFMPBpackage,we apply
the new version of the fast multipole method [22], which lowers
the time and space complexity further by a significant factor.

B. Zhang et al. / Computer Physics Communications 190 (2015) 173–181 177
The use of plane wave expansions is the main difference be-
tween the original version of the FMM and its new version. The
FMM arrives at the linear-scaling, asymptotically optimal com-
plexity by exploiting themathematical properties with novel com-
putation mechanisms. The basic observation is that the submatrix
corresponding to the interactions between sources and targets that
are sufficiently far apart is of low rank, bounded from above by a
constant. The basic idea is to partition the interacting particles into
far and near-neighbors, and partition them recursively at multiple
spatial scale levels. The FMMhas a simple spatial partition scheme,
which is described in a data structure such as an octree for the 3D
case. The root node represents a box enclosing all the source and
target particles. The root box is partitioned in halves in each di-
mension into eight children boxes. Each child box is partitioned
the same way, recursively. The far–neighbor particle interac-
tions are then orchestrated into the interactions between particle
ensembles in far–neighbor boxes at multiple levels. Each sub-
matrix corresponding to the particle interactions between a pair of
far–neighbor boxes is of lower rank. The information in each source
box is aggregated up to the parent box, passed across at the same
level to designated far–neighbor boxes, according to the interac-
tion lists. The accumulated potential at each target box is disaggre-
gated down to its children boxes. In its original version, the FMM
represents and compresses the entire interaction matrix in terms
of translationmatrices via the classical spherical harmonics expan-
sions [23]. In its new version [22], the FMM uses the plane wave
or exponential expansions to diagonalize the up, down and across
translations, and hence further reduces the translation and inter-
action complexity.

2.6. Cilk Plus and PAFMPB

A major change in PAFMPB package lies in parallelizing the
FMM and BEM components to utilize multicore computer archi-
tectures. Here, parallelizing the algorithms can be considered as
traversing the directed acyclic graph (DAG) of the computation de-
pendencies in parallel. We point out that the problem of parallel
traversing a DAG of N nodes in the shortest time, with the number
of processing units constant (more than two) is NP-complete [24].
We study strategies for near-optimal solutions.

An earlier strategy studied was reported in [25], based on a
dynamic prioritization scheme, implemented using Pthreads. The
idea is to rank the nodes in the DAG adaptively when the number
of nodes is far more than the number of available processing units.
Particularly, the ranking is based on the longest path of each node
to the final sink node. When two frontier nodes are of the same
rank, an ordered pair is associated with each node c , defined as
⟨d−

m(c), ns(c)⟩,

d−

m(c) = min
(c,d)∈E(G)

deg−(d), (7)

where (c, d) is a directed edge from c to d in the edge set E(G), and
deg−(d) is the in-degree at node d. When d−

m(c) = 1, ns(c) equals
the number of direct successors of c with in-degree 1. That is, c
is the only node in the way to release and enable these successor
nodes. Otherwise, ns(c) equals the out-degree of c , deg+(c). The
completion of c makes its successors one step closer to the front.
For two equal-ranked nodes u and v, we give u a higher priority if

⟨d−

m(u), −ns(u)⟩ < ⟨d−

m(v), −ns(v)⟩ (8)

in the lexicographical order. If the two nodes have the same pri-
ority, a random selection is applied to break the tie. Essentially,
the dynamic prioritization approach implemented in [25] can be
viewed as a work-sharing approach, where available tasks are put
in a priority queue based on their rank for available processing
units. Notice that mutual exclusion is needed for operations on
the queue and this could become a bottleneck when the number
of processing units increases.

More recently, we adopted an alternative approach to paral-
lelizing the traversal of FMM DAG and the BEM components using
Cilk Plus. Cilk Plus is an extension to the C/C++ language. It intro-
duces three new keywords to express data and task parallelism.
New tasks can be spawned using cilk_spawn and cilk_for
and synchronized usingcilk_sync. The runtime scheduler of Cilk
Plus creates a worker thread for each processor core present on a
system. Each worker maintains a double-ended queue (deque) for
storing tasks yet to be executed. When a worker thread executes a
cilk_spawn or cilk_for statement, it simply pushes new tasks
onto the tail of its deque. Unlike thework-sharing approach in [25],
the scheduler of the Cilk Plus runtime implements a work-stealing
schemewith a proven performance guarantee [13].When aworker
has no work to do, it steals a task from the front of some other
worker’s deque. The Cilk Plus compiler and runtime is supported
in the Intel compiler toolchain as well as in the open source com-
pilers from the GCC and the LLVM. Our experiments show that Cilk
Plus-based parallel FMM solvers are easy to manage and perform
better than the dynamic prioritization code using Pthreads.

2.7. Evaluating the total solvation-free energy

In PAFMPB, an empirical approach is provided to compute the
nonpolar contribution to the solvation free energy, which depends
on the molecular surface area and volume. The related parame-
ters are user-specified in the input file. Combining the polar (elec-
trostatic) and nonpolar contributions, the total free energy can be
computed as

∆E = ∆Ep + ∆Enp. (9)

The nonpolar term, ∆Enp, includes the energetic cost of cavity for-
mation, solvent rearrangement and solute–solvent dispersion in-
teractions introduced when the uncharged solute is brought from
vacuum into the solvent environment. The polar term ∆Ep is de-
termined by the PB solution.

The solute charge generates a Coulombic potential field and po-
larizes the solvent, which in turn generates a reaction potential in
the solute. The electrostatic potential of a molecule can therefore
be expressed as the sum of the Coulomb potential φc and reaction
field potential φr induced by solvent polarization:

φ(r) = φc + φr.

Once the electrostatic potential φ(r) is obtained, the electrostatic
contribution of solvation-free energy is computed by

∆Ep =
1
2

M
i=1

qiφr(ri)

=
1
2

M
i=1

qi

S

Git

∂φint
t

∂n
−

∂Git

∂n
φint
t

dSt

=
1
2

M
i=1

qi

t

ϵGitht∆St −

∂Git

∂n
ft∆St

.

The nonpolar solvation energy depends on the surface area and
volume:

∆Enp = γ S + pV + b (10)

where S andV are the surface area and volume of the cavity created
by the molecule, respectively, and γ , p and b are fitted param-
eters, predefined in the input file. Parameter γ has the dimen-
sions of a surface tension coefficient, parameter p has the pressure
dimensions, and parameter b has the energy dimensions. They

178 B. Zhang et al. / Computer Physics Communications 190 (2015) 173–181
depend on the force field and the definition of molecular sur-
face because the atomic radii and charges (from the force field)
and the surface definition determine together the boundary be-
tween the solvent and the solute and, therefore, the surface area
S, volume V and the polar contributions to free energies. For in-
stance, the particular values γ = 0.005 kcalmol−1Å−2, p =

0.035 kcalmol−1Å−3 and b = 0 kcalmol−1 are used in [26].
In this paper, we omit the attractive nonpolar solvation interac-
tions, for the same reason given in [26]. We mention that the
nonpolar solvation energy expressions similar to Eq. (10) can be
derived using the scaled particle theory [27]. A more detailed
information for the evaluation of these terms is given in [28].
Eq. (10) reduces to the popular area-only nonpolar implicit solvent
model when p = 0 [29,30]. In addition, b is set to 0 kcalmol−1 in
all the following test examples of this work.

3. Code structure and implementation

PAFMPB features parallelized FMMs and dynamicmemory allo-
cation,making it possible to study protein systemswithmillions of
atoms. In addition, an auto-discretizationmethod for the VDW/SAS
surfaces and an empirical formulation for calculating the nonpo-
lar solvation energy are implemented to facilitate the use of the
package. Another feature is the introduction of Linux command-
line tools that can load and analyze the input file and accurately
track the memory consumption.

In the following, we describe portability and installation of the
package, several utility tools, file formats and I/O layers, and job
running samples.

3.1. Portability and installation

PAFMPB is programmed mostly in ANSI C and Fortran 77.
Memory allocation functions from the standard C library are used.
After the user downloads the package, the following directories can
be found upon extraction:

• src: contains the driver program afmpb-main.c, the inter-
face file afmpb-compute.c, and utility file afmpb-utils.c.
File afmpb-solve.c provides routines for BEM calculation.
Files fmm-graph.c, fmm-laplace.c, fmm-yukawa.c and
fmm-utils.c provide the parallelized FMM for Laplace and
Yukawa kernels. File afmpb-automesh.c provides the auto
mesh generation. File sparskit.f provides the Krylov sub-
space iterative solver [21].

• include: contains header files adap_fmm.h and afmpb.h
that define data types and declare function prototypes.

• example: contains one README file, two sample job files
(job.sh and job-automesh.sh), and the generated files
(input.txt and output.txt).

• tools: containsmeshgeneration tools, including the TMSmesh
tool. Details about these tools are provided in the next section.

In addition, a Makefile is supplied. The current package is
based on Intel compiler and Linux command-line environments.
The environment variable LD_LIBRARY_PATH for the library
libcilkrts.so should be added before compiling and running
PAFMPB.

3.2. Utility tools

The directory tools contains tools for mesh generation. One
script (pqrmsms.sh) and two executable files (MSMS, TMSmesh)
are provided. Given a PQR file (e. g. fas2.pqr in the directory), a
MSMS format mesh can be generated by running the command

./pqrmsms.sh fas2.pqr 4 1.4
The last two parameters specify the node density (in the unit of 1
per Å2) and probe radius in the unit of Å, respectively. One can also
use TMSmesh (available at www.continuummodel.org) to gener-
ate an OFF format mesh by running the command

./TMSmesh fas2.pqr 0.6 2.0

Themolecule and calculated surface potential can be visualized
and analyzed using our visualization program VCMM [31], or the
tool VMD as described in our previous version of AFMPB [6].

3.3. Job execution

PAFMPB is executed in a terminal environment, accepting the
following parameters from the command line:

• -i: followed by input file name.
• -o: followed by output file name.
• -s: followed by surface potential file name.
• -t: followed by an integer number (the number of cores used).

PAFMPB expects the following input files: (a) a control parameter
file (input.txt by default), (b) a PQR file containing atomic
charges and their locations, and (c) a molecular surface mesh file
when the auto meshing function is not used.

A log file (output.txt by default) and a surface potential file
(default: surfp.dat) are generated automatically at the comple-
tion of PAFMPB execution.

The sample input files and job script files can be found in the
program package and on our website www.continuummodel.org.
A web server will also be provided.

4. Numerical results

In this section, we present numerical results for several test
cases. In all cases, the relative dielectric constants are set to be
2 inside the molecule and 80 in the electrolyte solution, the
monovalent ionic concentration is 150 mM, and the temperature
is 300 K. Unless stated otherwise, N ,M and Niter denote the degree
of freedom of the system (2 times the number of vertices), number
of atoms in protein, and numbers of GMRES iterations for solving
the LPB, respectively. The unit of the polar and nonpolar solvation
energies is kcal/mol and the CPU time is measured in seconds.

4.1. Accuracy and efficiency of PAFMPB

We solve the LPB and compute the electrostatic solvation
energy on a series of proteins with PAFMPB and previous versions
of AFMPB. The numerical results are reported in Table 1. The
first column is the molecule name. Columns 4 and 5 give the
numbers of GMRES iterations for solving the LPB. We notice that
both AFMPB solvers convergewithin 20 iterations, due to thewell-
conditioned integral equation formulation. Columns 6 and 7 report
the polar solvation energies; results from different versions are
very similar. The last two columns show the CPU time. Because of
code optimization, the updated version shows better performance,
especially for large systems.

4.2. Assessment of auto-generated mesh quality

For small molecules, PAFMPB works well using the automati-
cally generated surface mesh. In this section, we first consider a
spherical cavity. Since the analytical solution is available, to assess
the accuracy of the auto-generated mesh, we measure the errors
in the potential Φ (denoted by errf) and in the normal derivative

http://www.continuummodel.org
http://www.continuummodel.org

B. Zhang et al. / Computer Physics Communications 190 (2015) 173–181 179
Table 1
Computational performance on 5 proteins using a single core and using MSMS mesh: GLY, diALA, ADP, FasII, AChE. ‘‘old’’ and ‘‘new’’ denote the AFMPB and PAFMPB,
respectively.

PQR N M Niter Ep CPU time
Old New Old New Old New

GLY 1640 7 5 6 −4.52 −4.52 0.26 0.22
diALA 2030 20 6 7 −8.30 −8.30 0.39 0.35
ADP 5660 39 7 8 −267.65 −267.80 1.31 1.14
FasII 36 702 906 11 11 −532.43 −532.43 17.57 15.27
AChE 427020 8280 18 17 −2809.10 −2809.31 624.69 326.63
AChE 887542 8280 19 18 −2818.75 −2819.50 1406.70 552.29
AChE 1335670 8280 19 17 −2822.70 −2823.37 2027.20 892.38
Table 2
Accuracy from auto generated meshes and icosahedron-based meshes.

Auto generated meshes Icosahedron-based meshes
N errf errh N errf errh

196 0.70 0.72 1 284 0.34 0.39
900 0.24 0.31 5 124 0.27 0.19

3 364 0.12 0.17 20 484 0.19 0.18
12 544 0.07 0.11 81 924 0.16 0.17

∂Φ

∂n (denoted by errh). The error is defined as

errf =

Γ

|f num − f exact|2dS
1/2

where the superscript ‘‘num’’ and ‘‘exact’’ denote the numerical
and exact solutions of f , respectively, and the definition of errh is
similar. The auto-generated mesh is compared with a set of more
uniform icosahedron-based mesh (only used for spherical cavity)
used in the old AFMPB. In our setup, I = 150 mM, T = 300
K, f exact = 3.69, and hexact

= −4.15. Table 2 lists the errors
at different auto-mesh densities and different icosahedron-based
mesh densities. Table 2 shows that the auto-generated mesh leads
to accurate results.

To further illustrate the quality of the auto-generated sur-
face meshes on the electrostatic calculation for proteins, we com-
pute the electrostatic solvation energies of GLY at various mesh
resolutions. Since the exact solution is unavailable in this case,
we compare the numerical iterations and solvation energies with
those using MSMS meshes. Different probe radii (1.40, 0.10, 0.05,
0.00) and the same density 10 are used to generate four dif-
ferent MSMS mesh files. Table 3 shows the results from the
auto-generatedmeshes andMSMSmeshes. In nonpolar energy cal-
culations, the surface tension coefficient γ and pressure p are set to
be 0.005 kcalmol−1Å−2 and 0.035 kcalmol−1Å−3 [26], respectively.

As indicated by Table 3, the number of GMRES iterations using
the auto-generated mesh remains stable, despite the increase of
the automesh resolution. Furthermore, when the probe radius is
smaller in MSMS (the molecular surface is then closer to VDW
surface), the calculated energies are closer to those obtained using
auto-meshing on the VDW surface.
Table 4
Memory and GMRES iteration steps for solving the LPBE usingMSMSmeshes on the
case FasII. Memory is in unit of MB.

N Memory Niter Ep Enp

67192 1395 47 −522.69 280.26
140906 2254 33 −525.77 280.39
280744 3305 13 −525.10 280.44
575526 6253 13 −524.81 280.47

1163740 10917 14 −524.03 281.50

4.3. Parallel efficiency

To study the speedup factor from parallelization, PAFMPB is
tested on FasII, a 68-residue protein at various mesh resolutions.
We list the CPU times and memory requirement using different
number of cores. The simulations are performed on an eight-core
desktop workstation with an Intel Xeon CPU @2.44 GHz and 48 GB
memory. Table 4 displays the memory requirement and iterations.
Fig. 1 shows the speedup for different cores.

In Table 4, the numbers of vertices, hence the mesh density, is
approximately doubled each time. The solvation energies are ap-
proaching the value at the largest density. When the degrees of
freedom (column 1) increase, the numbers of iterations (column 3)
are not increasing. From Table 4 and Fig. 1(a), the memory and av-
erage CPU time per GMRES iteration scale almost linearly with the
degrees of freedom. From Fig. 1(b), a parallel efficiency of more
than 94% is achieved when using 4 cores and 86% when using 8
cores.

We present next, parallel scalability results with the AChE
molecule data set. Table 5 displays the timing results in seconds.
In this table, column 1 is the number of cores and column 2 is the
time to compute the geometrical mesh information used in ‘‘node-
patch’’ method. Column 3 is the time for computing the polar sol-
vation energy by FMM calls. Column 4 is the time for computing
the right hand side of Eq. (4). Column 5 is the time for assembling
thematrix. Columns 6 and 7 are for the near-field and far-field (us-
ing FMM) matrix–vector products, respectively. The last column
displays the total time for running the program. The most time-
consuming part (more than three fourths of the total CPU time
cost) is the far-field integration. The energy calculation, matrix as-
sembly, and near-field integration also consume considerable CPU
time. Most of these parts have good parallel scalability. The mesh
Table 3
Comparison of number of GMRES iterations and energy results from auto generated meshes (VDW surface) andMSMSmeshes from different probe radius. Rp denotes probe
radius.

Auto-generated meshes MSMS meshes
N Niter Ep Enp(VDW) Rp(N) Niter Ep Enp

416 6 −4.47 1.40 1.40(820) 6 −4.52 2.93
876 7 −4.43 2.32 0.10(947) 8 −4.46 2.88

1762 7 −4.38 2.45 0.05(965) 6 −4.42 2.88
3529 7 −4.32 2.97 0.00(825) 6 −4.34 2.94

180 B. Zhang et al. / Computer Physics Communications 190 (2015) 173–181
Fig. 1. Parallel performance of PAFMPB applied to molecule FasII. (a) Total CPU time for one GMRES iteration step as a function of mesh size. (b) Speedup for different
number of cores using different mesh sizes (using the performance of one core as a reference).
Table 5
CPU times for main functions in PAFMPB for molecule AChE. (8280 atoms and 427064 elements, MSMS meshes were used).

cores Tgeometry Tenergy Trh TA Tnear Tfar Ttotal

1 0.36 69.74 5.24 42.87 38.01 534.30 694.02
2 0.31 36.31 2.73 22.65 19.66 277.05 362.12
4 0.28 18.47 1.41 12.26 10.18 139.28 185.43
8 0.26 9.92 0.75 13.26 5.48 72.76 105.78
Fig. 2. Auto generated triangular (at two poles) and quadrilateral elements for a
two-atom system.

geometry and mesh generation parts have poor scalability in our
current code; however, their CPU time is negligible compared to
other parts. We are currently studying effective ways to parallelize
the geometry related parts and the matrix assembly.
4.4. Large molecular system

The previous AFMPB [6] is limited to the simulation of medium
size molecules. PAFMPB uses a dynamic memory allocation tech-
nique, and efficiently simulates larger macromolecules such as the
dengue virus which consists of 1082160 atoms. In our simulation,
we use the TMSmesh to obtain a mesh that has 19502784 ele-
ments and 9758426 vertices. Since this mesh exceeds thememory
capacity of themachine used for scaling test, the calculation is per-
formed on an Intel Xeon X7550 machine with 2.00 GHz and 1 TB
memory. PAFMPB solver terminates and output result after 70GM-
RES iterations in 39117 s using 2 cores. Fig. 3(b) shows the surface
potential obtained with the PAFMPB.

4.5. Visualization

The package VCMM (visual tool for continuum molecular
modeling), developed by Bai and Lu [31], can be conveniently
used with PAFMPB package to visualize and analyze the surface
mesh and numerical results. The output data formats for mesh
and surface potential files from PAFMPB can be directly adopted
by VCMM. Figs. 2 and 3 are produced by VCMM. Alternatively,
VMD [32] can be applied for visualizing the simulation results [6].
Fig. 3. Visualization of a dengue virus system using VCMM [31]. (a) A surface mesh computed by TMSmesh consists of 19502784 elements and 9758426 vertices. (b)
Surface potentials. Color bar is in unit of kcal/mol.ec .

B. Zhang et al. / Computer Physics Communications 190 (2015) 173–181 181
5. Conclusions

We have presented the PAFMPB solver for computing the
electrostatic properties and solvation energies of biomolecular
systems. Compared with the original AFMPB solver, PAFMPB
utilizes the Cilk Plus runtime for parallelization, and solves the
well-conditioned boundary integral equation reformulation of
the linearized PB equation. Cilk Plus is easy to use with only
three new keywords. Its scheduler provides a proven performance
guarantee.We also integrate an automaticmesh generation option
to generate the molecular VDW/SAS in the updated version; and
provide a model to compute the total solvation free energy that
includes both the polar and nonpolar parts. The PAFMPB package
has been applied to study a virus molecule with millions of
degrees of freedom on a workstation, which is impossible using
our previous version.

Acknowledgments

The authors thank other members in Professor Lu’s group for
useful discussions and technical supports on mesh generation and
3D visualization. The work of Lu and Peng was supported by
the State Key Laboratory of Scientific/Engineering Computing, Na-
tional Center forMathematics and Interdisciplinary Sciences of the
Chinese Academy of Sciences, the China NSF (91230106) and 863
program (2012AA020403). Thework of Zhang and Huangwas sup-
ported by the National Science Foundation Awards #0905473 and
#1217080, and the work of Sun and Pitsianis was supported by the
National Science Foundation Award #0905164.

References

[1] N.A. Baker, D. Sept, S. Joseph, M.J. Holst, Electrostatics of nanosystems:
Application to microtubules and the ribosome, Proc. Natl. Acad. Sci. USA 98
(2001) 10037–10041.

[2] J.R. Phillips, J.K. White, A precorrected-FFT method for electrostatic analysis of
complicated 3-D structures, IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst. 16 (1997) 1059–1072.

[3] W. Geng, R. Krasny, A treecode-accelerated boundary integral Pois-
son–Boltzmann solver for electrostatics of solvated biomolecules, J. Comput.
Phys. 247 (2013) 62–78.

[4] L. Greengard, J. Huang, A new version of the fast multipole method for
screened Coulomb interactions in three dimensions, J. Comput. Phys. 180
(2002) 642–658.

[5] B. Lu, X. Cheng, J. Huang, J.A. McCammon, Order N algorithm for computation
of electrostatic interactions in biomolecular systems, Proc. Natl. Acad. Sci. USA
103 (2006) 19314–19319.

[6] B. Lu, X. Cheng, J. Huang, J.A. McCammon, AFMPB: An adaptive fast multipole
Poisson–Boltzmann solver for calculating electrostatics in biomolecular
systems, Comput. Phys. Comm. 181 (2010) 1150–1160.

[7] A.H. Boschitsch, M.O. Fenley, H. Zhou, Fast boundary element method for the
linear Poisson–Boltzmann equation, J. Phys. Chem. 106 (2002) 2741–2754.
[8] R. Yokota, J.P. Bardhan, M.G. Knepley, L.A. Barba, T. Hamada, Biomolecular
electrostatics using a fast multipole BEM on up to 512 GPUs and a billion
unknowns, Comput. Phys. Commun. 182 (2011) 1272–1283.

[9] W. Geng, F. Jacob, A GPU-accelerated direct-sum boundary integral Pois-
son–Boltzmann solver, Comput. Phys. Commun. 184 (2013) 1490–1496.

[10] W. Geng, Parallel higher-order boundary integral electrostatics computation
on molecular surfaces with curved triangulation, J. Comput. Phys. 241 (2013)
253–265.

[11] C. Li, L. Li, J. Zhang, E. Alexov, Highly efficient and exact method for
parallelization of grid-based algorithms and its implementation in DelPhi,
J. Comput. Chem. 33 (2012) 1960–1966.

[12] C. Li, M. Petukh, L. Li, E. Alexov, Continuous development of schemes for
parallel computing of the electrostatics in biological systems: implementation
in DelPhi, J. Comput. Chem. 34 (2013) 1949–1960.

[13] F. Matteo, E.L. Charles, H.R. Keith, The implementation of the Cilk-
5 multithreaded language, In: Proceedings of the 1998 ACM SIGPLAN
Conference on Programming Language Design and Implementation, 1998.

[14] B.Z. Lu, Y.C. Zhou, M.J. Holst, J.A. McCammon, Recent progress in numerical
methods for the Poisson–Boltzmann equation in biophysical applications,
Commun. Comput. Phys. 3 (2008) 973–1009.

[15] M.F. Scanner, A.J. Olson, J.C. Spehner, Reduced surface: an efficient way to
compute molecular surfaces, Biopolymers 38 (1996) 305–320.

[16] M. Chen, B. Lu, TMSmesh: A robust method for molecular surface mesh
generationusing a trace technique, J. Chem. Theory Comput. 7 (2011) 203–212.

[17] www.continuummodel.org.
[18] X. Pang, H. Zhou, Poisson–Boltzmann calculations: van derWaals ormolecular

surface? Commun. Comput. Phys. 13 (2013) 1–12.
[19] B. Lu, J.A. McCammon, Improved boundary element methods for Pois-

son–Boltzmann electrostatic potential and force calculations, J. Chem. Theory
Comput. 3 (2007) 1134–1142.

[20] B. Lee, F.M. Richards, The interpretation of protein structures: Estimation of
static accessibility, J. Mol. Biol. 55 (1971) 379–400.

[21] http://www-users.cs.umn.edu/~saad/software/.
[22] L. Greengard, V. Rokhlin, A new version of the fast multipole method for the

Laplace equation in three dimensions, Acta Numer. 6 (1997) 229–269.
[23] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput.

Phys. 73 (1987) 325–348.
[24] J.D. Ullman, NP-complete scheduling problems, J. Comput. System Sci. 10

(1975) 384–393.
[25] B. Zhang, J. Huang, N.P. Pitsianis, X. Sun, Dynamic prioritization for parallel

traversal of irregularly structured spatio-temporal graphs, In: Proceedings of
the 3rd USENIX on Hot Topics in Parallelism, 2011.

[26] J.A. Wagoner, N.A. Baker, Assessing implicit models for nonpolar mean
solvation forces: The importance of dispersion and volume terms, Proc. Natl.
Acad. Sci. USA 103 (2006) 8331–8336.

[27] R.A. Pierotti, A scaled particle theory of aqueous and nonaqueous solutions,
Chem. Rev. 76 (1976) 717–726.

[28] A.V. Marenich, C.J. Cramer, D.G. Truhiar, Universal solvation model based on
solute electron density and on a continuum model of the solvent defined by
the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113
(2009) 6378–6396.

[29] I. Massova, P.A. Kollman, Combined molecular mechanical and continuum
solvent approach (MM-PBSA/GBSA) to predict ligand binding, Perspect. Drug
Discovery Des. 18 (2000) 113–135.

[30] K.A. Sharp, A. Nicholls, R.F. Fine, B. Honig, Reconciling the magnitude of
the microscopic and macroscopic hydrophobic effects, Science 252 (1991)
106–109.

[31] S. Bai, B. Lu, VCMM: A visual tool for continuum molecular modeling, J. Mol.
Graphics Modell. 50 (2014) 44–49.

[32] http://www.ks.uiuc.edu/Research/vmd/.

http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref1
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref2
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref3
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref4
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref5
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref6
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref7
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref8
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref9
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref10
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref11
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref12
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref14
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref15
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref16
http://www.continuummodel.org
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref18
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref19
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref20
http://www-users.cs.umn.edu/~saad/software/
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref22
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref23
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref24
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref26
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref27
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref28
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref29
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref30
http://refhub.elsevier.com/S0010-4655(15)00008-9/sbref31
http://www.ks.uiuc.edu/Research/vmd/

	Parallel AFMPB solver with automatic surface meshing for calculation of molecular solvation free energy
	Introduction
	Mathematical models and discretization methods
	Continuum electrostatic models and boundary integral equations
	Molecular surfaces and mesh generation
	An auto-meshing procedure
	TMSmesh and Gaussian molecular surface

	Discretization and the ``node-patch'' method
	The Krylov subspace method for solving a linear system
	The fast multipole method with plane wave expansion
	Cilk Plus and PAFMPB
	Evaluating the total solvation-free energy

	Code structure and implementation
	Portability and installation
	Utility tools
	Job execution

	Numerical results
	Accuracy and efficiency of PAFMPB
	Assessment of auto-generated mesh quality
	Parallel efficiency
	Large molecular system
	Visualization

	Conclusions
	Acknowledgments
	References

