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Parameter-efficient Densely Connected Dual
Attention Network for Phonocardiogram

Classification
Keying Ma, Jianbo Lu, and Benzhuo Lu

Abstract— Cardiac auscultation, exhibited by phonocar-
diogram (PCG), is a non-invasive and low-cost diagnostic
method for cardiovascular diseases (CVDs). However, de-
ploying it in practice is quite challenging, due to the inher-
ent murmurs and a limited number of supervised samples
in heart sound data. To solve these problems, not only
heart sound analysis based on handcrafted features, but
also computer-aided heart sound analysis based on deep
learning have been extensively studied in recent years.
Though with elaborate design, most of these methods still
use additional pre-processing to improve classification per-
formance, which heavily relies on time-consuming experi-
enced engineering. In this paper, we propose a parameter-
efficient densely connected dual attention network (DDA)
for heart sound classification. It combines two advantages
simultaneously of the purely end-to-end architecture and
enriched contextual representations of the self-attention
mechanism. Specifically, the densely connected structure
can automatically extract the information flow of heart
sound features hierarchically. Alongside, improving contex-
tual modeling capabilities, the dual attention mechanism
adaptively aggregates local features with global dependen-
cies via a self-attention mechanism, which captures the
semantic interdependencies across position and channel
axes respectively. Extensive experiments across stratified
10-fold cross-validation strongly evidence that our pro-
posed DDA model surpasses current 1D deep models on
the challenging Cinc2016 benchmark with significant com-
putational efficiency.

Index Terms— Cinc2016, dense block, dual attention,
phonocardiogram.

I. INTRODUCTION

CARDIOVASCULAR diseases (CVDs) are consistently
heavy threats to human health [1]. Early detection of

CVDs, including pathological conditions related to blood
vessels and heart valves, is quite important for follow-up coun-
seling and medical therapy to reduce mortality. Heart sound
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auscultation, as an integral part of the physical examination,
enables the detection of many pathological heart diseases and
can be used as a basis for further diagnostic workup [2].
Therefore, studying a system that can assist in the diagnosis of
heart sound auscultation is necessary for the early treatment of
heart disease, especially in some areas that lack cardiologists.

Compared to other cardiac-related signals [3], [4], phono-
cardiogram (PCG) is regarded as a low-cost cardiac acoustic
signal for diagnosing CVDs [5]. The PCG signal is a time
series of audio recordings of sounds transformed on the surface
of the chest [2]. When recording the heart sounds of a cardiac
cycle, the PCG signal may also have the additional third heart
sound (S3), fourth heart sound (S4), clicks, and heart murmurs
resulting from the galloping blood flow through the valve.
Some heart murmurs may be innocent owing to physiologic
high-flow conditions, while those caused by valvular stenosis
(such as aortic stenosis) or regurgitation (such as mitral regur-
gitation) are pathological murmurs [6]–[8]. These unavoidable
murmurs, which overlap with normal and abnormal heart
sounds in the frequency domain [9], bring great difficulties to
the classification of heart sounds, and thus PCG classification
becomes notoriously challenging.

Early approaches use machine learning models to tackle
the heart sound classification task [10]–[17]. For example,
Sun et al. [15] extract four diagnostic time and frequency
domain features and use a support vector machine (SVM)-
based classification boundary method. Uğuz et al. [16] apply
wavelet transform, short-time Fourier transform, and wavelet
entropy during the feature extraction stage and feed features
into the hidden Markov model (HMM). Avendaño et al. [17]
employ eigenplane-based principal component analysis (PCA)
and partial least squares (PLS) techniques to perform feature
extraction, and then the features extracted are used to feed a
simple k-nearest neighbor (k-NN) classifier. Despite the decent
performance, these machine learning-based methods usually
heavily rely on the manually designed pre-processing and fea-
ture extraction approaches based on expert experience, which
generally suffer from time-consuming experienced engineering
and poor generalization.

Recently, deep learning technologies have made remarkable
achievements in the processing of regular data, e.g., image
[18], [19], video [20], and speech [21]. Therefore, there
has been a growing focus on leveraging the power of deep
learning for PCG classification [6], [22]–[28]. The pioneering
studies of [25], [29], [30], [31] employs mel-frequency cepstral
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coefficients (MFCC) [32] to transfer 1D raw signals to 2D
representations and then perform further feature extraction
using deep neural networks, which have acoustical patterns
with finer granularity. However, this line of work has two main
drawbacks: 1) involving an extra set of hyperparameters to
optimize the transformation process; 2) requiring heavier com-
putation to train 2D convolution kernels. To circumvent these
issues, some researchers propose to take the 1D raw waveform
signals as the input without any additional transformation
process [26], [28], [33]. Albeit showing the potential for PCG
classification, they usually realize the end-to-end architecture
by simply applying 1D convolution on local segmentations,
which could be powerless in accurately capturing diverse
physiological patterns due to the inherent murmurs in heart
sound data.

In this paper, we develop a novel framework, termed densely
connected dual attention network (DDA), for PCG classifica-
tion. DDA can automatically capture the discriminative fea-
tures, while not requiring elaborately designed pre-processing
to manually choose features. Technically, the proposed DDA
introduces a 1D densely connected convolutional neural net-
work (CNN) along with two parallel self-attention modules,
a position attention module (PAM), and a channel attention
module (CAM). Specifically, the densely connected structure
allows each layer to have direct access to update gradients
from the loss function and the original input signal, which
can improve the information flow and parameter efficiency
of the entire network. To further capture informative and
discriminative heart sound signals, we introduce a dual self-
attention mechanism (DA) to learn feature dependencies in
the position and channel dimensions respectively, which en-
dows our DDA with the capability of adaptively emphasizing
important features and suppressing unimportant features. The
outputs of position and channel attention modules are fused
by a simple summation operation to further boost the feature
representation. In this way, our DDA combines the best of two
worlds, i.e., automated training of end-to-end architecture and
enhanced feature representations of the dual attention mecha-
nism. Experimental results show that our simple-yet-effective
method contributes towards a significant improvement across
the PCG classification task. A vivid example is that, compared
with Xiao’s work [33], the proposed DDA obtains performance
gains of up to 4.73% absolute overall score, which strikes the
best trade-off in classification performance and model size.

The key contributions can be summarized as follow:
• We propose a novel densely connected dual attention

network (DDA) for heart sound classification. It can au-
tomatically learn informative and discriminative features
from heart sound signals, without requiring manual pre-
processing for selecting specified features.

• A dual attention mechanism is introduced to learn the
position and channel inter-dependencies of features in
parallel. It markedly improves the representation ability
of our model with negligible extra computational cost.

• Extensive experiments demonstrate that our DDA model
achieves new state-of-the-art results on widely used met-
rics (such as accuracy, score, sensitivity, and specificity)
on the challenging PhysioNet/CinC 2016 benchmark.

II. RELATED WORK

A. Heart sound classification

In this section, we briefly review existing methods for PCG
classification.

Traditional heart sound classification methods usually adopt
machine learning models to separately perform three steps in
sequence: signal segmentation, feature extraction, and final
classification. The first step, signal segmentation, is to perform
precise segmentation for the fundamental heart sound shards,
with the goal of facilitating extracting the features of each
heartbeat.

Heart sounds include fundamental heart sounds (FHSs),
typically with the first (S1) and second (S2) heart sounds
occurring successively [9]. The initial S1 arises at the early
stage of systole due to the continuous closure of the atri-
oventricular mitral and tricuspid valves. The subsequent heart
sound S2 arises at the early stage of the diastole owing to the
closure of the aortic and pulmonary valves. To precisely seg-
ment these fundamental shards, the machine learning models
include envelope-based methods [34], feature-based methods
[35], machine learning [36], and HMM-based methods [37].
Furthermore, feature extraction is usually considered the most
critical step for traditional heart sound classification methods
based on machine learning [38]. These methods mainly rely
on the segmented S1 and S2 heart sounds to manually extract
features. Typically, wavelet transform and Fourier transform
are used to extract time [39], frequency [40], or time-frequency
features [12], [41]–[43], revealing some physiological and
pathological information for subsequent classification. Finally,
a softmax classifier based on machine learning is trained
with the extracted discriminative feature as input, where the
canonical ones contain SVM [10]–[12], HMM [14], k-NN
[13], etc. However, due to heavy reliance on expert experience
and manually precise processing, designing proper machine
learning models to handle heart sound classification remains
quite an intractable challenge.

Plenty of follow-up research is devoted to developing deep
learning methods for heart sound classification [6], [22]–
[28]. They either introduce fixed-length segmentation using
overlapping windows [23], [26] or abandon the segmentation
to use the filling method, such as [27], [44]. Among them,
the original high-dimensional heart sound signals are first
projected into low-dimensional features through a variety of
mathematical transformations. For this purpose, they typically
convert the heart sound classification task into the image
classification task by extracting 2D feature maps, yet a large
parameter overhead is required for the transformation of fea-
tures into 2D feature maps, which is not conducive to the ap-
plication on mobile devices. The canonical approaches mainly
include MFCCs [25], [29]–[31], log mel-frequency spectral
coefficients (MFSCs) [29], [45], [46], power spectral density
(PSD) [23], and neuromorphic auditory sensors [6]. Some
studies also directly employ 1D features for computational
efficiency [26], [47]–[50]. For example, Ryu et al. [26] adopt
the Windowed-sinc Hamming filter as the pre-processing step
to assist a simple 1D CNN. Different from these methods, our
proposed DDA can directly perform heart sound classification
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with simple fixed-size segmentations and remove the need for
manual pre-processing steps.

Recently, some researchers have explored performing PCG
classification in a purely end-to-end manner. These methods
take raw waveform data as input, combine feature extractor
and classifier, and automatically extract the most discrimi-
native features. Xu et al. [28] develop a 1D CNN model,
which adopts a block-stacked style architecture for parameter
efficiency. Xiao et al. [33] introduce the 1D CNN-based model
that focuses on feature reusing, which can obtain an overall
score of 90.51%. Compared with these methods, benefitting
from the dual attention mechanism, our proposed DDA can
automatically extract informative features and employ parallel
position and channel attention modules to improve bidimen-
sional information flow in a computationally efficient pattern.

B. Attention mechanism
In convolution neural networks, convolutional filter weights

are quite intractable to adapt dynamically to input variation
since they are typically fixed after training. Thus, a signif-
icant number of attention-based methods are developed to
resolve this issue [51]–[56]. SE-Net [52] is a milestone of
these efforts by modeling channel attention with encouraging
performance gains. Subsequently, the non-local network [55]
attempts to capture long-term dependencies in both space and
time, which shows the potential of the attention mechanism
for accurate video classification yet requires high memory
and computation overheads. The Criss-cross network [54]
harvests the contextual information of all the pixels on the
criss-cross path to generate sparse attention maps for reducing
complexity. Liu et al. [57] apply a self-attention generative
adversarial network to boost the image completion task. Bello
et al. [58] adopt the self-attention mechanism to promote
image classification performance. In this paper, we are the
first to propose a dual self-attention mechanism to capture rich
contextual information for heart sound classification studies.
Here we wish to push forward the auscultation of heart sounds
by focusing on combining the merits of the self-attention
and end-to-end convolution neural network for strengthening
discriminant feature representations.

III. METHODOLOGY

In this section, we develop a 1D CNN-based combined dual
attention mechanism system for CVD diagnosis. To start with,
we introduce the heart sound segmentation strategy. And then
the details of our model for heart sound shards classification
are provided. Finally, the decision rule transforming the shard-
level results into a recording-level diagnosis is proposed.

A. Segmentation
Following the assumptions in [23], the abnormality of heart

sounds can be observed with each heartbeat if the heart
pathology is present. The abnormal heart sound recording can
be diagnosed within a few seconds, which has been concurred
by general practitioners [23]. Therefore, we employ the fixed-
length sliding window for shard-level prediction by segment-
ing each heart sound recording into a series of flattened

shards. The window length and slide interval are empirically
selected as three seconds and one second, respectively. Each
shard is labeled according to the class corresponding to the
intact heart sound before segmentation. This segmentation
strategy requires no additional hyperparameters and increases
the number of data samples, alleviating the problem of a quite
small sample size.

B. DDA Architecture
The proposed method contains a densely connected con-

volutional network (DenseNet) equipped with a dual self-
attention mechanism. Intuitively, the framework of our DDA
net is illustrated schematically in Fig. 1. Specifically, we first
adopt the original 1D signals as input to capture the time-
frequency features using DenseNet. Then, the learned features
are fed into dual attention modules, which are comprised of
two parallel branches – the position attention module and
the channel attention module. Technically, for the position
attention module, we introduce the feature similarities between
different positions of the extracted feature map to model
long-term dependencies of PCG signals via a self-attention
mechanism. That is, each feature is encouraged to perform
an interaction with ones with different positions to produce
rich feature representations, where their distance may be
far apart in the position dimension. Likewise, the channel
attention module models the correlations between any two-
channel maps using the weighted sum of channel maps via
a similar self-attention mechanism, which renders the ability
to increase the inter-channel dependencies. In this way, our
model can learn to emphasize important features and suppress
the unnecessary ones, from the perspective of the channel and
position axes respectively. In the following, we introduce the
detailed design of our proposed architecture.

1) Dense Block: The densely connected convolutional net-
work achieves highly competitive performance benefiting from
its efficient information flow. To extract informative and rich
features, we migrate this effective dense structure framework
to the one-dimensional. Specifically, the feature maps of
all previous layers in a dense block are directly connected
to subsequent layers. Technically, given a shard-level PCG
signal X0, we define a composite function H(·) including
multiple operations, such as convolutional layers and batch
normalization layers. The updated process of feature maps can
be formulated by

Xl = H({X0,X1, ...,Xl−1}), (1)

where X1,X2...,Xl−1 represent the feature maps produced
in layers 1, 2, ..., l − 1 respectively, and {·} signifies the
concatenation operation along channels. Details of the dense
layers are shown in Fig. 2. Different from the traditional dense
layers using two convolutional layers with the kernel sizes
of 1×1 and 1×3 respectively, we add an extra convolutional
layer with the kernel size of 1×1 at the end of each dense
layer to realize the information interactions between channels,
which can enhance the information flow in each dense layer
as pointed out in [59]–[61]. Following the original setting in
DenseNet [62], we use 4 stacked dense blocks, each of which
has a growth rate (k) of 12.
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Fig. 1. An overview of our proposed densely connected dual attention model (DDA). The convolutional layers in the grey background are with
kernel size 1×1, stride 1, and zero padding.
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Fig. 2. Structure of dense layer. “Conv1×3” denotes the convolutional
layer with the kernel size 3 and the padding size (0,1).

2) Transition Layer: Although the direct connection between
layers enhances the information flow, the number of connec-
tions and the number of dense block layers have a quadratic
relationship, which will take up a lot of computing resources.
In our work, to avoid the inability to densely concatenate
features when downsampling features, the transition layers
with a 1× 1 convolutional layer followed by a 1× 2 average
pooling layer are adopted to divide the networks into 4 dense
blocks, each of which extracts different hierarchical features.

3) Dual Self-Attention Mechanism: To further increase the
representation power, we parallelly emphasize the discrimina-
tive features along position and channel axes, which are based
on the resultant feature map with high-level semantics from
DenseNet. Next, we will elaborate on the processes.
Position attention module. The topmost part of Fig. 1
illustrates the position attention module. Formally, given the
feature map X ∈ RC×1×W from DenseNet, we first feed
X into the convolution layers to produce two new feature
representations Qs,Ks ∈ RC

8 ×1×W (denoted as query and
key) respectively, whose channels are reduced by 8 times
for efficient computation. We flatten Qs,Ks to dimension

C
8 ×W and then perform a dot product between (F (Qs))

>

and F (Ks) to obtain a similarity matrix As ∈ RW×W with
a softmax operation, which represents the pairwise similarity
between each element in Qs and Ks. Here F (·) flattens
the input feature map into the vector representation. The
higher similarity scores of the two elements indicate the
greater relevance between them. Meanwhile, another new
feature representation Vs∈ RC×1×W (denoted as value) will
be generated by feeding X to a convolution layer, which is
further flattened to dimension C×W . The convolution layers
for Q, K, and V are with kernel size 1×1, stride 1, and zero
padding. Then we carry out a matrix multiplication between
As and F (Vs) and then unfold it to obtain the attention
score X̂s ∈ RC×W . Finally, we adopt a learnable parameter
α to perform the weighted residual-style feature blending, i.e.,
residual connection with the weighted feature map αX̂s and
the original feature map X. This process can be written as

As =softmax
(
(F (Qs))

>F (Ks)
)
,

X̂s =F (Vs) ·As,

Es =X+ αU(X̂s),

(2)

where U (·) unfolds the input vector from dimension C ×W
into C × 1×W .
Channel attention module. We produce a channel attention
map by mining the dependencies among different channels of
the resultant feature map from DenseNet. This channel atten-
tion module is illustrated in the middle part of Fig. 1. Notably,
the channel attention models the inter-channel relationship of
features, which is complementary to the position attention.
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TABLE I
ARCHITECTURE DETAILS OF OUR PROPOSED DENSELY CONNECTED

DUAL-ATTENTION MODEL (DDA).

Layer name Output size Configurations

Inputs 1×1×6000

Conv. layer 24×1×2998 Conv 1×7 with stride (1,2), padding (0,1)

Pooling layer 24×1×1499 Maxpool 1×3 with stride (1,2), padding (0,1)

Dense block 96×1×1499 Dense layer × 6, k=12

Transition layer 48×1×749 Conv 1×1 with stride 1, padding 0
Avepool 1×2 with stride (1,2)

Dense block 120×1×749 Dense layer × 6, k=12

Transition layer 60×1×374 Conv 1×1 with stride 1, padding 0
Avepool 1×2 with stride (1,2)

Dense block 132×1×374 Dense layer × 6, k=12

Transition layer 66×1×187 Conv 1×1 with stride 1, padding 0
Avepool 1×2 with stride (1,2)

Dense block 138×1×187 Dense Layer × 6, k=12

Dual attention 138×1×187 Dual Attention modules

Pooling layer 138×1 Avepool 1×187 with stride (1,187)

Classification 2 Fully connected layer, softmax

To this end, we first flatten X ∈ RC×1×W to obtain three
identical feature representations F (X) ∈ RC×W as query,
key, and value matrices. Similar to the position attention,
the similarity matrix Ac ∈ RC×C between the inter-channel
features is modeled by the similarity between the query-
key pairs (F (X))> and F (X). Then the attention scores
X̂c ∈ RC×W are computed as the weighted sum with the
value matrix F (X). Finally, a learnable parameter β is used
to control the weight of X̂c and X in the residual connection.
Thus, the channel attention computation can be written as

Ac =softmax
(
F (X)(F (X))>

)
,

X̂c =Ac · F (X),

Ec =X+ βU(X̂c).

(3)

C. Final Decision Rule
Our densely connected dual-attention model classifies based

on three-second heart sound shards, and then we employ a
majority voting strategy to generate a final diagnosis of the
entire heart sound recording. In this voting mechanism, we
count the number of shards marked in each record and set an
anomaly threshold to determine the class of the entire heart
sound recording. More concretely, if the number of shards
in the abnormal category is not less than 40% of the total
number of shards among one heart sound record, the record
can be diagnosed as abnormal, otherwise, it is normal.

D. DDA Model Overview
Following the basic configuration of DenseNet [62], we

build our proposed DDA architecture. As depicted in Table I,
DDA is mainly stacked by 4 dense blocks and transition
blocks between them, along with a dual attention block.
The input of our model is 1×1×6000, where the first ‘1’
represents the channel dimension and the latter ‘1×6000’
represents the position dimension of heart sound signals. A

convolution layer with a relatively larger kernel size (i.e.,
1 × 7) is first applied to capture abundant low-level features,
instead of directly feeding the input signals into the first block.
Then, a max pooling layer is adopted to downsample the
feature maps. Sequentially, dense blocks with 6 dense layers
and a growth rate of 12 are utilized to extract hierarchical
features. In the following, to avoid large-scale parameters, the
channel and position dimensions of feature maps are reduced
to half through the transition layer. After 4 dense blocks,
the feature maps are fed into a dual self-attention module to
extract rich contextual features. Finally, a fully connected layer
with a sigmoid activation function is used for classification.
The weighted cross-entropy (WCE) loss function we adopt is
defined as follows:

L(xo, y) =− w+ · y log p(Y = 1|X = xo)

− w− · (1− y) log p(Y = 0|X = xo),
(4)

where xo denotes the network output, y denotes the class label,
and p(Y = i|X = xo) is the probability that the network
assigns to the label i, i ∈ {0, 1}. In our experiments, the
weights of positive (abnormal) and negative (normal) classes
are set as ω+ = 0.8 and ω− = 0.2 respectively, since the ratio
of abnormal samples to normal samples is approximately 1

4 .
Note that, the model size of our DDA is only 0.23M.

IV. EXPERIMENTS AND RESULTS

In this section, we conduct extensive experiments to verify
the heart sound classification ability of the proposed DDA
model. We first introduce the public datasets used in our
experiments. Then, we detail the experimental settings and
evaluation metrics. Moreover, we experiment on the challeng-
ing benchmark with the 10-fold cross-validation to evaluate
the effectiveness of DDA. Finally, we provide comprehensive
ablation studies to analyze DDA thoroughly.

A. Dataset
We conduct classification experiments on the challenging

PhysioNet/CinC 2016 heart sound dataset. PhysioNet/CinC
2016 is a large-scale heart sound dataset containing 3240
annotated heart sound records taken from 764 subjects, in-
cluding 2575 normal heart sound records and 665 abnormal
heart sound records. Each PCG record lasts from 5 seconds
to 120 seconds. All recordings are resampled to 2000 Hz.

B. Experiment Settings
In our experiment, the model architecture has 4 operations:

4 dense blocks, 3 transition layers, dual attention modules,
and a fully connected layer. Each dense block has 6 dense
layers with a growth rate of 12. The training setting follows
the common practice as in [33], [62]–[64]. Specifically, the
model is trained for 250 epochs with batch size 64. Stochastic
gradient descent (SGD) is employed with an initial learning
rate of 0.1, momentum of 0.9, and weight decay of 10−5. The
dropout of 0.1 is set for regularization. A cosine annealing is
used to schedule the learning rate with a minimum learning
rate of 10−4. Considering the imbalanced data set, a cross-
entropy loss with a weight of 0.8-0.2 (abnormal to normal) is
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TABLE II
COMPARISON OF OUR DDA AND OTHER ADVANCED METHODS ACROSS STRATIFIED 10-FOLD CROSS-VALIDATION ON PHYSIONET/CINC 2016.

Method Params (M) Acc. (%) Score (%) Precise Input Feature End-to-endSegmentation

1D CNN [26] 0.19 89.33 84.45 No 1D filtered signals Yes
MFCC-CNN [25] 12.41 93.31 88.91 Yes MFCC features No
PSD-CNN [23] 0.24 89.05 86.26 No Spectrograms No
AdaBoost-CNN [24] - - 85.00 Yes Time and frequency features, decomposed four frequency bands No
DRGE [27] - - 90.00 No 1D raw signals Yes
1D Dense [33] 0.11 93.56 90.51 No 1D raw signals Yes
1D Clique [28] 0.19 93.28 90.69 No 1D raw signals Yes
LSTM [50] - - 92.35 No Spectrograms, temporal quasi-periodic features No

DDA (ours) 0.23 95.15 95.24 No 1D raw signals Yes

adopted as the loss function as is common practice [33], [49].
Following [65]–[67], we employ Synthetic Minority Over-
sampling Technique (SMOTE) [68] as the sampling strategy.
SMOTE is a combination of over-sampling the minority (ab-
normal) class and under-sampling the majority (normal) class.
Particularly, SMOTE is only used for the training process
and not for the validation process. Empirically, the voting
mechanism judges the input heart sound signal to be abnormal
when the fraction of abnormal shards exceeds 40% of the total
number of heart sound shards.

To show the generalization of our proposed DDA, we adopt
the stratified 10-fold cross-validation strategy. We divide the
whole dataset with 3240 heart sounds into ten equal parts,
each time one is taken as the test set, and the rest is used
as the training set. We empirically segment the 1D waveform
heart sound recordings into three-second length shards with a
stride of one second as the input of our proposed heart sound
diagnosis system as is common practice.

In our experiments, we adopt six widely used metrics
to evaluate the proposed model: 1) accuracy (Acc.), which
measures the classification performance; 2) sensitivity (Sen.)
and 3) specificity (Spe.), which indicate the proportion of
correctly identified positives and negatives, respectively; 4) the
overall score (Score), also known as Macc, which describes
the comprehensive diagnosis performance by calculating the
average of sensitivity and specificity; 5) Area under the ROC
curve (AUC), which evaluates the performance of classifica-
tion tasks by calculating the area under the receiver operat-
ing characteristic curve (ROC); 6) the trainable parameters
(Params) of models, which are also calculated to evaluate the
model size. Particularly, based on the Cinc2016 competition,
the correctly diagnosed abnormal heart sound recordings are
taken as true positive samples in this work.

C. Comparison with Current Advanced Methods

Table II presents the quantitative comparisons of our pro-
posed DDA and previous state-of-the-art methods across strat-
ified 10-fold cross-validation on PhysioNet/CinC 2016, where
our DDA outperforms other advanced methods. Specifically,
DDA brings 6.10% accuracy gains compared with PSD-CNN
[23] using few parameters. Our DDA also significantly boosts
the accuracy by 1.59% and score by 4.73% compared with 1D
Dense [33]. Without any pre-processing, our DDA can gain
up to 2.89% absolute improvement on score compared with

TABLE III
RESULTS OF OUR DDA ACROSS STRATIFIED 10-FOLD

CROSS-VALIDATION ON PHYSIONET/CINC 2016.

#fold Acc. (%) Score (%) Sen. (%) Spe. (%)

0 96.91 96.69 100.00 93.39
1 97.22 96.92 98.50 95.33
2 95.06 95.04 95.52 94.55
3 94.75 94.78 98.51 91.05
4 93.52 93.68 95.52 91.83
5 94.75 95.74 100.00 91.47
6 94.75 94.80 96.97 92.64
7 93.52 94.40 98.49 90.31
8 95.37 95.38 96.97 93.80
9 95.68 95.01 95.46 94.57

Average 95.15 95.24 97.59 92.89

long short-term memory networks (LSTM) [50]. Additionally,
our DDA brings in a gain of 6.3% score with significantly
few parameters (0.23M vs. 12.41M) compared with MFCC-
CNN [25], which transforms 1D heart sound signals into
2D time-frequency features. By contrast, only a simple yet
effective sliding window-based segmentation strategy with a
fixed size is required in our DDA. The detail of stratified 10-
fold cross-validation results is listed in Table III. Concretely,
the proposed DDA achieves the highest accuracy of 97.22%
and the overall score of 96.92% on the 2nd fold cross-
validation. These results convincingly verify the effectiveness
of our model. Moreover, we further analyze the advantages
and disadvantages of our proposed DDA in Section V.

D. Ablation Studies
In this section, we perform comprehensive ablation stud-

ies to analyze our proposed DDA thoroughly on the Phys-
ioNet/CinC 2016 dataset.

1) Effect of dual attention modules: To verify the effec-
tiveness of the dual attention (DA) modules for heart sound
classification, we arrange an experiment on different densely
connected backbones with varying network depths. Table IV
lists the results on varying dense blocks, dense layers (layers
in each dense block), and growth rates. For example, [6, 6, 6, 6]
denotes the DenseNet architecture comprised of 4 stacked
dense blocks, each of which has 6 dense layers with a
growth rate (k) of 12. As shown in Table IV, under the
dense network framework with various parameters, the dual
attention modules consistently play a major role in heart sound
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(a) (b)

Fig. 3. Receiver operating characteristics (ROC) curves of heart sound classification performance across stratified 10-fold cross-validation on
PhysioNet/CinC 2016 (a). Particularly, we show the average result of 10-fold cross-validation on the rightmost part (b). The areas Under the ROC
curves are shown in parentheses in the legend. The ROC curves fluctuation range of our proposed DDA (Dense+DA) model is marked in the
transparent red background. Likewise, the ROC curves fluctuation range of the DenseNet model without dual attention (Dense) is marked in the
transparent blue background.

TABLE IV
ABLATION STUDY ON THE EFFECT OF DUAL ATTENTION (DA) MODULES UNDER DIFFERENT NETWORK DEPTHS. WE REPORT THE AVERAGE

PERFORMANCE ACROSS STRATIFIED 10-FOLD CROSS-VALIDATION ON PHYSIONET/CINC 2016. SPECIFICALLY, WE VARY THE OVERALL NUMBER

OF DENSE BLOCKS, DENSE LAYERS, AND GROWTH RATES k. FOR EXAMPLE, [6, 6, 6, 6] DENOTES THE DENSENET ARCHITECTURE COMPRISED OF

4 STACKED DENSE BLOCKS, EACH OF WHICH HAS 6 DENSE LAYERS WITH A GROWTH RATE (k) OF 12. PARTICULARLY, [·, · · · , ·]∗ DENOTES THE

ORIGINAL DENSENET ARCHITECTURE USING TWO SEQUENTIAL CONVOLUTIONAL LAYERS IN EACH DENSE LAYER WITH THE KERNEL SIZES OF 1×1
AND 1×3. LIKEWISE, [·, · · · , ·] DENOTES OUR USED DENSENET ARCHITECTURE USING THREE SEQUENTIAL CONVOLUTIONAL LAYERS IN EACH

DENSE LAYER WITH THE KERNEL SIZES OF 1×1, 1×3, 1×1. THE MODEL WITH DA IS HIGHLIGHTED WITH A GREY BACKGROUND.

Architecture Model Params (M) Accuracy (%) Score (%) Sensitivity (%) Specificity (%)

[6, 6, 6, 6]∗ Dense-53 0.14 92.90 92.33 93.94 90.72
Dense-53 + DA 0.22 93.98 93.96 96.69 91.22

[6, 6, 6] Dense-58 0.12 93.24 92.45 93.23 91.65
Dense-58 + DA 0.17 94.35 94.21 96.39 92.03

[6, 6, 6, 6] Dense-77 0.15 93.89 93.55 95.64 91.46
Dense-77 + DA (ours) 0.23 95.15 95.24 97.59 92.89

[6, 6, 6, 6] Dense-77 (k = 24) 0.57 93.07 92.61 94.39 90.84
Dense-77 + DA (k = 24) 0.73 94.20 93.66 95.19 92.12

[6, 6, 6, 6, 6] Dense-96 0.22 93.91 93.64 94.80 92.88
Dense-96 + DA 0.29 95.06 94.53 95.19 93.87

[6, 12, 24, 16] Dense-179 0.78 93.89 93.93 96.08 91.77
Dense-179 + DA 1.10 94.63 94.36 95.79 92.93

[6, 12, 36, 24] Dense-239 1.40 93.64 93.74 95.93 91.54
Dense-239 + DA 2.07 94.57 94.20 96.09 92.31

classification. Compared with no dual attention modules, our
DDA (Dense-77 + DA) brings in a significant average gain of
1.26% accuracy, 1.69% score, 1.95% sensitivity, and 1.43%
specificity across stratified 10-fold cross-validation. Notably,
compared with other network configurations (including the
ones of the original DenseNet [62] in the 11th and 12th lines
of Table IV), “Dense-77 + DA” achieves the best performance,
thus we set the dense layers in each dense block as 6 if no
special illustration. In addition, the stratified 10-fold cross-
validation results of ROC curves are illustrated in Fig. 3.
For the metric of the AUC (Area under the ROC curve), we
can find that our DDA obtains performance gains by up to
0.0093 AUC on average, demonstrating the effectiveness of
the DA module. Regarding each fold, our DDA model works
better than the baseline in most folds. For example, our DDA
model brings 0.018 AUC benefits at the 9th fold. Our DDA
model also achieves the best results with a small number of
model parameters as 0.23M, since small models often have
insufficient expression ability, while large models may cause
overfitting.

Moreover, we conduct a comparative experiment across
stratified 10-fold cross-validation to compare with two single-
attention models, adding the CAM module and PAM module
to the baseline (“Dense-77”) respectively. As listed in Table V,
the baseline only achieves an accuracy of 93.89% and a score
of 93.55%. The attention mechanisms, CAM and PAM, can
model long-range dependencies in terms of position and chan-
nel dimensions, which is beneficial for accurate heart sound
classification compared with the baseline. This is reasonable
since CAM and PAM increase feature reuse to enhance the
representation ability. Notably, our DDA (“Dense + DA”)
considerably surpasses two single-attention models, i.e., over
“Dense + PAM” by 0.86% accuracy and over “Dense + CAM”
by 0.80% score. DDA also brings in absolute improvements
of nearly 2% sensitivity gains compared with “Dense +
PAM” and “Dense + CAM”. This convincingly verifies the
effectiveness of our proposed DDA with both position and
channel relation learning.

2) Influence of the threshold: To investigate the influence
of the threshold, we carry out an experiment across stratified
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(a) (b)

(c) (d)
Fig. 4. Ablation study on different thresholds of the voting mechanism
on four indicators including (a) accuracy, (b) score, (c) sensitivity, and
(d) specificity. Specifically, the thresholds vary from 30% to 60%. We
report the average performance across stratified 10-fold cross-validation
on PhysioNet/CinC 2016. “Dense” denotes the DenseNet model without
the attention mechanism.

TABLE V
ABLATION STUDY ON THE EFFECT OF DUAL ATTENTION (DA) MODULES

UNDER DIFFERENT ATTENTION MECHANISMS. WE REPORT THE

AVERAGE PERFORMANCE ACROSS STRATIFIED 10-FOLD

CROSS-VALIDATION ON PHYSIONET/CINC 2016. “DENSE” DENOTES

THE DENSENET MODEL WITHOUT THE ATTENTION MECHANISM.

Method Acc. (%) Score (%) Sensitivity (%) Specificity (%)

Dense 93.89 93.55 95.65 91.46
Dense + PAM 94.29 94.19 95.64 92.74
Dense + CAM 94.70 94.44 95.64 93.24
Dense + DA 95.15 95.24 97.59 92.89

10-fold cross-validation by setting the threshold of the voting
mechanism as 30%, 40%, 50%, and 60%, which controls
the fraction of abnormal shards in the total heart sound
shards for judging whether to be abnormal. The results in
Fig. 4 show that, as the threshold changes from 30% to 60%,
our DDA can consistently achieve better accuracy and score
compared with the baseline model (Dense-77). Furthermore,
a higher threshold means that a larger proportion of abnormal
segments is required to make the whole heart sound judged
to be abnormal. According to Fig. 4, we empirically set the
threshold as 40% on our DDA for the best performance.

3) Impact of sampling strategy: Class imbalance is one
of the common problems during classifier model training,
especially in disease research. The sampling method is only
adopted during the training process, which can not destroy
the sample distribution of the test set and be in line with the
practical scenario. We conduct an experiment across stratified
10-fold cross-validation to analyze the impact of sampling on
the heart sound classification. The sampling strategy we use
is SMOTE [68]. Note that, as shown in Table VI, except for
the 6th fold, the accuracy and score have been significantly
improved after applying SMOTE under the other folds. Par-
ticularly, our DDA obtains the best accuracy of 97.22% and a
score of 96.92% under the first fold. Moreover, the absolute

TABLE VI
ABLATION STUDY ON THE SAMPLING APPROACH SMOTE OF OUR DDA

ACROSS STRATIFIED 10-FOLD CROSS-VALIDATION ON

PHYSIONET/CINC 2016. W/O SMOTE: OUR DDA IS TRAINED ON THE

ORIGINAL TRAINING DATA DISTRIBUTION, WITHOUT SMOTE.

#fold
w/o SMOTE SMOTE

Acc. (%) Score (%) Acc. (%) Score (%)

0 95.99 95.43 96.91 96.69
1 95.37 93.77 97.22 96.92
2 94.75 92.80 95.06 95.04
3 93.21 93.68 94.75 94.78
4 93.52 92.15 93.52 93.68
5 94.14 94.80 94.75 95.74
6 95.06 95.00 94.75 94.80
7 91.98 93.45 93.52 94.40
8 93.83 92.92 95.37 95.38
9 94.14 93.50 95.68 95.01

Average 94.20 93.75 95.15 95.24

performance gains of accuracy and score brought by SMOTE
can be over 1% under the 1st, 3rd, 4th, 7th, 8th, and 9th fold
cross-validation.

V. DISCUSSION

In this section, we summarize the advantages and disadvan-
tages of the proposed DDA. First of all, our DDA only requires
a simple yet effective sliding window operation for shard-
level segmentation, without the need to elaborately design
the precise segmentation algorithms. Second, our DDA takes
the 1D raw signals as the input, which can omit the extra
transforming procedure from 1D raw signals to 2D represen-
tations. Third, our DDA performs end-to-end learning from
heart sound signals, instead of a complex ensemble system
that manually combines multiple features. Last but not least,
our DDA obtains strong performance on the challenging Phy-
sioNet/CinC 2016 benchmark. As shown in Table II, the pro-
posed DDA achieves the best trade-off between performance
and parameters compared with current advanced methods.
Technically, benefiting from the dual attention mechanism,
our DDA can automatically capture discriminative features
for heart sound classification, without requiring manual pre-
processing for selecting specified features. For convenience,
we list the partial advantages of our DDA compared with
current advanced methods in Table II.

Understanding the disadvantages of our approach is also
critical for improving it. The first disadvantage is that the
parameter efficiency of DDA is not the best compared with
other state-of-the-art methods, as shown in Table II. In the
future, it will be interesting to design a model compression
method compatible with our dual attention mechanism to fur-
ther reduce the model parameters. Besides, our DDA requires
more training time overheads than those based on machine
learning. Another interesting future work is to speed up the
training procedure of the proposed DDA, such as improving
the optimization algorithm.

VI. CONCLUSION

In this work, we present DDA, a lightweight densely con-
nected dual attention mechanism network. DDA is capable of
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combining the purely end-to-end training pattern and enhanced
feature representations based on the self-attention mechanism.
For this purpose, a densely connected structure is introduced to
improve the information flow with additional direct accesses.
Meanwhile, a dual attention mechanism (DA) is developed
to capture feature dependencies in the position and channel
dimensions, respectively. Technically, the position and channel
attention modules are introduced to parallelly integrate local
features based on the feature similarities, which are calculated
by capturing the dependencies between any two features along
position and channel axes, respectively. In this way, DDA
can significantly increase contextual modeling capabilities
to tackle heart sound classification suffering from inherent
murmurs and limited supervised samples while keeping the
end-to-end training merit of deep learning. Comprehensive ex-
periments on the challenging Cinc2016 benchmark, as well as
thorough ablation studies, have demonstrated the effectiveness
of DDA on the heart sound classification task with state-of-the-
art trade-offs between performance and parameter efficiency.
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