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Abstract. With the remarkable empirical success of neural networks across diverse
scientific disciplines, rigorous error and convergence analysis are also being devel-
oped and enriched. However, there has been little theoretical work focusing on neu-
ral networks in solving interface problems. In this paper, we perform a convergence
analysis of physics-informed neural networks (PINNs) for solving second-order ellip-
tic interface problems. Specifically, we consider PINNs with domain decomposition
technologies and introduce gradient-enhanced strategies on the interfaces to deal with
boundary and interface jump conditions. It is shown that the neural network sequence
obtained by minimizing a Lipschitz regularized loss function converges to the unique
solution to the interface problem in H2 as the number of samples increases. Numerical
experiments are provided to demonstrate our theoretical analysis.
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1 Introduction

Deep learning in the form of deep neural networks (DNNs) has been effectively used in
diverse scientific disciplines beyond its traditional applications. In particular, thanks to
their potential nonlinear approximation power [1–3], DNNs are being exploited to con-
struct alternative approaches for solving partial differential equations (PDEs), e.g., the
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deep Ritz method (DRM) [4] and physics-informed neural networks (PINNs) [5]. The
key idea of these methods is to reformulate the solution to a PDE with a closed-form ex-
pression in the form of a neural network, the parameters of which are obtained by mini-
mizing a physics-informed loss given by the corresponding PDE. The original works on
the use of neural networks to solve PDEs were proposed in the 1990s [6, 7], and this idea
has recently been revisited with the renaissance of neural networks and the development
of deep learning techniques; see e.g., [8–12] and references therein.

Elliptic interface problems are a widespread class of problems in scientific computing
with many applications across diverse fields; see e.g. [13–16]. There are many accurate
and efficient numerical methods in the literature for interface problems, such as the finite
element method (FEM) [17,18], the discontinuous Galerkin method (DG) [19,20], the im-
mersed interface method (IIM) [21, 22], the immersed boundary method (IBM) [23], the
boundary element method (BEM) [14], and the Voronoi interface method (VIM) [24]. In
the last few decades, the numerical methods for solving interface problems have reached
a certain maturity and made satisfactory progress. However, the above-mentioned meth-
ods usually require either a body-fitted or unfitted mesh to treat the interface problems,
and the main difficulty lies in the body-fitted mesh generation or in the technique de-
signed to dissect the intersecting geometry of the interface and properly discretize inter-
face conditions. Interface problems are still challenging due to the low global regularity
and irregular geometry of interfaces.

In recent years, many efforts have been made to use neural networks to solve inter-
face problems since these methods are meshfree and can take advantage of deep learning
techniques such as automatic differentiation and GPU acceleration. In particular, neu-
ral network-based approaches exhibit notable advantages in treating high-dimensional
problems, inverse problems, and simultaneously solving parametric PDE problems that
involve learning the solution operator (operator learning), which issues also exist in in-
terface problems. In addition, the use of multiple neural networks based on the domain
decomposition method (DDM) has attracted increasing attention as they are more ac-
curate and flexible in dealing with the interface and have shown remarkable success in
various interface problems [25–28]. This idea is further studied from the numerical as-
pect in our previous work [28], where the proposed interfaced neural networks are able
to balance the interplay between different terms in the composite loss function and im-
prove the performance in terms of accuracy and robustness. The above-mentioned works
focus on obtaining empirical results, whereas we focus on theoretical aspects such as the
convergence of PINNs for solving interface problems in this paper.

Along with the remarkable empirical achievements of deep learning methods, rigor-
ous error and convergence analysis are also being developed and enriched. In previous
work [29], the Hölder continuity constant was used to obtain the generalization analysis
of PINNs in the case of linear second-order elliptic and parabolic type PDEs. [30,31] used
quadrature points in the formulation of the loss and carried out an a-posteriori-type gen-
eralization error analysis of PINNs for both forward and inverse problems. [32] studied
linear PDEs and proved both a priori and posterior estimates for PINNs and variational
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PINNs in Sobolev spaces. [33] provided a theoretical understanding of the generaliza-
tion abilities of PINNs and Extended PINNs (XPINNs) [25]. [34] derived an a priori gen-
eralization estimate for a class of second-order linear PDEs in the context of two-layer
neural networks by assuming that the exact solutions of PDEs belong to a Barron-type
space [35]. [36] provided a nonasymptotic convergence rate of PINNs with ReLU3 net-
works for the second linear elliptic equation. For high-dimensional PDEs, [37] derived
a priori and dimension explicit generalization error estimates for the DRM under the
assumption that the solutions of the PDEs lie in the spectral Barron space, and [38] pro-
vided an analysis of the generalization error for linear Kolmogorov equations by using
tools from statistical learning theory and covering number estimates of neural network
hypothesis classes.

However, the majority of existing theoretical works are limited to differential equa-
tions with continuous coefficients; much less is known about the convergence of PINNs
in solving interface problems, where the interaction at the interface introduces additional
analytical challenges. In particular, it is reasonable to make the assumption that the net-
work satisfies the boundary conditions for elliptic problems (see, for example, Theorem
3.4 in [29]), since there are several approaches [7, 39] to forcing neural networks to obey
the boundary conditions intrinsically. But such approaches cannot be applied to inter-
face jump conditions. When considering the convergence of interface problems, we are
inevitably faced with the challenge of estimating errors caused by interface losses.

By extending the convergence results in [29] to elliptic interface problems, we pro-
vide a convergence theory for DDM-based PINNs to solve linear second-order elliptic
interface problems. In this work, to deal with the error caused by the non-zero inter-
face and boundary losses, we introduce a gradient enhancement strategy on interfaces
inspired by [40], where the gradient information from the residual of the boundary and
interface jump conditions is embedded into the loss function. Following the work of
Shin et al. [29], we construct a specific Lipschitz regularization loss tailored for elliptic
interface problems to quantify the generalization of PINN. Finally, we prove that the se-
quence of minimizers of the designed regularized loss function converges to the unique
solution to the interface problem in H2 under some reasonable assumptions. To the best
of our knowledge, this is the first theoretical work that proves the convergence of neural
network methods for solving elliptic interface problems. The main contributions of our
work can be summarized as follows:

• We introduce gradient-enhanced strategies on interfaces to estimate the error caused
by non-zero interface and boundary losses.

• We first provide the convergence analysis of PINNs in solving elliptic interface
problems.

• We present several numerical experiments to validate the theoretical analysis.

The rest of this paper is organized as follows. In Section 2, some preliminaries, includ-
ing notations and background knowledge of neural networks and interface problems, are
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introduced. In Section 3, we briefly introduce the algorithm of PINN for solving elliptic
interface problems and present the gradient-enhanced strategies on the interfaces. In Sec-
tion 4, we present a convergence analysis, the proof of which is presented in Section 6.
Numerical experiments are performed in Section 5 to validate the theoretical analysis.
Finally, we conclude the paper in Section 7.

2 Preliminaries

2.1 Notations

We first introduce some notations. Let x=(x1,··· ,xd) be a point in Rd (d≥2) and U ⊂Rd

be an open set. Let C(U )=
{

f : U→Rd′ | f is continuous
}

denotes the space of continuous
functions. Let Zd

+ denotes the lattice of d-dimensional nonnegative integers. For k =
(k1,··· ,kd)∈Zd

+, we set |k| := k1+···+kd, and

Dk =
∂|k|

∂xk1
1 ···∂xkd

d

.

For a positive integer k, we define

Ck(U ) :={ f : Dk f ∈C(U ) for all |k|≤ k}.

Subsequently, we denote
[
µ
]
U to be the Lipshcitz constant of µ on U , i.e.,

[
µ
]
U = sup

x,y∈U ,x ̸=y

∥µ(x)−µ(y)∥∞
∥x−y∥∞

.

In order to distinguish from the k-times continuously differentiable function space Ck,
we denote Ck,L(U ) to be the collection of functions in Ck whose derivatives of order k are
Lipschitz continuous.

Following [41], we present the definition of Hs(E) on the boundary E. Here, we
suppose E is a (d−1)-dimensional smooth manifold, i.e., there exists a collection of charts
{(Vi,ϕi) | i ∈ I} such that {Vi}i∈I is a collection of open sets on E and covers E (i.e.,
E=∪i∈IVi), and such that ϕi is homeomorphism from Vi to an open subset V ′

i :=ϕi(Vi) of
Rd−1 for all i∈ I and the transition map ϕi◦ϕ−1

j : ϕj(Vi∩Vj)→ ϕi(Vi∩Vj) is an infinitely
differentiable mapping when Vi∩Vj ̸=∅ for all i, j∈ I. Let {ηi}i∈I be a partition of unity
on E with compact support in Vi such that ∑i ηi(x)= 1 for all x∈ E and ηi are infinitely
differentiable. Then, if u is a function on E, we can decompose u=∑i(ηiu), and define

ϕ∗
i (ηiu)(ξ)=(ηiu)(ϕ−1

i (ξ)), ξ∈V ′
i .

Finally, we define
Hs(E)={u | ϕ∗

i (ηiu)∈Hs(V ′
i ), ∀i∈ I},
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with norm

∥u∥Hs(E)=

(
∑

i
∥ϕ∗

i (ηiu)∥2
Hs(V ′

i )

) 1
2

. (2.1)

It is easy to verify that Hs(E) is a Hilbert space and that the different norms (2.1) are
equivalent. We refer the readers to [41] for more details.

For given {Vi,ϕi,ηi}i∈I and f ∈C2(E), we define that if dimension d=2,

DE f =∑
i

∂ϕ∗
i (ηiu)
∂ξ1

, D2
E f =∑

i

∂2ϕ∗
i (ηiu)
∂ξ2

1
,

and if dimension d=3,

DE f =

(
∑

i

∂ϕ∗
i (ηiu)
∂ξ1

,∑
i

∂ϕ∗
i (ηiu)
∂ξ2

)
, D2

E f =

(
∑

i

∂2ϕ∗
i (ηiu)
∂ξ2

1
,∑

i

∂2ϕ∗
i (ηiu)

∂ξ1∂ξ2
,∑

i

∂2ϕ∗
i (ηiu)
∂ξ2

2

)
,

where ξ j is the j-th component of ξ.

2.2 Neural networks

In addition, we introduce the employed network architecture, i.e., the feed-forward neu-
ral network (FNN), in this paper. Mathematically, an N-layer FNN is a nested compo-
sition of sequential linear functions and nonlinear activation functions, which takes the
form

si = fi(si−1) :=σ(Wisi−1+bi), for i=1,··· ,N−1,
sN = fN(sN−1) :=WNsN−1+bN ,

where s0 = x∈Rdin is the input variable, si ∈Rdi denotes the output of the i-th hidden
layer, sN∈Rdout is the corresponding output, and Wi∈Rdi+1×di and bi∈Rdi+1 are trainable
parameters. σ : R → R is the nonlinear activation function applied element-wise to a
vector. Popular examples include the rectified linear unit (ReLU) ReLU(z)=max(0,z), the
logistic sigmoid Sig(z)=1/(1+e−z) and the hyperbolic tangent tanh(z)=(ez−e−z)/(ez+
e−z). Equipped with those definitions, the FNN representation of a continuous function
can be viewed as

NN (x)= fN◦···◦ f1(x). (2.2)

Furthermore, we denote all the trainable parameters (e.g., Wi, bi) in (2.2) as θ∈Θ, where
θ is a high-dimensional vector and Θ is the space of θ. Given a network architecture −→n
(e.g., the number of layers and the width of each hidden layer), we denote the set of all
expressible functions (hypothesis space) as

HNN−→n ={NN (·;−→n ,θ) : Rdin →Rdout
∣∣θ∈Θ}. (2.3)
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2.3 Elliptic interface problems

Let Ω=Ω1∪Ω2 be a bounded domain in Rd with smooth boundary ∂Ω. Let Ω1 ⊂Ω be
an open domain with smooth boundary Γ= ∂Ω1 ⊂Ω and Ω2 =Ω\Ω1 (see Fig. 1 for an
illustration). We consider the following linear second-order elliptic interface problem

−∇·(ai∇u)+biu= fi, in Ωi, i=1,2, (2.4a)
Ja∇u·nK=ψ, on Γ, (2.4b)

JuK= φ, on Γ, (2.4c)
u= g, on ∂Ω, (2.4d)

where JµK :=µ|Ω2−µ|Ω1 denotes the jump of a quantity µ across Γ, and n denotes the unit
outward normal of Ω1. The coefficients

a(x)=

{
a1(x), if x∈Ω1,
a2(x), if x∈Ω2,

b(x)=

{
b1(x), if x∈Ω1,
b2(x), if x∈Ω2,

are piecewise spatial functions. The unknown part of this problem is the exact solution
u∗, while others are given in advance.

Figure 1: A schematic view of the geometry description.

3 Neural network methods for linear second-order elliptic
interface problems

In this section, we present a brief overview of physics-informed neural networks (PINNs)
[5] for solving linear second-order elliptic interface problems. Since the physical solutions
to elliptic interface problems are usually non-smooth or even discontinuous across the in-
terface, it is natural to use domain decomposition methods (DDMs) in the PINN frame-
work [25–28]. In the context of DDM-based deep learning methods, the computational
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domain is decomposed into several disjoint subdomains according to the interface, and
the solution to the interface problem is the combination and ensemble of multiple local
networks, where each of them is responsible for prediction in one subdomain.

Under the PINN framework, we approximate the latent solution to interface problems
by two FNNs, i.e., u1(x,θ1)

∣∣
Ω1

and u2(x,θ2)
∣∣
Ω2

. Let θ=(θ1,θ2) denotes all tunable param-
eters of the networks (e.g., weights and biases). We then use the constraints implied by
Eq. (2.4) and the boundary and interface jump conditions to train the networks. Let us
denote the number of training data points by m=(mr1 ,mr2 ,mΓ,mb), where mr1 ,mr2 ,mΓ and
mb represent the number of training samples in Ω1, Ω2, Γ and ∂Ω, respectively. Then, a
physics-informed model can be trained by minimizing the following composite empirical
loss function

LossPINN
m (u1,u2;λ) :=λr1MΩ1+λr2MΩ2+λbMb+λΓDMΓD +λΓNMΓN , (3.1)

where λ = (λr1 ,λr2 ,λΓ,λb)≥ 0 (element-wise inequality), the loss terms MΩ1 and MΩ2

correspond to the PDE residuals (2.4a) in Ω1 and Ω2, Mb, MΓD and MΓN enforce the
boundary condition (2.4d), interface jump conditions (2.4c) and (2.4b), respectively. For a
typical interface problem (2.4), we define

Li[ui]=−∇·(ai∇ui)+biui, with i=1,2, B[u2]=u2,
ID[u1,u2]=u2−u1, IN [u1,u2]= a2∇u2 ·n−a1∇u1 ·n,

which can be derived by automatic differentiation [42]. Then, the loss terms in LossPINN
m

(3.1) would take the specific form

MΩ1 =
1

mr1

mr1

∑
i=1

∣∣∣L1[u1](xi
r1
)− f1(xi

r1
)
∣∣∣2 , MΩ2 =

1
mr2

mr2

∑
i=1

∣∣∣L2[u2](xi
r2
)− f2(xi

r2
)
∣∣∣2 ,

Mb =
1

mb

mb

∑
i=1

∥∥∥B[u2](xi
b)−g(xi

b)
∥∥∥2

2
, MΓD =

1
mΓ

mΓ

∑
i=1

∥∥∥ID[u1,u2](xi
Γ)−φ(xi

Γ)
∥∥∥2

2
,

MΓN =
1

mΓ

mΓ

∑
i=1

∥∥∥IN [u1,u2](xi
Γ)−ψ(xi

Γ)
∥∥∥2

2
,

where {xi
b}

mb
i=1 :=T mb

b denotes the boundary data points, {xi
Γ}

mΓ
i=1 :=T mΓ

Γ denotes the inter-

face data points, and {xi
rj
}

mrj
i=1 :=T

mrj
rj denotes the training data points that are randomly

placed insider the subdomain Ωj with j=1,2. Here, we suppose these four types of data
sets are independently and identically (iid) sampled from probability distributions µr1 ,
µr2 , µΓ and µb, respectively.

In PINNs, we only enforce the residual of boundary and interface jump conditions
to be zero, while in this work, we introduce gradient-enhanced strategies to the PINN
framework to estimate the error caused by non-zero boundary and interface losses. Specif-
ically, the high-order gradient information of the interface(s) is embedded into the loss
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function by redefining the following loss terms,

Mb =
1

mb

mb

∑
i=1

∥∥∥B[u2](xi
b)−g(xi

b)
∥∥∥2

2
, MΓD =

1
mΓ

mΓ

∑
i=1

∥∥∥ID[u1,u2](xi
Γ)−φ(xi

Γ)
∥∥∥2

2
,

MΓN =
1

mΓ

mΓ

∑
i=1

∥∥∥IN [u1,u2](xi
Γ)−ψ(xi

Γ)
∥∥∥2

2
,

where

B[u2]=(u2,D∂Ωu2,D2
∂Ωu2), ID[u1,u2]=(u2−u1,DΓ(u2−u1),D2

Γ(u2−u1)),
IN [u1,u2]=(a2∇u2 ·n−a1∇u1 ·n,DΓ(a2∇u2 ·n−a1∇u1 ·n)),

and
φ=(φ,DΓ φ,D2

Γ φ), ψ=(ψ,DΓψ), g=(g,D∂Ωg,D2
∂Ωg).

Note that since u∗(x)−g(x)=0 for any x on the boundary, we know that for any positive
integer k, the derivative Dk

∂Ω(u
∗−g) is zero. The same is true for the interface residuals.

Hence, it is acceptable for us to enforce the derivatives of the residual of interface(s) to
be zero. Obviously, the gradient-enhanced empirical PINN loss is an upper bound for
vanilla empirical PINN loss. Unless otherwise stated, the rest of the paper discusses
gradient-enhanced empirical PINN loss LossPINN

m (3.1). In addition, motivated by the
upper bound [29], we consider the Lipschitz regularized loss function

Lossm(u1,u2;λ,λR) :=LossPINN
m (u1,u2;λ)+λR

r1
Rr1(u1)+λR

r2
Rr2(u2)

+λR
b Rb(u2)+λR

ΓD
RΓD(u1,u2)+λR

ΓN
RΓN (u1,u2), (3.2)

where λR =(λR
r1

,λR
r2

,λR
Γ ,λR

b )≥ 0 (element-wise inequality), and Rr1 , Rr2 , Rb, RΓD , RΓN are
regularization functionals. Specifically,

Rr1(u1)=
[
L1[u1]

]2
Ω1

, Rr2(u2)=
[
L2[u2]

]2
Ω2

, Rb(u2)=
[
B[u2]

]2
∂Ω,

RΓD(u1,u2)=
[
ID[u1,u2]

]2
Γ, RΓN (u1,u2)=

[
IN [u1,u2]

]2
Γ.

For the convenience of following analysis, we denote the expected loss of Eq. (2.4) (when
λR =0) by LossPINN(u1,u2;λ). More precisely,

LossPINN(u1,u2;λ)=λr1 ∥L1[u1]− f1∥2
L2(Ω1;µr1 )

+λr2 ∥L2[u2]− f2∥2
L2(Ω2;µr2 )

+λb∥B[u2]−g∥2
L2(∂Ω;µb)

+λΓD ∥ID[u1,u2]−φ∥2
L2(Γ;µΓ)

+λΓN ∥IN [u1,u2]−ψ∥2
L2(Γ;µΓ)

. (3.3)

Remark 3.1. It is noted that the use of the gradient-enhanced strategy and Lipschitz reg-
ularization is for the convergence analysis. We will numerically verify that such tech-
nologies do not affect performance.
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Remark 3.2. The present paper only considers the high regularity setting and that point-
wise evaluations are well-defined. Specifically, it is required that Li[ui]∈C(Ωi) for i=1,2,
ID[u1,u2]∈C(Γ), IN [u1,u2]∈C(Γ), and B[u2]∈C(∂Ω) for all (u1,u2)∈ (H1,m,H2,m), and
fi ∈C(Ωi) for i=1,2, ψ∈C(Γ), φ∈C(Γ) and g∈C(∂Ω).

4 Main results

We first present assumptions on the training data distributions based on the probability
space filling arguments [43] to guarantee that random samples drawn from probability
distributions can fill up both the interior of the domains Ω1 and Ω2 as well as the bound-
ary ∂Ω and interface Γ.

Assumption 4.1 (Random sampling). For the interface problem (2.4), let µr1 , µr2 , µΓ and
µb be probability distributions defined on Ω1, Ω2, Γ and ∂Ω, respectively. Let ρr1(ρr2)
be the probability density of µr1(µr2) with respect to d-dimensional Lebesgue measure
on Ω1(Ω2). Let ρΓ(ρb) be the probability density of µΓ(µb) with respect to the (d−1)-
dimensional Hausdorff measure on Γ(∂Ω).

1. ρr1 , ρr2 , ρΓ and ρb are supported on Ω1, Ω2, Γ and ∂Ω, respectively. Also, infΩ1 ρr1>0,
infΩ2 ρr2 >0, infΓ ρΓ >0, and inf∂Ω ρb >0.

2. For ϵ> 0, there exists partitions of Ω1, Ω2, Γ and ∂Ω, {Ωϵ
1,j}

Kr1
j=1, {Ωϵ

2,j}
Kr2
j=1, {Γϵ

j }
KΓ
j=1

and {∂Ωϵ
j }

Kb
j=1 that depend on ϵ such that for each j, there are cubes Hϵ(z

r1
j ), Hϵ(z

r2
j ),

Hϵ(zΓ
j ) and Hϵ(zb

j ) of side length ϵ centered at zr1
j ∈Ωϵ

1,j, zr2
j ∈Ωϵ

2,j, zΓ
j ∈Γϵ

j and zb
j ∈∂Ωϵ

j ,
respectively, satisfying Ωϵ

1,j⊂Hϵ(z
r1
j ), Ωϵ

2,j⊂Hϵ(z
r2
j ), Γϵ

j ⊂Hϵ(zΓ
j ) and ∂Ωϵ

j ⊂Hϵ(zb
j ).

3. There exists positive constants cr1 ,cr2 ,cΓ,cb such that ∀ϵ>0, the partitions from the
above satisfy cr1 ϵd≤µr1(Ω

ϵ
1,j), cr2 ϵd≤µr2(Ω

ϵ
2,j), cΓϵd−1≤µΓ(Γϵ

j ) and cbϵd−1≤µb(∂Ωϵ
j )

for all j.

There exists positive constants Cr1 ,Cr2 ,CΓ,Cb such that for ∀xr1 ∈Ω1, xr2 ∈Ω2, xΓ ∈Γ
and xb∈∂Ω, we have µr1(Bϵ(xr1)∩Ω1)≤Cr1 ϵd, µr2(Bϵ(xr2)∩Ω2)≤Cr2 ϵd, µΓ(Bϵ(xΓ)∩
Γ)≤CΓϵd−1 and µb(Bϵ(xb)∩∂Ω)≤Cbϵd−1 where Bϵ(x) is a closed ball of radius ϵ
centered at x.

Here Cr1 ,cr1 depend only on (Ω1,µr1), Cr2 ,cr2 depend only on (Ω2,µr2), CΓ,cΓ depend
only on (Γ,µΓ) and Cb,cb depend only on (∂Ω,µb).

In contrast to the traditional applications of deep learning, such as image classification
and natural language processing, where the data distributions are unknown and data
sampling is very expensive, the aforementioned assumptions are mild and easy to satisfy
when solving interface problems, as the computation domain and interface are given and
the data distribution is known (e.g., the uniform probability distribution).
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In addition, for the loss function (3.2) to be well-defined, we have to make some as-
sumptions about the interface problem (2.4) and the hypothesis space of neural networks.
Here, the network architecture −→n is expected to grow proportionally to the number of
training samples m, thus we rewrite HNN−→n as Hm for simplicity.

Assumption 4.2 (Interface problem and hypothesis space). Let H1,m and H2,m be the class
of neural networks defined on Ω1 and Ω2, respectively.

1. Let f1∈C0,L(Ω1), f2∈C0,L(Ω2), ψ∈C1,L(Γ), φ∈C2,L(Γ) and g∈C2,L(∂Ω).

2. For each m, H1,m⊂C2,L(Ω1), H2,m⊂C2,L(Ω2) such that for any (u1,u2)∈(H1,m,H2,m),
L1[u1]∈C0,L(Ω1), L2[u2]∈C0,L(Ω2), IΓD [u1,u2]∈C0,L(Γ), IΓN [u1,u2]∈C0,L(Γ) and
B[u2]∈C0,L(Γ).

3. For each m, H1,m(H2,m) contains a network û1,m(û2,m) satisfying

LossPINN
m (û1,m,û2,m;λ)=O

(
max{mr1 ,mr2 ,m

d
d−1
Γ ,m

d
d−1
b }− 1

2−
1
d

)
,

4. and

sup
m

[
L1[û1,m]

]
Ω1

<∞, sup
m

[
L2[û2,m]

]
Ω2

<∞, sup
m

[
B[û2,m]

]
∂Ω <∞,

sup
m

[
IΓD [û1,m,û2,m]

]
Γ <∞, sup

m

[
IΓN [û1,m,û2,m]

]
Γ <∞.

Popular activation functions, such as sigmoid Sig(z) and tanh(z), could satisfy the
Lipschitz condition. It is known that FNNs can simultaneously and uniformly approxi-
mate a continuous function and various of its partial derivatives [1, 44–48]. In particular,
standard multi-layer FNNs with a tanh activation function are capable of approximating
arbitrary functions from the Sobolev space, provided sufficiently many hidden units are
available [46]. Thus, the third term in Assumption 4.2 can be attained.

With these assumptions, the main result is presented as follows.

Theorem 4.1. Suppose Assumptions 4.1 and 4.2 hold. Let mr1 , mr2 , mb and mΓ be the number

of iid samples from µr1 , µr2 , µb and µΓ, respectively, and mr2 =O(mr1), mΓ =O(m
d−1

d
r1 ), mb =

O(m
d−1

d
r1 ). Let

Cm =3max{κr1

√
d

d
m

1
2
r1 ,κr2

√
d

d
m

1
2
r2 ,κb

√
d

d−1
m

1
2
b ,κΓ

√
d

d−1
m

1
2
Γ},

where κr1 =
Cr1
cr1

, κr2 =
Cr2
cr2

, κb=
Cb
cb

, κΓ=
CΓ
cΓ

. Let λ̂R
m=(λ̂R

r1,m,λ̂R
r2,m,λ̂R

b,m,λ̂R
ΓD ,m,λ̂R

ΓN ,m) be a vector
where

λ̂R
r1,m =

3λr1 dc−
2
d

r1

Cm
·m− 1

d
r1 , λ̂R

r2,m =
3λr2 dc−

2
d

r2

Cm
·m− 1

d
r2 , λ̂R

b,m =
3λbdc

− 2
d−1

b
Cm

·m− 1
d−1

b ,

λ̂R
ΓD ,m =

3λΓD dc
− 2

d−1
Γ

Cm
·m− 1

d−1
Γ , λ̂R

ΓN ,m =
3λΓN dc

− 2
d−1

Γ
Cm

·m− 1
d−1

Γ .



606 S. Wu et al. / Commun. Comput. Phys., 33 (2023), pp. 596-627

Let λR
m be a vector satisfying

λR
m ≥ λ̂R

m,
∥∥∥λR

m

∥∥∥
∞
=O(

∥∥∥λ̂R
m

∥∥∥
∞
).

Let (u1,m,u2,m)∈ (H1,m,H2,m) be a minimizer of the Lipschitz regularized loss Lossm(·;λ,λR
m)

(3.2). Then the following holds,

• The interface problem (2.4) has a unique solution u∗∈H2(Ω1)∩H2(Ω2).

• With probability 1 over iid samples,

lim
mr1→∞

u1,m =u∗ in H2(Ω1), lim
mr1→∞

u2,m =u∗ in H2(Ω2).

Theorem 4.1 shows that the minimizers of the Lipschitz regularized empirical losses
(3.2) converge to the unique solution to the interface problem (2.4) in H2 as the number
of samples increases. The proof is postponed to Section 6.

Remark 4.1. That (u1,m,u2,m)∈ (H1,m,H2,m) is a minimizer means

Lossm(u1,m,u2,m;λ,λR
m)≤Lossm(u1,u2;λ,λR

m), for ∀(u1,u2)∈ (H1,m,H2,m).

We remark that this condition can be relaxed to

Lossm(u1,m,u2,m;λ,λR
m)≤Lossm(û1,m,û2,m;λ,λR

m), for û1,m, û2,m given in Assumption 4.2.

5 Numerical experiments

In this section, we present numerical evidence to verify our analysis. We limit ourselves
to the idealized setting considered for the theoretical analysis and to two-dimensional
(2D) interface problems for the sake of illustration. For simplicity, we refer to the re-
sults obtained by minimizing the empirical loss LossPINN

m (u1,u2; λ = 1) (3.1) without
gradient enhancement on boundary and interface, i.e., the original PINN loss [5], as
“PINN”, to the results obtained by minimizing the gradient-enhanced PINN empirical
loss (3.1) as “PINN-GE”, and to the results obtained by minimizing the loss (3.2) as
“LIPR-GE”. Throughout all benchmarks, we show the L2 and H2 convergence of the
trained neural networks obtained by LIPR-GE as the number of training data increases.
Note that the values of b1 = b2 = 0 (in Eq. (2.4)) are used for all the test examples ex-
cept Example 5.5, where the non-zero values are mentioned. All code and data accom-
panying this manuscript are publicly available at https://github.com/bzlu-Group/

ConvergencePINNInterface.

5.1 Settings

Network architecture. The feed-forward tanh-neural networks of depth 5 and width
200 are employed for all experiments.

https://github.com/bzlu-Group/ConvergencePINNInterface
https://github.com/bzlu-Group/ConvergencePINNInterface
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Training data. The training points are randomly drawn from the corresponding do-
mains. Specially, taking mr = 10,30,50,100,300,··· ,10000, we randomly sample the train-
ing data points {xi

r}mr
i=1 inside the domain Ω and then divided them into two parts, i.e.,

{xi
r1
}mr1

i=1 and {xi
r2
}mr2

i=1, according to the interface. In addition, taking mb =mΓ =10⌊m1/2
r ⌋,

we randomly sample the training data points {xi
b}

mb
i=1 and {xi

Γ}
mΓ
i=1 on the boundary and

interface, respectively, see Fig. 2 (left) for an illustration. Note that this strategy satisfies

the conditions stated in Theorem 4.1, i.e., mr2 =O(mr1), mΓ =O(m
d−1

d
r1 ), mb =O(m

d−1
d

r1 ).

Gradient enhancement. The boundary and interface are parameterized by ϑ, i.e., x=
(x1(ϑ),x2(ϑ)), and the gradients of the functions defined on the boundary or interface are
derived by the related parameterized functions.

Optimization. We train the networks for 10,000 stochastic gradient descent steps by
minimizing the loss using the Adam optimizer [49]. The initial learning rate is 1×10−3,
halved every 1000 iterations; and full-batch training is employed.

Regularization. For the Lipschitz regularized terms in loss function (3.2), we use the
maximum of the sup norm of the derivative over the set of training data points to estimate
the Lipschitz constant, more precisely,[

L1[u1]
]2

Ω1
= max

1≤j≤mr1

∥∥∥∇L1[u1](x
j
r1)
∥∥∥2

∞
,
[
L2[u2]

]2
Ω2

= max
1≤j≤mr2

∥∥∥∇L2[u2](x
j
r2)
∥∥∥2

∞
,

[
B[u2]

]2
∂Ω = max

1≤j≤mb

∥∥∥∇B[u2](x
j
b)
∥∥∥2

∞
,
[
ID[u1,u2]

]2
Γ = max

1≤j≤mΓ

∥∥∥∇ID[u1,u2](x
j
Γ)
∥∥∥2

∞
,

[
IN [u1,u2]

]2
Γ = max

1≤j≤mΓ

∥∥∥∇IN [u1,u2](x
j
Γ)
∥∥∥2

∞
.

The weights in loss function (3.2) are set as λ= (λr1 ,λr2 ,λb,λΓD ,λΓN ) = 1, λR
r1
= λR

r2
= 1

mr
,

and λR
ΓD

=λR
ΓN

= 1
mΓ

√
mr

, λR
b =

1
mb

√
mr

, which satisfy the conditions stated in Theorem 4.1.

Test. After training, the L2 error between the reference solution u∗ and the obtained
neural network solution û is measured as

εL2 =∥u−û∥L2 :=

√√√√ 1
N

N

∑
i=1

|u∗(xi)−û(xi)|2,

where N denotes the total number of test points in the computational domain, see Fig. 2
(right) for an illustration. The H2 error between u∗ and û is measured as

εH2 =

{
∑

|τ|≤2
∥Dτ(u∗−û)∥2

L2

} 1
2

.
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Training points in 1
Training points in 2
Training points on 
Training points on 

Test points in 1
Test points in 2

Figure 2: An illustration of the train and test data points. Left: These dots represent the training data points,
which are randomly sampled in related regions. Right: An illustration of the equidistant test data points in the
computational domain.

5.2 An elliptic interface problem with constant coefficients

In this case, we consider Eq. (2.4) with a circle interface, which is given as (x1(ϑ),x2(ϑ))=
(1+cos(ϑ),1+sin(ϑ)), where ϑ∈ [0,2π]. The computational domain in this problem is a
closed disk with a radius of two and centered at (1,1). The discontinuous coefficient a is
given as

a(x1,x2)=

{
1, in Ω1,
2, in Ω2.

The exact solution to this equation is given by

u∗(x1,x2)=

{
2tanh(x1+x2), in Ω1,
tanh(x1+x2), in Ω2.

Note that this solution can be exactly represented by the neural network we employed
in this case. The corresponding source term is f (x1,x2)=8tanh(x1+x2)−8tanh(x1+x2)3

and the boundary and jump conditions can be found by using the exact solution.
In Fig. 3, we compare the numerical solution obtained by LIPR-GE with that obtained

by PINN. It can be seen from this figure that both two numerical solutions have small L2

and H2 errors, while the result of LIPR-GE performs better than that of PINN. Numerical
results indicate that PINN with gradient enhancement is acceptable in practice as it does
not affect the performance of vanilla PINN.

In Fig. 4, we show the L2 and the H2 errors of the results obtained by LIPR-GE with re-
spect to the number of interior points mr. Note that the number of points on the boundary
and on the interface increases as mr increases. To show the convergence trend, we con-
struct a univariate linear regression, i.e., log10 ε = αlog10 mr+β, for the logarithm of the
numerical solution error log10 ε (i.e., log10 εL2 or log10 εH2) versus log10 mr, and estimate
the parameters α and β using the linear least square algorithm. The dash lines here are
the results of the regression. As expected by Theorem 4.1, the L2 and H2 errors decrease
as mr increases, implying the L2- and H2-convergence.
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Figure 3: The numerical solution and point-wise errors for Example 5.2. The first row gives the numerical results
of PINN whereas the second row gives that of LIPR-GE. Here, the number of training data points mr =10000.
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Figure 4: The L2 and H2 convergence of the errors of Example 5.2 with respect to the number of training
data points. The shaded regions are the one-standard-derivation from five runs with different training data
and network initialization. Here, the number of test data points in Ω1 and Ω2 are N1 =7833 and N2 =23584,
respectively.

5.3 An elliptic interface problem with high contrast coefficients

Next, we consider Eq. (2.4) in the case of a large contrast in discontinuous coefficient
a. Here, the computational domain Ω is a disk with a radius of one, centered at the
origin. The interface is defined as (x1,x2)=(r0cos(ϑ),r0sin(ϑ)), where r0=0.5. This exact
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Figure 5: The numerical solution and point-wise errors for Example 5.3. The first row gives the numerical results
of PINN whereas the second row gives that of LIPR-GE. Here, the number of training data points mr =10000.

solution [50] (in the polar coordinate) of this example is expressed as

u∗(r,θ)=


r3

1000
, r< r0,

r3− 999
1000

r3
0, r≥ r0,

where r=
√

x2
1+x2

2 and the discontinuous coefficient is stated as

a(x1,x2)=

{
1000, r< r0,
1, r≥ r0.

Source terms, boundary and interface jump conditions are calculated from the above
exact solution.

We first investigate the effect of gradient-enhanced strategies on the interfaces and
depict the numerical results obtained by LIPR-GE and those obtained by PINN in Fig. 5.
It can be observed that the auxiliary loss terms do not affect performance but also signif-
icantly reduce the absolute point-wise error at the interface and boundary. In addition,
we continue testing the convergence. In Fig. 6, we show the L2 and H2 errors obtained by
LIPR-GE with respect to the number of training data. We see that the rate of convergence
is at least O(m−0.50

r ). The results in this figure clearly demonstrate the convergence trend
of L2-error and H2-error.
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Figure 6: The L2 and H2 convergence of the errors of Example 5.3 with respect to the number of training
data points. The shaded regions are the one-standard-derivation from five runs with different training data
and network initialization. Here, the number of test data points in Ω1 and Ω2 are N1 =7829 and N2 =23588,
respectively.

5.4 An elliptic interface problem with variable coefficients

In this case, we consider Eq. (2.4) with variable coefficients. Here, the computational
domain is a closed disk placed at the origin with a radius of two, and the interface is
circular with a radius of one and centered at the origin. The interface points can be
obtained via (x1,x2)=(cos(ϑ),sin(ϑ)), where ϑ∈ [0,2π). The coefficient a is defined to be

a(x1,x2)=

{
cos(x1+x2)+2, in Ω1,
sin(x1+x2)+2, in Ω2.

The exact solution to this problem is given by [22]

u∗(x1,x2)=

{
sin(x1+x2), in Ω1,

ln(x2
1+x2

2), in Ω2,

and the corresponding source term is

f (x1,x2)=


4(cos(x1+x2)+1)sin(x1+x2), in Ω1,

−2cos(x1+x2)
x1+x2

x2
1+x2

2
, in Ω2.

Numerical results for Example 5.4 are displayed in Fig. 7 and Fig. 8. In Fig. 7, we
first present a comparison between the exact and the numerical solution obtained using
PINN or LIPR-GE. It can be observed that the solution obtained by LIPR-GE is in good
agreement with that of PINN. As expected, the accuracy of LIPR-GE is not affected by
the gradient enhancement and Lipschitz regularization. Furthermore, Fig. 8 shows the
L2- and H2- convergence for neural network solutions in subdomains Ω1 (left) and Ω2
(right). Again, we observe that the errors in both subdomains decreases rapidly as the
number of training data points mr increases. The theoretical results in Theorem 4.1 are
still valid in solving elliptic interface problems with variable coefficients.
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Figure 7: The numerical solution and point-wise errors for Example 5.4. The first row gives the numerical results
of PINN whereas the second row gives that of LIPR-GE. Here, the number of training data points mr =10000.
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Figure 8: The L2 and H2 convergence of the errors of Example 5.4 with respect to the number of training
data points. The shaded regions are the one-standard-derivation from five runs with different training data
and network initialization. Here, the number of test data points in Ω1 and Ω2 are N1 =7829 and N2 =23556,
respectively.

5.5 An elliptic interface problem with irregular geometry

In this case, we consider Eq. (2.4) with a complicated interface Γ (see Fig. 9 left), which
consists of both convex and concave curves and is expressed with the following paramet-
ric equations

x1(ϑ)= rcos(ϑ), x2(ϑ)= rsin(ϑ),
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Figure 9: The computational domain, exact and numerical solutions for Example 5.5. Here, the number of
training data points mr =10000.

where r = 1+0.36sin(3ϑ)+0.16cos(2ϑ)+0.4cos(5ϑ), ϑ ∈ [0,2π]. Computational domain
is shown in Fig. 9. The boundary points (in polar coordinates) are obtained as x1 =
1.5rcos(ϑ) and x2 = 1.5rsin(ϑ), where r = 1.5+0.14sin(4ϑ)+0.12cos(6ϑ)+0.09cos(5ϑ),
ϑ ∈ [0,2π). The coefficient b1 = b2 =−1, and the discontinuous coefficient a is defined
to be

a(x,y)=

{
x1x2, in Ω1,

x2
1+x2

2, in Ω2.

The exact solution is set to be

u∗(x1,x2)=

{
sin(x1+x2), in Ω1,
cos(x1+x2), in Ω2.

The necessary source terms, boundary and interface jump conditions can be derived from
this exact solution.

The computational domain, the exact solution of Example (5.5), and the numerical
solution obtained by LIPR-GE are shown in Fig. 9. And the point-wise L2 and H2 errors
in the whole domain for PINN, PINN-GE, and LIPR-GE are presented in Fig. 10. It is ob-
served that LIPR-GE is less accurate than Vanilla PINN and PINN-GE. One explanation
is that the additional auxiliary loss terms, especially the Lipschitz regularization, make
it difficult for the optimization to find the minimizer. However, our following results
clearly demonstrate that LIPR-GE can still recover the exact solution up to O(10−3) ac-
curacy in L2 and O(10−2) accuracy in H2. Fig. 11 summarizes the convergent evolution
of the L2 and H2 errors obtained by LIPR-GE with respect to the number of training data
points. Clearly, the numerical results demonstrate both the L2 and H2-convergence of the
errors, which are consistent to the theoretical analysis of this paper.



614 S. Wu et al. / Commun. Comput. Phys., 33 (2023), pp. 596-627

2 0 2

2

1

0

1

2

Po
in

t-w
ise

 L
2  e

rro
r

PINN

0.002

0.004

0.006

0.008

0.010

2 0 2

2

1

0

1

2

PINN-GE

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012

2 0 2

2

1

0

1

2

LIPR-GE

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

2 0 2

2

1

0

1

2

Po
in

t-w
ise

 H
2  e

rro
r

PINN

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

2 0 2

2

1

0

1

2

PINN-GE

0.01

0.02

0.03

0.04

0.05

2 0 2

2

1

0

1

2

LIPR-GE

0.02
0.04
0.06
0.08
0.10
0.12
0.14

Figure 10: Point-wise errors for Example 5.5. The errors of PINN, PINN-GE, and LIPR-GE are placed in the
first, second, and third columns, respectively. Here, the number of training data points mr =10000.
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Figure 11: The L2 and H2 convergence of the errors of Example 5.5 with respect to the number of training
data points. The shaded regions are the one-standard-derivation from five runs with different training data
and network initialization. Here, the number of test data points in Ω1 and Ω2 are N1 =4044 and N2 =13787,
respectively.

6 Proofs

We present the proof of Theorem 4.1 in this section. The technique used in the follow-
ing proof is similar to that used in the proof of Theorem 3 of [29]. However, our Theo-
rem 4.1 applies to elliptic interface problems without a zero-loss assumption of interface
and boundary conditions. This prevents direct use of the result from [29], which applies
only to elliptic PDEs with a network solution obeying the boundary conditions exactly.
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Throughout this section, we assume that Assumptions 4.1 and 4.2 hold. Among the cru-
cial technical tools used here are some Sobolev inequality and probability space filling
arguments [43]. We start with the following auxiliary lemma:

Lemma 6.1. Suppose Assumption 4.1 holds. For training data T mr1
r1 ={xi

r1
}mr1

i=1, T mr2
r2 ={xi

r2
}mr2

i=1,
T mb

b ={xi
b}

mb
i=1 and T mΓ

Γ ={xi
Γ}

mΓ
i=1, if mr1 , mr2 , mb and mΓ are large enough to satisfy that there

exists x′r1
∈ Tr1 , x′r2

∈ Tr2 , x′b ∈ Tb and x′Γ ∈ TΓ such that
∥∥xr1−x′r1

∥∥
2 ≤ ϵr1 ,

∥∥xr2−x′r2

∥∥
2 ≤ ϵr2 ,∥∥xb−x′b

∥∥
2≤ϵb and ∥xΓ−x′Γ∥2≤ϵΓ for any xr1 ∈Ω1, xr2 ∈Ω2, xb∈∂Ω and xΓ∈Γ, then, we have

LossPINN(u1,u2;λ)≤Cm ·LossPINN
m (u1,u2;λ)+3λr1 ϵ2

r1

([
L1[u1]

]2
Ω1

+
[

f1
]2

Ω1

)
+3λr2 ϵ2

r2

([
L2[u2]

]2
Ω2

+
[

f2
]2

Ω2

)
+3λbϵ2

b

([
B[u2]

]2
∂Ω+

[
g
]2

∂Ω

)
+3λΓD ϵ2

Γ

([
ID[u1,u2]

]2
Γ+
[
φ
]2

Γ

)
+3λΓN ϵ2

Γ

([
IN [u1,u2]

]2
Γ+
[
ψ
]2

Γ

)
,

where Cr1 , Cr2 , Cb, CΓ are those defined in Assumption 4.1 and

Cm =3max{Cr1 mr1 ϵd
r1

,Cr2 mr2 ϵd
r2

,Cbmbϵd−1
b ,CΓmΓϵd−1

Γ }.

Proof. As a consequence of Cauchy’s inequality, i.e., ∥x+y+z∥2
2 ≤ 3(∥x∥2

2+∥y∥2
2+∥z∥2

2)
for any three vectors x,y,z, we deduce that for xri ,x

′
ri
∈Ωi, i=1,2,

|Li[ui](xri)− fi(xri)|
2

≤3
(∣∣Li[ui](xri)−Li[ui](x′ri

)
∣∣2+∣∣Li[ui](x′ri

)− fi(x′ri
)
∣∣2+∣∣ fi(x′ri

)− fi(xri)
∣∣2).

Similarly, for xb,x′b ∈∂Ω, we have

∥B[u2](xb)−g(xb)∥2
2

≤3
(∥∥B[u2](xb)−B[u2](x′b)

∥∥2
2+
∥∥B[u2](x′b)−g(x′b)

∥∥2
2+
∥∥g(x′b)−g(xb)

∥∥2
2

)
,

and for xΓ,x′Γ ∈Γ, we have

∥ID[u1,u2](xΓ)−φ(xΓ)∥2
2

≤3
(∥∥ID[u1,u2](xΓ)−ID[u1,u2](x′Γ)

∥∥2
2+
∥∥ID[u1,u2](x′Γ)−φ(x′Γ)

∥∥2
2+
∥∥φ(xΓ)−φ(x′Γ)

∥∥2
2

)
,

∥IN [u1,u2](xΓ)−φ(xΓ)∥2
2

≤3
(∥∥IN [u1,u2](xΓ)−IN [u1,u2](x′Γ)

∥∥2
2+
∥∥IN [u1,u2](x′Γ)−ψ(x′Γ)

∥∥2
2+
∥∥ψ(xΓ)−ψ(x′Γ)

∥∥2
2

)
.

In addition, by the conditions, for ∀xr1 ∈Ω1, ∀xr2 ∈Ω2, ∀xb ∈ ∂Ω and ∀xΓ ∈Γ, there exist
x′r1

∈T mr1
r1 , x′r2

∈T mr2
r2 , x′b ∈T mb

b and x′Γ ∈T mΓ
Γ such that

∥∥xr1−x′r1

∥∥
2 ≤ ϵr1 ,

∥∥xr2−x′r2

∥∥
2 ≤ ϵr2 ,∥∥xb−x′b

∥∥
2≤ϵb and ∥xΓ−x′Γ∥2≤ϵΓ. Taking

L(xr1 ,xr2 ,xb,xΓ;u1,u2,λ,0)=λr1 |L1[u1](xr1)− f1(xr1)|
2+λr2 |L2[u2](xr2)− f2(xr2)|

2

+λb∥B[u2](xb)−g(xb)∥2
2+λΓD ∥ID[u1,u2](xΓ)−φ(xΓ)∥2

2

+λΓN ∥IN [u1,u2](xΓ)−ψ(xΓ)∥2
2 ,
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we have that

L(xr1 ,xr2 ,xb,xΓ;u1,u2,λ,0)

≤3L(x′r1
,x′r2

,x′b,x′Γ;u1,u2,λ,0)+3λr1

(∣∣L1[u1](xr1)−L1[u1](x′r1
)
∣∣2+∣∣ f1(xr1)− f1(x′r1

)
∣∣2)

+3λr2

(∣∣L2[u2](xr2)−L2[u2](x′r2
)
∣∣2+∣∣ f2(xr2)− f2(x′r2

)
∣∣2)

+3λb

(∥∥B[u2](xb)−B[u2](x′b)
∥∥2

2+
∥∥g(x′b)−g(xb)

∥∥2
2

)
+3λΓD

(∥∥ID[u1,u2](xΓ)−ID[u1,u2](x′Γ)
∥∥2

2+
∥∥φ(xΓ)−φ(x′Γ)

∥∥2
2

)
+3λΓN

(∥∥IN [u1,u2](xΓ)−IN [u1,u2](x′Γ)
∥∥2

2+
∥∥ψ(xΓ)−ψ(x′Γ)

∥∥2
2

)
≤3L(x′r1

,x′r2
,x′b,x′Γ;u1,u2,λ,0)+3λr1 ϵ2

r1

([
L1[u1]

]2
Ω1

+
[

f1
]2

Ω1

)
+3λr2 ϵ2

r2

([
L2[u2]

]2
Ω2

+
[

f2
]2

Ω2

)
+3λbϵ2

b

([
B[u2]

]2
∂Ω+

[
g
]2

∂Ω

)
+3λΓD ϵ2

Γ

([
ID[u1,u2]

]2
Γ+
[
φ
]2

Γ

)
+3λΓN ϵ2

Γ

([
IN [u1,u2]

]2
Γ+
[
ψ
]2

Γ

)
.

For xi
r1
∈T mr1

r1 , xi
r2
∈T mr2

r2 , xi
b ∈T mb

b and xi
Γ ∈T mΓ

Γ , we denote the Voronoi cell associated
with xi

r1
, xi

r2
, xi

b, xi
Γ as Axi

r1
, Axi

r2
, Axi

b
and Axi

Γ
, respectively, i.e.,

Axi
r1
=
{

x∈Ω1
∣∣ ∥∥∥x−xi

r1

∥∥∥
2
= min

x′∈T
mr1

r1

∥∥x−x′
∥∥

2

}
,

Axi
r2
=
{

x∈Ω2
∣∣ ∥∥∥x−xi

r2

∥∥∥
2
= min

x′∈T
mr2

r2

∥∥x−x′
∥∥

2

}
,

Axi
b
=
{

x∈∂Ω
∣∣ ∥∥∥x−xi

b

∥∥∥
2
= min

x′∈T mb
b

∥∥x−x′
∥∥

2

}
,

Axi
Γ
=
{

x∈Γ
∣∣ ∥∥∥x−xi

Γ

∥∥∥
2
= min

x′∈T mΓ
Γ

∥∥x−x′
∥∥

2

}
,

and let ωi
r1
= µr1(Axi

r1
), ωi

r2
= µr2(Axi

r2
), ωi

b = µb(Axi
b
) and ωi

Γ = µΓ(Axi
Γ
). By taking the

expectation with respect to (xr1 ,xr2 ,xb,xΓ)∼µ=µr1×µr2×µb×µΓ, we obtain that

Eµ[L(xr1 ,xr2 ,xb,xΓ;u1,u2,λ,0)]

=
mΓ

∑
i=1

mb

∑
j=1

mr1

∑
k=1

mr2

∑
l=1

∫
Axi

Γ

∫
A

x
j
b

∫
A

xk
r1

∫
A

xl
r2

L(xr1 ,xr2 ,xb,xΓ;u1,u2,λ,0)dµ

≤3
mΓ

∑
i=1

mb

∑
j=1

mr1

∑
k=1

mr2

∑
l=1

ωi
Γω

j
bωk

r1
ωl

r2
L(xk

r1
,xl

r2
,xj

b,xi
Γ;u1,u2,λ,0)+3λr1 ϵ2

r1

([
L1[u1]

]2
Ω1

+
[

f1
]2

Ω1

)
+3λr2 ϵ2

r2

([
L2[u2]

]2
Ω2

+
[

f2
]2

Ω2

)
+3λbϵ2

b

([
B[u2]

]2
∂Ω+

[
g
]2

∂Ω

)
+3λΓD ϵ2

Γ

([
ID[u1,u2]

]2
Γ+
[
φ
]2

Γ

)
+3λΓN ϵ2

Γ

([
IN [u1,u2]

]2
Γ+
[
ψ
]2

Γ

)
,
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where we have used the fact that ∑
mr1
i=1 ωi

r1
=1, ∑

mr2
i=1 ωi

r2
=1, ∑mb

i=1 ωi
b =1 and ∑mΓ

i=1 ωi
Γ =1.

Next, we give the estimation of the first term on the right. Taking ω
mr1 ,∗
r1 =maxi ω

i
r1

,
ω

mr2 ,∗
r2 =maxi ω

i
r2

, ωmb,∗
b =maxi ω

i
b and ωmΓ,∗

Γ =maxi ω
i
Γ, yields that

3
mΓ

∑
i=1

mb

∑
j=1

mr1

∑
k=1

mr2

∑
l=1

ωi
Γω

j
bωk

r1
ωl

r2
L(xk

r1
,xl

r2
,xj

b,xi
Γ;u1,u2,λ,0)

≤3mr1 ω
mr1 ,∗
r1 · λr1

mr1

mr1

∑
i=1

∣∣∣L1[u1](xi
r1
)− f1(xi

r1
)
∣∣∣2+3mr2 ω

mr2 ,∗
r2 · λr2

mr2

mr2

∑
i=1

∣∣∣L2[u2](xi
r2
)− f2(xi

r2
)
∣∣∣2

+3mΓωmΓ,∗
Γ ·

(
λΓD

mΓ

mΓ

∑
i=1

∥∥∥ID[u1,u2](xi
Γ)−φ(xi

Γ)
∥∥∥2

2
+

λΓN

mΓ

mΓ

∑
i=1

∥∥∥IN [u1,u2](xi
Γ)−ψ(xi

Γ)
∥∥∥2

2

)

+3mbωmb,∗
b · λb

mb

mb

∑
i=1

∥∥∥B[u2](xi
b)−g(xi

b)
∥∥∥2

2
, (6.1)

where we have used the fact that mr1 ω
mr1 ,∗
r1 ,mr2 ω

mr2 ,∗
r2 ,mbωmb,∗

b ,mΓωmΓ,∗
Γ ≥1.

Let Bϵ(x) be a closed ball centered at x with radius ϵ. Let P∗
r1

=
maxx∈Ω1 µr1(Bϵr1

(x)∩Ω1), P∗
r2
= maxx∈Ω2 µr2(Bϵr2

(x)∩Ω2), P∗
b = maxx∈∂Ω µb(Bϵb(x)∩∂Ω)

and P∗
Γ =maxx∈Γ µΓ(BϵΓ(x)∩Γ). Then for any xr1 ∈Ω1, xr2 ∈Ω2, xb ∈ ∂Ω and xΓ ∈Γ, there

exists x′r1
∈Tr1 , x′r2

∈Tr2 , x′b ∈Tb and x′Γ ∈TΓ such that
∥∥xr1−x′r1

∥∥
2 ≤ ϵr1 ,

∥∥xr2−x′r2

∥∥
2 ≤ ϵr2 ,∥∥xb−x′b

∥∥
2 ≤ ϵb and ∥xΓ−x′Γ∥2 ≤ ϵΓ for each i, there are closed balls Bϵr1

, Bϵr2
, Bϵb and BϵΓ

that include Axi
r1

, Axi
r2

, Axi
b

and Axi
Γ
, respectively. These facts, together with Assumption

4.1 imply that

ω
mr1 ,∗
r1 ≤P∗

r1
≤Cr1 ϵd

r1
, ω

mr2 ,∗
r2 ≤P∗

r2
≤Cr2 ϵd

r2
, ωmb,∗

b ≤P∗
b ≤Cbϵd−1

b , ωmΓ,∗
Γ ≤P∗

Γ ≤CΓϵd−1
Γ . (6.2)

With the estimations (6.1) and (6.2), we obtain that

Eµ[L(xr1 ,xr2 ,xb,xΓ;u1,u2,λ,0)]

≤3Cr1 mr1 ϵd
r1
· λr1

mr1

mr1

∑
i=1

∣∣∣L1[u1](xi
r1
)− f1(xi

r1
)
∣∣∣2+3Cr2 mr2 ϵd

r2
· λr2

mr2

mr2

∑
i=1

∣∣∣L2[u2](xi
r2
)− f2(xi

r2
)
∣∣∣2

+3CΓmΓϵd−1
Γ ·

(
λΓD

mΓ

mΓ

∑
i=1

∥∥∥ID[u1,u2](xi
Γ)−φ(xi

Γ)
∥∥∥2

2
+

λΓN

mΓ

mΓ

∑
i=1

∥∥∥IN [u1,u2](xi
Γ)−ψ(xi

Γ)
∥∥∥2

2

)

+3Cbmbϵd−1
b · λb

mb

mb

∑
j=1

∥∥∥B[u2](x
j
b)−g(xj

b)
∥∥∥2

2
+3λr1 ϵ2

r1

([
L1[u1]

]2
Ω1

+
[

f1
]2

Ω1

)
+3λr2 ϵ2

r2

([
L2[u2]

]2
Ω2

+
[

f2
]2

Ω2

)
+3λbϵ2

b

([
B[u2]

]2
∂Ω+

[
g
]2

∂Ω

)
+3λΓD ϵ2

Γ

([
ID[u1,u2]

]2
Γ+
[
φ
]2

Γ

)
+3λΓN ϵ2

Γ

([
IN [u1,u2]

]2
Γ+
[
ψ
]2

Γ

)
.

Finally, we conclude the proof by taking

Cm =3max{Cr1 mr1 ϵd
r1

,Cr2 mr2 ϵd
r2

,Cbmbϵd−1
b ,CΓmΓϵd−1

Γ }. □
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With Lemma 6.1 and Assumption 4.1, we are able to quantify the generalization error
and provide an upper bound of the expected unregularized PINN loss (3.3).

Lemma 6.2. Suppose Assumption 4.1 holds. Suppose that u1,u2 satisfy

Rr1(u1)<∞, Rr2(u2)<∞, Rb(u2)<∞, RΓD(u1,u2)<∞, RΓN (u1,u2)<∞,

and f1, f2,ψ,φ,g satisfy [
f1
]

Ω1
,
[

f2
]

Ω2
,
[
g
]

∂Ω,
[
φ
]

Γ,
[
ψ
]

Γ <∞.

Let mr1 , mr2 , mb and mΓ be the number of iid samples from µr1 , µr2 , µb and µΓ, respectively. Let
λ=(λr1 ,λr2 ,λb,λΓD ,λΓN ) be a fixed vector. Then, with probability at least,

P=P(mr1)P(mr2)P(mb)P(mΓ), where P(m)=(1−
√

m(1−1/
√

m)m),

we have

LossPINN(u1,u2;λ)≤Cm ·Lossm(u1,u2;λ,λ̂R
m)+C′(m− 1

d
r1 +m− 1

d
r2 +m

− 1
d−1

b +m
− 1

d−1
Γ ).

Here, λ̂R
m =(λ̂R

r1,m,λ̂R
r2,m,λ̂R

b,m,λ̂R
ΓD ,m,λ̂R

ΓN ,m). Specifically,

λ̂R
r1,m =

3λr1 dc−
2
d

r1

Cm
·m− 1

d
r1 , λ̂R

r2,m =
3λr2 dc−

2
d

r2

Cm
·m− 1

d
r2 , λ̂R

b,m =
3λbdc

− 2
d−1

b
Cm

·m− 1
d−1

b ,

λ̂R
ΓD ,m =

3λΓD dc
− 2

d−1
Γ

Cm
·m− 1

d−1
Γ , λ̂R

ΓN ,m =
3λΓN dc

− 2
d−1

Γ
Cm

·m− 1
d−1

Γ .

Cm =3max{κr1

√
d

d
m

1
2
r1 ,κr2

√
d

d
m

1
2
r2 ,κb

√
d

d−1
m

1
2
b ,κΓ

√
d

d−1
m

1
2
Γ} where κr1 =

Cr1
cr1

, κr2 =
Cr2
cr2

, κb =
Cb
cb

, κΓ =
CΓ
cΓ

. And C′ is a constant that depends only on λ, d, cr1 , cr2 , cb, cΓ, f1, f2, g, φ, ψ.

Proof. Since Tr1={xi
r1
}mr1

i=1 be iid samples from µr1 on Ω1, Tr2={xi
r2
}mr2

i=1 be iid samples from
µr2 on Ω2, Tb={xi

b}
mb
i=1 be iid samples from µb on ∂Ω and TΓ={xi

Γ}
mΓ
i=1 be iid samples from

µΓ on Γ, respectively, therefore, by Lemma B.2 in [29], with probability at least

P=P(mr1)P(mr2)P(mb)P(mΓ), where P(m)=(1−
√

m(1−1/
√

m)m), (6.3)

for ∀xr1 ∈Ω1, ∀xr2 ∈Ω2, ∀xb ∈ ∂Ω and ∀xΓ ∈Γ, there exists x′r1
∈T mr1

r1 , x′r2
∈T mr2

r2 , x′b ∈T mb
b

and x′Γ ∈T mΓ
Γ such that

∥∥xr1−x′r1

∥∥
2 ≤

√
dc−

1
d

r1 m− 1
2d

r1 ,
∥∥xr2−x′r2

∥∥
2 ≤

√
dc−

1
d

r2 m− 1
2d

r2 ,
∥∥xb−x′b

∥∥
2 ≤√

dc
− 1

d−1
b m

− 1
2(d−1)

b and ∥xΓ−x′Γ∥2≤
√

dc
− 1

d−1
Γ m

− 1
2(d−1)

Γ .
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Using Lemma 6.1, together with taking ϵr1 =
√

dc−
1
d

r1 m− 1
2d

r1 , ϵr2 =
√

dc−
1
d

r2 m− 1
2d

r2 , ϵb =
√

dc
− 1

d−1
b m

− 1
2(d−1)

b and ϵΓ =
√

dc
− 1

d−1
Γ m

− 1
2(d−1)

Γ , implies that with probability at least (6.3),

LossPINN(u1,u2;λ)≤Cm ·LossPINN
m (u1,u2;λ)+Q

+Cm ·
[
λ̂R

r1,m ·
[
L1[u1]

]2
Ω1

+λ̂R
r2,m ·

[
L2[u2]

]2
Ω2

+λ̂R
b,m ·

[
B[u2]

]2
∂Ω

]
+Cm ·

[
λ̂R

ΓD ,m ·
[
ID[u1,u2]

]2
Γ+λ̂R

ΓN ,m ·
[
IN [u1,u2]

]2
Γ

]
,

where

Q=3λr1 dc−
2
d

r1 m− 1
d

r1

[
f1
]2

Ω1
+3λr2 dc−

2
d

r2 m− 1
d

r2

[
f2
]2

Ω2
+3λbdc

− 2
d−1

b m
− 1

d−1
b

[
g
]2

∂Ω

+3dc
− 2

d−1
Γ m

− 1
d−1

Γ

(
λΓD

[
φ
]2

Γ+λΓN

[
ψ
]2

Γ

)
,

and

Cm =3max
{

Cr1

cr1

√
d

d
m

1
2
r1 ,

Cr2

cr2

√
d

d
m

1
2
r2 ,

Cb

cb

√
d

d−1
m

1
2
b ,

CΓ

cΓ

√
d

d−1
m

1
2
Γ

}
,

λ̂R
r1,m =

3λr1 dc−
2
d

r1

Cm
·m− 1

d
r1 , λ̂R

r2,m =
3λr2 dc−

2
d

r2

Cm
·m− 1

d
r2 , λ̂R

b,m =
3λbdc

− 2
d−1

b
Cm

·m− 1
d−1

b ,

λ̂R
ΓD ,m =

3λΓD dc
− 2

d−1
Γ

Cm
·m− 1

d−1
Γ , λ̂R

ΓN ,m =
3λΓN dc

− 2
d−1

Γ
Cm

·m− 1
d−1

Γ .

By taking

C′=3max
{

λr1 dc−
2
d

r1

[
f1
]2

Ω1
,λr2 dc−

2
d

r2

[
f2
]2

Ω2
,λbdc

− 2
d−1

b

[
g
]2

∂Ω,dc
− 2

d−1
Γ

(
λΓD

[
φ
]2

Γ+λΓN

[
ψ
]2

Γ

)}
,

we conclude that

LossPINN(u1,u2;λ)≤Cm ·Lossm(u1,u2;λ,λ̂R
m)+C′(m− 1

d
r1 +m− 1

d
r2 +m

− 1
d−1

b +m
− 1

d−1
Γ ),

where λ̂R
m =(λ̂R

r1,m,λ̂R
r2,m,λ̂R

b,m,λ̂R
ΓD ,m,λ̂R

ΓN ,m). The proof is completed.

Using Lemma 6.2, we will show that the expected PINN loss (3.3) at the minimizers of
the Lipschitz regularized empirical loss (3.2) converges to zero according to Assumptions
4.2.

Lemma 6.3. Suppose Assumptions 4.1 and 4.2 hold. Let mr1 , mr2 , mΓ and mb be the number

of iid samples from µr1 , µr2 , µΓ and µb, respectively, and satisfy mr2 =O(mr1), mΓ =O(m
d−1

d
r1 ),

mb =O(m
d−1

d
r1 ). Let λR

m be a vector satisfying

λR
m ≥ λ̂R

m,
∥∥∥λR

m

∥∥∥
∞
=O

(∥∥∥λ̂R
m

∥∥∥
∞

)
,
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where λ̂R
m = (λ̂R

r1,m, λ̂R
r2,m, λ̂R

b,m, λ̂R
ΓD ,m, λ̂R

ΓN ,m) are defined in Lemma 6.2. Let (u1,m,u2,m) ∈
(H1,m,H2,m) be a minimizer of the Lipschitz regularized empirical loss Lossm(·;λ,λR

m) (3.2).
Then the following holds:

• With probability at least

P=P(mr1)P(mr2)P(mb)P(mΓ), where P(m)=(1−
√

m(1−1/
√

m)m)

over iid samples,

LossPINN(u1,m,u2,m;λ)=O(m− 1
d

r1 ).

• With probability 1 over iid samples,

lim
mr1→∞

L[u1,m]= f1 in L2(Ω1), lim
mr1→∞

L[u2,m]= f2 in L2(Ω2),

lim
mr1→∞

B[u2,m]= g in L2(∂Ω), lim
mr1→∞

ID[u1,m,u2,m]=φ in L2(Γ),

lim
mr1→∞

IN [u1,m,u2,m]=ψ in L2(Γ).

Proof. Since mr1 =O(mr2)=O(m
d

d−1
b )=O(m

d
d−1
Γ ), we have

λ̂R
r1,m, λ̂R

r2,m, λ̂R
b,m, λ̂R

ΓD ,m, λ̂R
ΓN ,m =O(m− 1

2−
1
d

r1 ),

where λ̂R
r1,m, λ̂R

r2,m, λ̂R
b,m, λ̂R

ΓD ,m, λ̂R
ΓN ,m are defined in Lemma 6.2. Let λ be a vector inde-

pendent of m and λR
m =(λR

r1,m, λR
r2,m, λR

b,m, λR
ΓD ,m, λR

ΓN ,m) be a vector satisfying

λR
m ≥ λ̂R

m,
∥∥∥λR

m

∥∥∥
∞
=O

(∥∥∥λ̂R
m

∥∥∥
∞

)
,

where λ̂R
m = (λ̂R

r1,m, λ̂R
r2,m, λ̂R

b,m, λ̂R
ΓD ,m, λ̂R

ΓN ,m). Let (u1,m,u2,m) ∈ (H1,m,H2,m) minimizes
the Lipschitz regularized loss Lossm(·;λ,λR

m) (3.2). Let (û1,m,û2,m) be the neural networks
defined in the third term of Assumption 4.2, i.e., they satisfy LossPINN

m (û1,m,û2,m;λ) =

O(m− 1
2−

1
d

r1 ).
Then, we have

Lossm(u1,m,u2,m;λ,λR
m)≤Lossm(û1,m,û2,m;λ,λR

m)

≤
∥∥∥λR

m

∥∥∥
∞

(
Rr1(û1,m)+Rr2(û2,m)+RΓD(û2,m,û1,m)+RΓN (û2,m,û1,m)

+Rb(u2,m)
)
+Lossm(û1,m,û2,m;λ,0).

Let

R̂=sup
m

(Rr1(û1,m)+Rr2(û2,m)+RΓD(û1,m,û2,m)+RΓN (û1,m,û2,m)+Rb(û2,m)).
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Note that LossPINN
m (û1,m,û2,m;λ) = Lossm(û1,m,û2,m;λ,0) and

∥∥λR
m
∥∥

∞ = O
(∥∥∥λ̂R

m

∥∥∥
∞

)
=

O(m− 1
2−

1
d

r1 ). By the last term in Assumption 4.2, we have R̂<∞. Therefore,

Lossm(u1,m,u2,m;λ,λR
m)=O(m− 1

2−
1
d

r1 ).

According to Lemma 6.2, with probability at least

P=P(mr1)P(mr2)P(mb)P(mΓ), where P(m)=(1−
√

m(1−1/
√

m)m),

we have that

LossPINN(u1,m,u2,m;λ)

≤Cm ·Lossm(u1,m,u2,m;λ,λ̂R
m)+C′(m− 1

d
r1 +m− 1

d
r2 +m

− 1
d−1

b +m
− 1

d−1
Γ )=O(m− 1

d
r1 ),

which completes the first part of the proof. Here, we have used the fact that mr2=O(mr1),

mΓ =O(m
d−1

d
r1 ), mb =O(m

d−1
d

r1 ) and Cm =O(m
1
2
r1).

In addition, by the first part of the Lemma, we have that the probability of

lim
mr1→∞

Loss(u1,m,u2,m;λ,0)=0

is one. Consequently, with probability one over iid samples,

0= lim
mr1→∞

Loss(u1,m,u2,m;λ,0)

= lim
mr1→∞

(
λr1

∫
Ω1

|L1[u1,m](xr1)− f1(xr1)|
2 dµr1(xr1)

+λr2

∫
Ω2

|L2[u2,m](xr2)− f2(xr2)|
2 dµr2(xr2)

+λb

∫
∂Ω

∥B[u2,m](xb)−g(xb)∥2
2 dµb(xb)

+λΓD

∫
Γ
∥ID[u1,m,u2,m](xΓ)−φ(xΓ)∥2

2 dµΓ(xΓ)

+λΓN

∫
Γ
∥IN [u1,m,u2,m](xΓ)−ψ(xΓ)∥2

2 dµΓ(xΓ)
)

.

Since λ=(λr1 ,λr2 ,λb,λΓD ,λΓN )≥0, we obtain that

lim
mr1→∞

∫
Ω1

|L1[u1,m](xr1)− f1(xr1)|
2 dµr1(xr1)=0,

lim
mr1→∞

∫
Ω2

|L2[u2,m](xr2)− f2(xr2)|
2 dµr2(xr2)=0,
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lim
mr1→∞

∫
∂Ω

∥B[u2,m](xb)−g(xb)∥2
2 dµb(xb)=0,

lim
mr1→∞

∫
Γ
∥ID[u1,m,u2,m](xΓ)−φ(xΓ)∥2

2 dµΓ(xΓ)=0,

lim
mr1→∞

∫
Γ
∥IN [u1,m,u2,m](xΓ)−ψ(xΓ)∥2

2 dµΓ(xΓ)=0.

Therefore, we conclude that L1[u1,m]→ f1 in L2(Ω1;µr1), L2[u2,m]→ f2 in L2(Ω2;µr2),
B[u2,m]→g in L2(∂Ω;µb), ID[u1,m,u2,m]→φ in L2(Γ;µΓ) and IN [u1,m,u2,m]→ψ in L2(Γ;µΓ)
as mr1 →∞.

Finally, to complete the proof, it is sufficient to present the following estimate for the
interface problem (2.4). For convenience, we denote X=H2(Ω1)∩H2(Ω2) and define

∥u∥X =∥u∥H2(Ω1)
+∥u∥H2(Ω2)

, ∀u∈ X.

Lemma 6.4. Assume that φ∈ H2(Γ), ψ∈ H1(Γ), g ∈ H2(∂Ω), fi ∈ L2(Ω), i=1,2. Then the
problem (2.4) has a unique solution u∈X and u satisfies the estimate:

∥u∥X ≤C
(
∥ f ∥L2(Ω)+∥g∥H2(∂Ω)+∥φ∥H2(Γ)+∥ψ∥H1(Γ)

)
.

Proof. Let ũ1 solve
−∆ũ1=0, in Ω1,

ũ1=−φ on Γ.

We know ũ1 exists and ũ1∈H2(Ω1) satisfying (cf. Grisvard [51])

∥ũ1∥H2(Ω1)
≤ c∥φ∥H3/2(Γ) .

Let ũ2 solve
−∆2ũ2=0, in Ω2,

ũ2=0,
∂ũ2

∂n
=

a1

a2

∂ũ1

∂n
+

ψ

a2
on Γ,

ũ2= g,
∂ũ2

∂ν
=0 on ∂Ω.

We know ũ2 exists and ũ2∈H2(Ω2) satisfying (cf. Girault-Raviart [52], pp.15-17)

∥ũ2∥H2(Ω2)
≤C

(
∥g∥H3/2(∂Ω)+

∥∥∥∥∂ũ1

∂n

∥∥∥∥
H1/2(Γ)

+∥ψ∥H1/2(Γ)

)
≤C

(
∥g∥H3/2(∂Ω)+∥ũ1∥H2(Ω1)

+∥ψ∥H1/2(Γ)

)
≤C

(
∥g∥H3/2(∂Ω)+∥φ∥H3/2(Γ)+∥ψ∥H1/2(Γ)

)
,
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where C is a generic constant that depends on Ω,a1,a2. Let

ũ(x)=

{
ũ1(x), x∈Ω1,
ũ2(x), x∈Ω2.

Obviously, ũ(x)∈X. In addition, by [53, 54] we know that the equation

−∇·(ai∇v)+biv= fi+∇·(ai∇ũi)−biũi, in Ωi, i=1,2,
Ja∇v·nK=0, on Γ,

JvK=0, on Γ,
v=0, on ∂Ω,

has a unique solution v∈X and v satisfies the estimate

∥v∥X ≤C
(
∥ f1+∇·(a1∇ũ1)−b1ũ1∥L2(Ω1)

+∥ f2+∇·(a2∇ũ2)−b2ũ2∥L2(Ω2)

)
≤C

(
∥ f1∥L2(Ω1)

+∥ f2∥L2(Ω2)
+∥ũ1∥H2(Ω1)

+∥ũ2∥H2(Ω2)

)
.

Finally, we obtain that u=v+ũ solves the problem (2.4) and that

∥u∥X ≤∥v∥X+∥ũ∥X

≤C
(
∥ f1∥L2(Ω1)

+∥ f2∥L2(Ω2)
+∥ũ∥X

)
≤C

(
∥ f1∥L2(Ω1)

+∥ f2∥L2(Ω2)
+∥g∥H3/2(∂Ω)+∥φ∥H3/2(Γ)+∥ψ∥H1/2(Γ)

)
≤C

(
∥ f1∥L2(Ω1)

+∥ f2∥L2(Ω2)
+∥g∥H2(∂Ω)+∥φ∥H2(Γ)+∥ψ∥H1(Γ)

)
,

where C is a generic constant. The proof is completed.

With these results, we are able to provide the proof of Theorem 4.1.

Proof of Theorem 4.1. Lemma 6.4 implies the existence and the uniqueness of solution u∗.
Let

(u1,m,u2,m)∈ (H1,m,H2,m)

be a minimizer of the Lipschitz regularized loss Lossm(·;λ,λR
m) (3.2). Again, by Lemma

6.4, we have that

∥u1,m−u∗∥H2(Ω1)
+∥u2,m−u∗∥H2(Ω2)

≤C
(
∥L1[u1,m]− f1∥L2(Ω1)

+∥L2[u2,m]− f2∥L2(Ω2)

+∥u2,m−g∥H2(∂Ω)+∥u2,m−u1,m−φ∥H2(Γ)

+∥a∇u2,m ·n−a∇u1,m ·n−ψ∥H2(Γ)

)
.

Finally, by the second term of Lemma 6.3, we conclude that with probability one over iid
samples,

lim
mr1→∞

u1,m =u∗, in H2(Ω1), lim
mr1→∞

u2,m =u∗, in H2(Ω2),

which completes the proof.
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7 Summary

The main contribution of this paper is to perform the convergence analysis of the neural
network method for solving linear second-order elliptic interface problems. It is proved
that the neural network sequence converges to the unique solution to the interface prob-
lem in H2. Numerical results are presented to show agreement with the theoretical find-
ings. This result advanced the mathematical foundations of the deep learning-based
solver of PDEs.

To complete the proof, we first derive a Lipschitz regularized empirical loss from the
probabilistic space filling arguments [43] to bound the expected PINN loss and then show
that the expected PINN loss at the minimizers of the Lipschitz regularized empirical loss
converges to zero. Finally, we demonstrate that the minimizers of the Lipschitz regular-
ized empirical losses converge to the solution to the interface problem uniformly as the
number of training samples grows in H2 and conclude the main theorem.

There are several interesting further research directions. The landscape of non-convex
objective functions and the stochastic gradient optimization process remain open. We
would like to further investigate such problems and quantify the optimization error of
solving elliptic interface problems using neural networks in the future. In addition, fur-
ther error analysis to provide a more restrictive error bound is another interesting direc-
tion.
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