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Obtaining a satisfactory numerical solution of the classical three-dimensional drift-
diffusion (DD) model, widely used in semiconductor device simulations, is still challenging 
nowadays, especially when the convection dominates the diffusion. In this work, we 
propose a series of finite element schemes with different types of averaging techniques 
to discretize the three-dimensional continuity equations. Our methods are based on the 
classical finite element framework, quite different from those mixed finite element/volume 
methods that also employ inverse averaging techniques. At first, the Slotboom variables 
are employed to transform the continuity equations into self-adjoint second-order elliptic 
equations with exponentially behaved coefficients. Then four averaging techniques, denoted 
with A1-A4, are introduced to approximate the exponential coefficient with its average on 
every tetrahedral element of the grid. The first scheme calculates the harmonic average 
of the exponential coefficient on a whole tetrahedron, and the other three schemes 
calculate the average of the exponential coefficient on each edge of a tetrahedral element. 
Our methods can avoid the spurious non-physical numerical oscillations and guarantee 
the conservation of the computed terminal currents with a terminal current evaluation 
approach. In fact, these methods not only maintain numerical stability but also overcome 
the disadvantages of some stabilization methods that cannot guarantee the conservation 
of the terminal currents, such as the streamline-upwind Petrov-Galerkin (SUPG) method. 
Moreover, the derivation of these discretization methods does not need the dual Voronoi 
grid as that of the finite volume Scharfetter-Gummel (FVSG) method or other mixed finite 
element/volume methods with inverse averaging techniques, which greatly reduces the 
complexity of parallel implementations of our methods. Simulations on two realistic three-
dimensional semiconductor devices are carried out to test the accuracy and stability of 
our methods. According to numerical results, we conclude that scheme A4 can produce 
more accurate numerical solutions than the other three schemes, especially when the bias 
applied on the electrode is high. Numerical results also show that the scheme A4 is more 
robust than the Zlámal finite element method [1] in high-bias cases, and it also performs 
better than the FVSG method and a tetrahedral mixed finite element method [2] on poor-
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quality grids. Scheme A4 is also employed to study rich physical properties of the n-channel 
MOSFET.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The drift-diffusion (DD) model introduced by Van Roosbroeck [3], which is composed of two convection-diffusion-
reaction (continuity) equations and a Poisson equation, is frequently used in modeling the electromagnetic and thermal 
behavior of semiconductor devices. So far, it is still a challenging task to obtain a satisfactory numerical solution to this 
mathematical model, especially when the convection dominates the diffusion. The convection domination arises from the 
electric field solved from the Poisson equation after appropriate scaling is employed. Large biases applied on the electrodes 
and essentially discontinuous doping profiles, which may jump from large positive values to large negative values across 
an extremely thin layer, can lead to a strong convection-dominated effect and make the numerical solution suffer from 
spurious non-physical oscillations if the mesh size is not small enough. Due to these problems, classical numerical methods, 
including standard finite element/difference/volume methods, usually have difficulty in dealing with the DD model.

Since the Scharfetter-Gummel (SG) method [4] was firstly proposed for the one-dimensional DD model, the finite volume 
Scharfetter-Gummel (FVSG) method [5], also known as the box method, for higher-dimensional problems has been success-
fully employed in semiconductor device simulations up to now. This method uses boxes from the dual Voronoi grid as 
control volumes. The dual Voronoi grid only exists for Delaunay meshes. And it is challenging to generate Delaunay meshes, 
especially in three spatial dimensions [6]. If the semiconductor device includes two or more different material regions, the 
control volume covering different regions must be carefully treated. Therefore, the practical implementation of the FVSG 
scheme in three-dimensional semiconductor device simulations is complicated. Nowadays, many alternative discretization 
schemes have been proposed. A large family of methods derived from the classical finite element method (FEM) plays a cru-
cial role in the numerical solution of the DD model. To avoid non-physical spurious oscillations of the numerical solutions to 
the convection-dominated continuity equations, people have developed many special schemes to improve the standard FEM: 
stabilization techniques [7–15], inverse averaging techniques [2,16–20], exponential fitting techniques [21–27], specifically 
designed basis functions [1,28–31], mixed finite element methods [32–35], and so on. Some stabilization techniques, such 
as the streamline upwind/Petrov-Galerkin (SUPG) method [8], can cut off negative oscillations (negative concentration) of 
carriers, but they may lead to a piling up of remaining positive oscillations [36,37]. Moreover, the stabilization approaches 
that enhance the stability of the numerical algorithm by adding diffusion terms or interior penalties (IP) cannot guarantee 
the conservation of the computed terminal currents [15,38]. Various inverse averaging techniques have been employed to 
deal with convection-diffusion problems, such as the simplex-averaged FEM [20]. This method is monotone, suitable for 
analysis, and does not need a dual Voronoi grid. In the derivation of the simplex-averaged FEM, the construction of the 
local simplex-averaged operators and the introduction of several special interpolation operators make this scheme suitable 
for the analysis. Our schemes directly use the Slotboom variables to transform the continuity equations into self-adjoint 
second order elliptic equations with exponentially behaved coefficients. Then we employ four different averaging techniques 
to deal with the exponential coefficients and compare them. The derivations in our work are relatively more convenient 
and straightforward for constructing the finial stiffness matrices. Exponential fitting techniques are also commonly used for 
solving convection-diffusion problems. In reference [25], the exponentially fitted edge fluxes are used to stabilize the FEM, 
and the employment of edge elements expands the edge fluxes into an H(curl)-conforming flux field inside each element. 
Different from [25], our schemes employ averaging techniques to improve the numerical stability and only need the lin-
ear finite element space. Apart from exponential fitting techniques, reference [39] utilizes quadrature rules and Newton’s 
method to solve the nonlinear integral equation satisfied by the flux density. This scheme is used in a finite volume method 
which needs a dual Voronoi grid. We think that this scheme is an alternative approach and especially suitable for degener-
ate semiconductor devices satisfying non-Boltzmann statistics. Because in degenerate semiconductor device simulations, the 
continuity equation and the corresponding integral equation satisfied by the flux density are nonlinear. For non-degenerate 
semiconductor devices, the flux density can be analytically solved from the integral equation, and the classical FVSG scheme 
is recovered. Most of the above improved FEMs are mainly designed to solve the two-dimensional DD model, and some of 
them construct their finite element discretizations on the dual Voronoi grid as well. For some unordinary FEMs with specif-
ically designed basis functions, their derivation is pretty complicated. In this work, we propose improved finite element 
schemes that can eliminate spurious numerical oscillations due to dominant convection terms and guarantee the conserva-
tion of the computed terminal currents for the three-dimensional model. Our schemes don’t need the dual Voronoi grid or 
specifically designed finite element basis functions. Therefore, their derivation is simpler, and their parallel implementation 
is easier.

In semiconductor device simulations, the carrier concentration may vary extremely rapidly in some subregions of the 
device, and the variational form of the continuity equation is not symmetric. This implies that discretizing the carrier 
concentration directly with piecewise polynomials is not appropriate. However, the flux density varies moderately in the 
whole domain. Thus, many people apply the mixed finite element/volume methods to the DD model, in which the flux 
density is treated as a whole. In this work, the Slotboom variables [40] are introduced to eliminate the cross term in 
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the flux density and transform continuity equations into self-adjoint second-order elliptic equations with exponentially 
behaved coefficients. Then, our numerical difficulty lies in dealing with the exponential coefficients. The flux densities 
can be approximated with constant vectors on each element of the tetrahedral mesh due to their moderate variation. 
Correspondingly, the exponential coefficients are also approximated with constants in each tetrahedral element. Hence, 
finding appropriate approximation techniques is the key to our method. In some mixed finite element/volume methods, 
people have employed several inverse averaging techniques to deal with their singular coefficients on a control volume 
of the dual Voronoi grid. Inspired by these methods, we introduce four different forms of averaging techniques into the 
general FEM aiming at dealing with the exponential coefficients on general tetrahedral elements. In this work, we propose 
a series of schemes, denoted by A1-A4, based on the averaging techniques to discretize the three-dimensional continuity 
equations in the DD model. In scheme A1, the average of the exponential coefficient is calculated on a whole tetrahedral 
element. In schemes A2-A4, the average of the exponential coefficient is separately calculated on each edge of a tetrahedral 
element. Our methods can handle the layer oscillation problems and guarantee the conservation of the computed terminal 
currents with a terminal current evaluation approach. On the one hand, our methods possess the upwinding properties. 
On the other hand, they overcome the shortcoming that the terminal current conservation cannot be maintained for some 
stabilization schemes [15,38]. Later numerical results also show that our scheme A4 is more robust than the Zlámal finite 
element method [1] in high-bias cases. The Zlámal finite element method is a specifically designed FEM for solving the two-
or three-dimensional DD model directly on triangle or tetrahedral elements without using the control volumes. Similar to it, 
our methods also don’t need a dual Voronoi grid. The numerical results also show that scheme A4 performs better than the 
FVSG method and a tetrahedral mixed FEM [2] on poor-quality grids. The derivation of our methods is simpler than many 
FEMs specifically designed for solving the DD model, which greatly reduces the difficulty of their parallel implementation. 
The stiffness matrix can be readily built by looping over the tetrahedral elements of the mesh.

In the numerical experiments, we first use a simple cube test to check the accuracy of our methods. Then, two classical 
three-dimensional semiconductor devices, a p − n junction and an n-channel MOSFET, are employed to evaluate the effec-
tiveness of our methods. The p −n junction is regarded as a benchmark to test the methods. And we conclude that scheme 
A4 can produce numerical solutions that are more in line with the physical properties of the p −n junction, compared with 
the other schemes A1-A3, especially in high-bias cases. In addition, scheme A4 can simulate the rich physical properties of 
the n-channel MOSFET well.

The rest of this paper is organized as follows. In Section 2, we introduce the mathematical model (DD model) employed 
in semiconductor device simulations and various types of boundary conditions. In section 3, we present the central part of 
our methods, in which four different forms of averaging techniques are derived for dealing with the exponentially behaved 
coefficients in symmetrized continuity equations with the help of the Slotboom variables. In Section 4, we discuss the 
evaluation of terminal currents using our schemes. Numerical experiments on two realistic three-dimensional semiconductor 
devices are conducted in Section 5 to evaluate the accuracy and stability of our methods.

2. The mathematical model

2.1. The drift-diffusion (DD) model

The geometrical model of a semiconductor device is a bounded domain � ⊂R3, which is comprised of a semiconductor 
part �S , and, with regard to metal-oxide-semiconductor field-effect transistors (MOSFETs), one or more subdomains of thin 
oxide adjacent to �S , denoted with �O . In this work, we consider the classical steady-state DD equations commonly used 
in semiconductor device simulations. These equations are⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∇ · ε∇ψ = q(p − n+ C), in�,

1

q
∇ · Jn − Rn = 0, in�S ,

−1

q
∇ · Jp − Rp = 0, in�S ,

(2.1)

with {
Jn =−qnμn∇ψ + qDn∇n,
Jp =−qpμp∇ψ − qDp∇p, (2.2)

where ψ[V] — content in the square bracket is the physical unit of the corresponding physical quantity — is the electrostatic 
potential, ε[CV−1 cm−1] is the dielectric constant, q[C] is the fundamental electron charge, n and p[cm−3] are the electron 
and hole concentrations inside the semiconductor (n|�O ≡ p|�O ≡ 0). C = ND − NA[cm−3] is the doping profile, which is 
assumed to be a given datum of the problem in terms of the donor and acceptor concentrations ND and NA . Source terms 
Rn , Rp[cm−3 s−1] can be interpreted as the net recombination/generation rate of carriers in unit time and volume. For 
simplicity, we set Rp = Rn = 0, that is, we do not consider the carrier recombination and generation effects. Moreover, 
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the oxide region is assumed to be a perfect insulator, which implies that Jn · n
∣∣
�O
≡ Jp · n

∣∣
�O
≡ 0. We assume that the 

temperature T [K ] of the crystal is constant, and also suppose the following Einstein’s relations

Dn =μn
kB T

q
, Dp =μp

kB T

q
(2.3)

for carrier mobilities μn , μp[cm2 V−1 s−1] and carrier diffusion coefficients Dn , Dp[cm2 s−1], where kB [V CK−1] is the Boltz-
mann constant. The carrier mobilities are treated as constants and calculated using the constant low field mobility model 
[41] in this paper.

2.2. The nonlinear Poisson equation

In our work, the Poisson equation, i.e., the first equation in the DD model (2.1), is solved with the help of the quasi-Fermi 
levels φn , φp . Referring to the Maxwell-Boltzmann statistics, we get

n= nie exp

(
q

kB T
(ψ − φn)

)
, p = nie exp

(
q

kB T
(φp −ψ)

)
, (2.4)

where nie is the intrinsic concentration of the semiconductor. Substituting (2.4) into the Poisson equation, we get the 
following nonlinear Poisson equation

−∇ · ε∇ψ = q

{
nie

[
exp

(
q

kB T
(φp −ψ)

)
− exp

(
q

kB T
(ψ − φn)

)]
+ C

}
, in�. (2.5)

2.3. Boundary conditions

The boundary conditions of DD equations may be different for various kinds of semiconductor devices. In this paper, we 
mainly consider three categories of boundary conditions: the nonhomogeneous Dirichlet conditions (for ideal ohmic contacts 
and gate contacts), the nonhomogeneous Neumann conditions (for oxide-semiconductor interfaces), and the homogeneous 
Neumann conditions (for boundaries without contacts).

Ohmic contacts: On ohmic contacts, denoted with �C , where external voltages Vext
∣∣
�C

are applied to electrically drive 
the device, boundary conditions for the electrostatic potential ψ and concentrations of carriers n, p are all Dirichlet condi-
tions:

n
∣∣
�C
=

C +
√
C2 + 4n2ie
2

,

p
∣∣
�C
=
−C +

√
C2 + 4n2ie
2

,

ψ
∣∣
�C
= Vext

∣∣
�C
+ kB T

q
ln

(
n

nie

)
= Vext

∣∣
�C
− kB T

q
ln

(
p

nie

)
.

Gate contacts: Gate contacts, denoted with �G , are located over the oxide region �O where external voltages Vext
∣∣
�G

are applied to control the current flow between the input-output contacts of the device. Moreover, n
∣∣
�O
≡ p

∣∣
�O
≡ 0, so we 

just need to give the boundary condition of the electrostatic potential ψ , which is also a Dirichlet condition:

ψ
∣∣
�G
= Vext

∣∣
�G
− φms,

where φms is the work function difference between the metal and an intrinsic reference semiconductor.
Oxide-semiconductor interfaces: On the interfaces between the oxide and the semiconductor, denoted with �I , flux 

densities vanish, that is,

Jn · n
∣∣
�I
= Jp · n

∣∣
�I
= 0,

where n is the out normal vector of �I . The electrostatic potential ψ satisfies the following conditions:

[ψ]�I = 0,

[
ε
∂ψ

∂n

]
�I

= σ ,

where σ is the surface charge density on �I , and [·] denotes the jump function.
Boundaries without contacts: Outer boundaries of the device that have no contacts, denoted with �N , are treated with 

ideal Neumann boundary conditions:
4
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∂ψ

∂n

∣∣∣∣
�N

= 0,

Jn · n
∣∣
�N
= Jp · n

∣∣
�N
= 0.

2.4. Scaling of the DD model

For computational convenience, we make the electrostatic potential and the quasi-Fermi levels dimensionless with the 
following scaling:

ψ← qψ

kB T
, φn← qφn

kB T
, φp← qφp

kB T
. (2.6)

By taking (2.3) and (2.6) into DD equations (2.1)-(2.2), we obtain the scaled DD model including the nonlinear Poisson 
equation (2.5):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · ε∇ψ = q2

kB T

[
nie
(
exp(φp −ψ)− exp(ψ − φn)

)+ C
]
, in�,

−1

q
∇ · Jn =−∇ · (Dn(∇n− n∇ψ))= 0, in�S ,

1

q
∇ · Jp =−∇ · (Dp(∇p + p∇ψ))= 0, in�S .

(2.7)

3. Finite element discretization of continuity equations with averaging techniques

In semiconductor device simulations, the electron and hole concentrations may vary extremely rapidly near the inter-
face of differently doped subregions, such as the depletion regions. Also, the variational forms of continuity equations are 
not symmetric. Therefore, it may be inappropriate to discretize carrier concentrations directly with piecewise polynomials. 
Moreover, the flux densities J p and Jn vary moderately in the whole domain �. Thus, many people use the mixed finite 
element/volume methods to solve the DD model, in which the flux density is always treated as a whole. In this work, we 
introduce the scaled Slotboom variables [40]

	n = n exp(−ψ), 	p = p exp(ψ),

aiming at eliminating the cross terms in the flux densities and transforming the continuity equations in (2.7) into a set of 
self-adjoint second-order elliptic partial differential equations with exponential coefficients exp(ψ) and exp(−ψ):⎧⎪⎪⎨

⎪⎪⎩
−1

q
∇ · Jn =−∇ · (Dn exp(ψ)∇	n)= 0, in�S ,

1

q
∇ · Jp =−∇ · (Dp exp(−ψ)∇	p)= 0, in�S .

(3.1)

Then our numerical difficulty lies in dealing with the exponential coefficients exp(ψ) and exp(−ψ).
In this paper, we propose four schemes with different kinds of averaging techniques to deal with the exponential coeffi-

cients, denoted respectively by A1-A4. To present our idea better, we first establish our method with the following boundary 
conditions:

	n|�D =	p|�D = 0,

Dn exp(ψ)∇	n · n
∣∣
�N
= Dp exp(−ψ)∇	p · n

∣∣
�N
= 0,

where ∂�S = �D ∪�N . When dealing with other kinds of boundary conditions, our methods can be easily derived by making 
corresponding changes.

Let H1(�S ) be the Sobolev space of weakly differentiable functions and H1
D(�S ) = {v ∈ H1(�S ) | v = 0 on �D}. The 

variational form of the first continuity equation in (3.1) is to find 	n ∈ H1
D(�S ) such that∫

�S

Dn exp(ψ)∇	n · ∇v d�S = 0, ∀v ∈ H1
D(�S). (3.2)

Similarly, the variational form of the second continuity equation in (3.1) is to find 	p ∈ H1
D(�S ) satisfying∫

Dp exp(−ψ)∇	p · ∇v d�S = 0, ∀v ∈ H1
D(�S). (3.3)
�S

5



Q. Zhang, Q. Wang, L. Zhang et al. Journal of Computational Physics 458 (2022) 111086
Let Th be a tetrahedral mesh over the semiconductor part of the device �S , Xh = {qi}Nv
i=1 be the set of all vertices of 

Th , and T ∈ Th denote a tetrahedron in the tetrahedral mesh. We choose the test function v in the piecewise linear finite 
element space Vh ⊂ H1

D(�S ), and denote it with vh . The Slotboom variables 	n and 	p are respectively discretized by 
	nh =∑i	nh(qi)ϕi , 	ph =∑i	ph(qi)ϕi , where ϕi denotes the linear Lagrangian basis function at qi . Due to the moderate 
variation of flux density in the whole computational domain �S , Jn (respectively J p) can be approximated with a constant 
vector on each tetrahedral element of the mesh. So we also approximate the exponential coefficient exp(ψ) (respectively 
exp(−ψ)) with the piecewise constant E(ψ)T (respectively E(−ψ)T ) on each tetrahedron T . Then the discrete forms of 
(3.2)-(3.3) become

0=
∑
T∈Th

∫
T

Dn exp(ψ)∇	nh · ∇vh dT ≈

∑
T∈Th

DnE(ψ)T

∫
T

∇	nh · ∇vh dT

=
∑
T∈Th

DnE(ψ)T
∑
qi∈T

	nh(qi)

∫
T

∇ϕi · ∇vh dT , (3.4)

and

0=
∑
T∈Th

∫
T

Dp exp(−ψ)∇	ph · ∇vh dT ≈

∑
T∈Th

Dp E(−ψ)T
∫
T

∇	ph · ∇vh dT

=
∑
T∈Th

Dp E(−ψ)T
∑
qi∈T

	ph(qi)

∫
T

∇ϕi · ∇vh dT . (3.5)

We now describe in detail the computation of the element-wise stiffness matrices of the continuity equations in (2.7), 
i.e., An = (aTi j)T∈Th and Ap = (bT

i j)T∈Th . On a tetrahedral element T , let vh take the associated piecewise linear finite element 
basis functions, then we have

DnE(ψ)T

∫
T

∇	nh · ∇ϕi dT = DnE(ψ)T
∑
q j∈T

	nh(q j)

∫
T

∇ϕ j · ∇ϕi dT

� DnE(ψ)T
∑
q j∈T

	nh(q j)e
T
i j, (3.6)

and

DpE(−ψ)T
∫
T

∇	ph · ∇ϕi dT = DpE(−ψ)T
∑
q j∈T

	ph(q j)

∫
T

∇ϕ j · ∇ϕi dT

� DpE(−ψ)T
∑
q j∈T

	ph(q j)e
T
i j . (3.7)

Note that eTi j =
∫
T ∇ϕ j ·∇ϕi dT includes some geometric information of the tetrahedron T , and it holds for linear Lagrangian 

finite element basis functions that eTii =− 
∑

j 
=i eTi j . Therefore, equations (3.6)-(3.7) can be written as

DnE(ψ)T

∫
T

∇	nh · ∇ϕi dT =−Dn

∑
q j∈T ,q j 
=qi

E(ψ)T (	nh(qi)−	nh(q j))e
T
i j

�−Dn

∑
q j∈T ,q j 
=qi

E(ψ)Ei j (	nh(qi)−	nh(q j))e
T
i j,

and

DpE(−ψ)T
∫
T

∇	ph · ∇ϕi dT =−Dp

∑
q j∈T ,q j 
=qi

E(−ψ)T (	ph(qi)−	ph(q j))e
T
i j

�−Dp

∑
q j∈T ,q j 
=qi

E(−ψ)Ei j (	ph(qi)−	ph(q j))e
T
i j .

Inspired by the above equalities, we intend to approximate exp(ψ) and exp(−ψ) by averaging either over the whole tetra-
hedron or its edges, that is E(ψ)T (respectively E(−ψ)T ) may be a constant on each tetrahedral element or take different 
values E(ψ)Ei j (respectively E(−ψ)Ei j ) on different edges of every tetrahedral element. This leads to the following different 
schemes.
6
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3.1. Averaging over the whole tetrahedron T

We first introduce the derivation of our scheme A1. Using harmonic averages to treat singular coefficients is natural in 
mixed methods [42,43]. The harmonic average has been proven to be able to provide a better result than the general mean 
value in the one-dimensional case, especially when the singular coefficient exhibits sharp variations or is even discontinuous 
on mesh elements. So we approximate the exponential coefficients with their respective harmonic averages over the whole 
tetrahedral element T as follows:

E(�)T =
⎛
⎝ 1

|T |
∫
T

e−�dT

⎞
⎠
−1
,

where � =±ψ . We assume that � is linear on T and �i =�(qi), qi ∈ T , i = 1, 2, 3, 4. Then referring to Appendix A in [2], 
we have

I(T )= 1

|T |
∫
T

e�dT = e�1

[
6e�4−�1

�4 −�1

(
e�3−�4

�3 −�4
B−1(�2 −�3)− 1

�3 −�4
B−1(�2 −�4)

)

− 6

�4 −�1

(
e�3−�1

�3 −�1
B−1(�2 −�3)− 1

�3 −�1
B−1(�2 −�1)

)]
� e�1 Ĩ T (�). (3.8)

Here, B(t) is the Bernoulli function defined by

B(t)=
{ t

et − 1
, t 
= 0,

1, t = 0.

For numerical stability, if the difference between two nodal values of �i (i = 1, 2, 3, 4) is very little, the corresponding 
terms should be calculated using Taylor expansions. For more details, please refer to Appendix A in [2].

Our past numerical experience also shows that the Slotboom variables 	nh and 	ph are not suitable in practical compu-
tations. Therefore, the normal variables nh , ph are the unknowns we finally solve. For simplicity, we set �1 =�i in (3.8) — 
other options are also possible, then the equations (3.6)-(3.7) become

DnE(ψ)T

∫
T

∇	nh · ∇ϕi dT = Dn

∑
q j∈T

⎛
⎝eψ j

|T |
∫
T

e−ψdT

⎞
⎠
−1

nh(q j)e
T
i j

=
∑
q j∈T

Dn

(
eψ j−ψi Ĩ T (−ψ)

)−1
eTi jnh(q j)

and

DpE(−ψ)T
∫
T

∇	ph · ∇ϕi dT = Dp

∑
q j∈T

⎛
⎝e−ψ j

|T |
∫
T

eψdT

⎞
⎠
−1

ph(q j)e
T
i j

=
∑
q j∈T

Dp

(
eψi−ψ j Ĩ T (ψ)

)−1
eTi j ph(q j).

Furthermore, the nonzero entries of the element-wise stiffness matrices An = (aTi j)T∈Th and Ap = (bT
i j)T∈Th are respectively 

given by

aTi j = Dn

(
eψ j−ψi Ĩ T (−ψ)

)−1
eTi j and bT

i j = Dp

(
eψi−ψ j Ĩ T (ψ)

)−1
eTi j .

3.2. Averaging over the edges of the tetrahedron T

In this subsection, we consider three averaging techniques to calculate the averages of the exponential coefficients on 
the edge Ei j = qiq j of a tetrahedron T . The first one uses the trapezoidal rule, and the other two techniques refer to the 
harmonic (inverse) averaging strategies [42], which have been successfully applied in two-dimensional mixed methods. The 
average of the exponential coefficient on the edge Ei j = qiq j is denoted with
7
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E(�)Ei j =
(∫ q j

qi
e±� ds

|Ei j|

)±1
� I(Ei j),

where � =±ψ as before. In this subsection, the unknowns we finally solve are still the normal variables nh and ph for the 
same reason as before.

At first, we employ the trapezoidal quadrature formula and the inverse averaging technique, then we have

I(Ei j)=
∫ q j
qi

e�ds

|Ei j| ≈ e�i

(
1+ e� j−�i

2

)
,

and

I(Ei j)=
(∫ q j

qi
e−�ds
|Ei j|

)−1
≈ e� j

(
2

1+ e� j−�i

)
.

Their corresponding schemes are respectively denoted as A2 and A3. Referring to the derivation process of scheme A1, we 
can get the nonzero entries of the element-wise stiffness matrices An = (aTi j)T∈Th and Ap = (bT

i j)T∈Th of scheme A2:

aTi j =

⎧⎪⎪⎨
⎪⎪⎩

Dn

2
(1+ eψi−ψ j )eTi j, j 
= i,

−∑
k 
=i

Dn

2
(1+ eψk−ψi )eTik, j = i,

bT
i j =

⎧⎪⎪⎨
⎪⎪⎩

Dp

2
(1+ eψ j−ψi )eTi j, j 
= i,

−∑
k 
=i

Dp

2
(1+ eψi−ψk )eTik, j = i.

Similarly, the nonzero entries of the element-wise stiffness matrices An = (aTi j)T∈Th and Ap = (bT
i j)T∈Th of scheme A3 are as 

follows:

aTi j =

⎧⎪⎪⎨
⎪⎪⎩

Dn
2

1+ eψ j−ψi
eTi j, j 
= i,

−∑
k 
=i

Dn
2eψk−ψi

1+ eψk−ψi
eTik, j = i,

bT
i j =

⎧⎪⎪⎨
⎪⎪⎩

Dp
2

1+ eψi−ψ j
eTi j, j 
= i,

−∑
k 
=i

Dp
2eψi−ψk

1+ eψi−ψk
eTik, j = i.

Then, we assume that � is linear on the edge Ei j , that is

�(x)=
(
� j −�i

|Ei j|
)
(x− xqi )+�i, x ∈ [xqi ,xq j ].

Then we employ the inverse averaging technique and get

I(Ei j)=
(∫ q j

qi
e−�ds
|Ei j|

)−1
=
⎛
⎝

q j∫
qi

e−�i

|Ei j|
(
e�i

e� j

) x−xqi|Ei j |
dx

⎞
⎠
−1

= e�i B(�i −� j).

The corresponding scheme is denoted as A4. The equations (3.6)-(3.7) related to the normal variables nh , ph are as follows

DnE(ψ)T

∫
T

∇	nh · ∇ϕi dT =−Dn

∑
q j∈T ,q j 
=qi

E(ψ)Ei j (e
−ψi nh(qi)− e−ψ j nh(q j))e

T
i j

=
⎛
⎝− ∑

q j∈T ,q j 
=qi
DnB(ψi −ψ j)e

T
i j

⎞
⎠nh(qi)+

∑
q j∈T ,q j 
=qi

(
DnB(ψ j −ψi)e

T
i j

)
nh(q j),

and
8
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DpE(−ψ)T
∫
T

∇	ph · ∇ϕi dT =−Dp

∑
q j∈T ,q j 
=qi

E(−ψ)Ei j (e
ψi ph(qi)− eψ j ph(q j))e

T
i j

=
⎛
⎝− ∑

q j∈T ,q j 
=qi
Dp B(ψ j −ψi)e

T
i j

⎞
⎠ ph(qi)+

∑
q j∈T ,q j 
=qi

(
DpB(ψi −ψ j)e

T
i j

)
ph(q j).

The nonzero entries of the element-wise stiffness matrices An = (aTi j)T∈Th and Ap = (bT
i j)T∈Th can be written as

aTi j =
{

DnB(ψ j −ψi)eTi j, j 
= i,

−∑k 
=i DnB(ψi −ψk)eTik, j = i,

bT
i j =

{
DpB(ψi −ψ j)eTi j, j 
= i,

−∑k 
=i Dp B(ψk −ψi)eTik, j = i.

Later p −n junction numerical experiments show that schemes A1-A3 perform poorly comparing with scheme A4. There-
fore, we briefly analyze the upwinding property of scheme A4. We take the electron continuity equation (3.6) as an example. 
The analysis for the hole continuity equation (3.7) is similar. The electron current on the edge Ei j is

jn|Ei j =−DnB(ψi −ψ j)e
T
i jnh(qi)+ DnB(ψ j −ψi)e

T
i jnh(q j).

We notice that

B(t)=
⎧⎨
⎩

1, t→ 0,
0, t→+∞,
−t, t→−∞.

Then we get

jn|Ei j =

⎧⎪⎨
⎪⎩

DneTi j
(
nh(q j)− nh(qi)

)
, when ψi =ψ j,

Dn(ψi −ψ j)eTi jnh(qi), when ψi�ψ j,

Dn(ψi −ψ j)eTi jnh(q j), when ψi�ψ j.

(3.9)

From (3.9), we find that the electron current expression of scheme A4 is similar to that derived from the central difference 
scheme when the electric field is zero, namely ψi = ψ j , as well. Moreover, when ψi � ψ j or ψi � ψ j , the electron current 
given by scheme A4 is similar to the first-order upwinding form of the finite difference method, which implies that scheme 
A4 can produce physical current in the case of a large electric field.

Our later numerical results confirm the above analyses.

4. Evaluation of approximate terminal currents

Getting the ohmic contact currents is a goal of semiconductor device simulations. In this section, we present a method 
for the evaluation of approximate terminal currents using our finite element schemes introduced above. We also prove that 
our schemes can maintain the conservation of the terminal currents well. This property is verified with later numerical 
experiments.

For simplicity, we assume that the Dirichlet boundary �D of a semiconductor device consists of a finite number of 
separated ohmic contacts, and the tetrahedral mesh Th is generated such that the end-points of any contact are mesh nodes 
of Th . Let Sh � span{ϕi} ⊂ H1(�S ). If vh ∈ Sh satisfies vh|�D = 0, then vh ∈ Vh . For any �C ⊂ �D , let ϕC be a piecewise 
constant function satisfying

ϕC =
{
1, x ∈ �C ,

0, x ∈ �D \ �C .

Through multiplying (3.1) with ϕC and integrating by parts, we have

0=
∫
�S

(∇ · Jn)ϕCd�S =
∫
�C

Jn · nds−
∫
�S

Jn · ∇ϕCd�S ,

0=
∫
�S

(∇ · Jp)ϕCd�S =
∫
�C

Jp · nds−
∫
�S

Jp · ∇ϕCd�S .

Let ϕ I
C be the linear interpolant of ϕC , then ϕ I

C =
∑NC

j=1 ϕ j . And, the outflow currents J Cnh and J Cph through �C are separately 
defined as
9
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J Cnh =
∫
�C

Jnh · nds=
∫
�S

Jnh · ∇ϕ I
Cd�S =

∫
�S

qDn exp(ψ)∇	nh · ∇ϕ I
Cd�S

=
NC∑
j=1

∑
T∈Th

∫
T

qDnE(ψ)T∇	nh · ∇ϕ jdT ,

J Cph =
∫
�C

Jph · nds=
∫
�S

Jph · ∇ϕ I
Cd�S =−

∫
�S

qDp exp(−ψ)∇	ph · ∇ϕ I
Cd�S

=−
NC∑
j=1

∑
T∈Th

∫
T

qDp E(−ψ)T∇	ph · ∇ϕ jdT .

Finally, the total terminal current J Ctotal flowing out of �C is equal to the sum of the electron and hole currents, namely

J Ctotal = J Cnh + J Cph.

Proposition 1. The computed total terminal current flowing out of �D is conservative,∑
�C⊂�D

J Ctotal = 0.

Proof. Summing J Cnh and J Cph respectively on all contacts, referring to (3.4)-(3.5), we have
∑

�C⊂�D

J Cnh =
∑

�C⊂�D

∑
T∈Th

∫
T

qDn exp(ψ)∇	nh · ∇ϕ I
CdT =

∑
T∈Th

∫
T

qDn exp(ψ)∇	nh · ∇ϕ IdT

=
∑
T∈Th

∫
T

qDn exp(ψ)∇	nh · ∇(ϕ I − 1)dT = 0,

and ∑
�C⊂�D

J Cph =−
∑

�C⊂�D

∑
T∈Th

∫
T

qDp exp(−ψ)∇	ph · ∇ϕ I
CdT =−

∑
T∈Th

∫
T

qDp exp(−ψ)∇	ph · ∇ϕ IdT

=−
∑
T∈Th

∫
T

qDp exp(−ψ)∇	ph · ∇(ϕ I − 1)dT = 0.

Here ϕ I =∑�C⊂�D
ϕ I
C ∈ Sh and ϕ I |�D = 1, thus ϕ I − 1 ∈ Vh . Then we get∑

�C⊂�D

J Ctotal =
∑

�C⊂�D

J Cnh +
∑

�C⊂�D

J Cph = 0. �

Proposition 2. If source terms Rn and Rp exist, conservation of the computed terminal current flowing out of �D can still be main-
tained, that is,∑

�C⊂�D

J Ctotal =
∫
�S

q(Rn − Rp)d�s.

Proof. At first, the outflow currents J Cnh and J Cph through �C can be written as

J Cnh =
∫
�C

Jnh · nds=
∫
�S

Jnh · ∇ϕ I
Cd�S +

∫
�S

qRnϕ
I
Cd�S

=
∫
�S

qDn exp(ψ)∇	nh · ∇ϕ I
Cd�S +

∫
�S

qRnϕ
I
Cd�S

=
NC∑
j=1

∑
T∈T

∫
qDnE(ψ)T∇	nh · ∇ϕ jdT +

NC∑
j=1

∑
T∈T

∫
qRnϕ jdT ,
h T h T

10
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J Cph =
∫
�C

Jph · nds=
∫
�S

Jph · ∇ϕ I
Cd�S −

∫
�S

qRpϕ
I
Cd�S

=−
∫
�S

qDp exp(−ψ)∇	ph · ∇ϕ I
Cd�S −

∫
�S

qRpϕ
I
Cd�S

=−
NC∑
j=1

∑
T∈Th

∫
T

qDp E(−ψ)T∇	ph · ∇ϕ jdT −
NC∑
j=1

∑
T∈Th

∫
T

qRpϕ jdT .

And the equations (3.4)-(3.5) have the following forms when the source terms exist:

−
∑
T∈Th

∫
T

RnvhdT =
∑
T∈Th

∫
T

Dn exp(ψ)∇	nh · ∇vh dT ≈

∑
T∈Th

DnE(ψ)T

∫
T

∇	nh · ∇vh dT

=
∑
T∈Th

DnE(ψ)T
∑
qi∈T

	nh(qi)

∫
T

∇ϕi · ∇vh dT , ∀vh ∈ Vh, (4.1)

and

−
∑
T∈Th

∫
T

RpvhdT =
∑
T∈Th

∫
T

Dp exp(−ψ)∇	ph · ∇vh dT ≈

∑
T∈Th

Dp E(−ψ)T
∫
T

∇	ph · ∇vh dT

=
∑
T∈Th

Dp E(−ψ)T
∑
qi∈T

	ph(qi)

∫
T

∇ϕi · ∇vh dT , ∀vh ∈ Vh. (4.2)

By referring to (4.1)-(4.2), we get the respective sum of J Cnh and J Cph on all contacts:

∑
�C⊂�D

J Cnh =
∑

�C⊂�D

∑
T∈Th

∫
T

qDn exp(ψ)∇	nh · ∇ϕ I
CdT +

∑
�C⊂�D

∑
T∈Th

∫
T

qRnϕ
I
CdT

=
∑
T∈Th

∫
T

qDn exp(ψ)∇	nh · ∇ϕ IdT +
∑
T∈Th

∫
T

qRnϕ
IdT

=
∑
T∈Th

∫
T

qDn exp(ψ)∇	nh · ∇(ϕ I − 1)dT +
∑
T∈Th

∫
T

qRn(ϕ
I − 1)dT +

∑
T∈Th

∫
T

qRndT ,

=
∑
T∈Th

∫
T

qRndT ,

∑
�C⊂�D

J Cph =−
∑

�C⊂�D

∑
T∈Th

∫
T

qDp exp(−ψ)∇	ph · ∇ϕ I
CdT −

∑
�C⊂�D

∑
T∈Th

∫
T

qRpϕ
I
CdT

=−
∑
T∈Th

∫
T

qDp exp(−ψ)∇	ph · ∇ϕ IdT −
∑
T∈Th

∫
T

qRpϕ
IdT

=−
∑
T∈Th

∫
T

qDp exp(−ψ)∇	ph · ∇(ϕ I − 1)dT −
∑
T∈Th

∫
T

qRp(ϕ
I − 1)dT −

∑
T∈Th

∫
T

qRpdT

=−
∑
T∈Th

∫
T

qRpdT ,

where ϕ I =∑�C⊂�D
ϕ I
C . Since ϕ

I ∈ Sh and ϕ I |�D = 1, we have ϕ I − 1 ∈ Vh . Therefore,

∑
�C⊂�D

J Ctotal =
∑

�C⊂�D

J Cnh +
∑

�C⊂�D

J Cph =
∫

q(Rn − Rp)d�s. �

�S

11
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5. Numerical experiments

In this section, a simple cube test is carried out to check the accuracy of our schemes. Then we evaluate the effectiveness 
of our methods by applying them to simulating two realistic three-dimensional semiconductor devices: a p −n junction and 
an n-channel MOSFET. Their respective physical properties have been discussed in [44].

In the numerical experiments, the DD model (2.7) is decoupled with the Gummel iterative method [45] and solved 
using nonlinear block Gauss-Seidel iterations based on the successive solution of the nonlinear Poisson equation and two 
continuity equations. We also use piecewise linear finite element basis functions to discretize the variational form of the 
nonlinear Poisson equation:∫

�

ε∇ψ · ∇vd�−
∫
�N

ε
∂ψ

∂n
vds=

∫
�

q2

kB T

[
nie
(
exp(φp −ψ)− exp(ψ − φn)

)+ C
]
vd�, ∀v ∈ H1

D(�).

And the resulting nonlinear algebraic systems are solved by Newton’s method.
Our methods are implemented based on the open-source finite element toolbox Parallel Hierarchical Grid (PHG) [46]. 

The computations were done on the high performance computers of State Key Laboratory of Scientific and Engineering 
Computing, Chinese Academy of Sciences.

5.1. A cube test

Before applying our methods to semiconductor devices, we use a cube [−10nm, 10nm]3 to test their accuracy. In this 
cube test, the doping profile is not considered. Then the DD model degenerates into a Poisson-Nernst-Planck model [15]. 
An aqueous solution of KCl is considered in this cube, and the dielectric constant ε is 80. For simplicity, we use p and n
to denote K+ and Cl− concentrations only in this cube test. Their diffusion coefficients are DK+ = 1.96 × 10−9 m2/s and 
DCl− = 2.03 × 10−9 m2/s. The top and bottom of the cube, denoted with �t and �b , are set as Dirichlet boundaries:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ψ
∣∣
�b
= 0, ψ

∣∣
�t
= q

kB T
Vext,

p
∣∣
�b
= cb, p

∣∣
�t
= cb,

n
∣∣
�b
= cb, n

∣∣
�t
= cb.

And the sides of the cube are set as Neumann boundaries:⎧⎪⎨
⎪⎩
∂ψ

∂n

∣∣∣∣
�N

= 0,

Jn · n
∣∣
�N
= Jp · n

∣∣
�N
= 0.

Hence, the total current flowing out of �t or �b is respectively calculated as

J ttotal = J tnh + J tph =−Dnqc
b q

kB T

Vext

H
S − Dpqc

b q

kB T

Vext

H
S,

J btotal =− J ttotal = Dnqc
b q

kB T

Vext

H
S + Dpqc

b q

kB T

Vext

H
S,

(5.1)

where H is the height of the cube, and S is the area of the top/bottom of the cube. Let cb = 0.01M , and we make com-
parisons between our four methods with different external voltage values. Numerical results in Table 1 show that all of our 
methods can guarantee the conservation of total currents, and scheme A4 provides more accurate numerical results than 
the other methods referring to the theoretical currents calculated with (5.1). As the external voltage increases, the gaps 
between the currents calculated with schemes A1-A3 and the theoretical currents become larger and larger.

Our previous numerical experience shows that the standard FEM and the SUPG method cannot work for simulating 
semiconductor devices of tens of microns. Therefore, in the following numerical experiments, we employ our schemes to 
simulate the realistic three-dimensional semiconductor devices.

5.2. A silicon p − n junction

The p −n junction plays a significant role in understanding other semiconductor devices, and it is an important block for 
the bipolar junction transistor (BJT) and the MOSFET. We choose the silicon p −n junction depicted in Fig. 1 as a benchmark 
to test the effectiveness of our methods and only consider the abrupt junction — the doping profile is

C = ND − NA =
{−1017, in p-type region,

1017, in n-type region.
12
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Table 1
Total currents flowing out of �t and �b for different external voltage values.

Vext[V ] 0.2 0.4 0.6 0.8 1.0

Absolute values of theoretical 
currents [A]

5.956475e-10 1.191295e-09 1.786943e-09 2.382590e-09 2.978238e-09

A1
J ttotal[A] -6.003695e-10 -1.218452e-09 -1.844623e-09 × ×
J btotal[A] 6.003695e-10 1.218452e-09 1.844623e-09 × ×

A2
J ttotal[A] -6.191300e-10 -1.385850e-09 -2.482934e-09 -4.171907e-09 -6.855393e-09

J btotal[A] 6.191300e-10 1.385850e-09 2.482934e-09 4.171907e-09 6.855393e-09

A3
J ttotal[A] -5.843078e-10 -1.106388e-09 -1.527970e-09 -1.841442e-09 -2.060518e-09

J btotal[A] 5.843078e-10 1.106388e-09 1.527970e-09 1.841442e-09 2.060518e-09

A4
J ttotal[A] -5.956475e-10 -1.191295e-09 -1.786943e-09 -2.382590e-09 -2.978238e-09

J btotal[A] 5.956475e-10 1.191295e-09 1.786943e-09 2.382590e-09 2.978238e-09

Fig. 1. A p − n junction with the ohmic contacts shaded.

Table 2
Terminal currents for different forward biases.

Bias [V] 0.2 0.4 0.6 0.8 1.0

A1
J A [A] -1.297674e-14 -2.964586e-11 -6.747598e-08 -9.360842e-05 -2.235388e-03
J C [A] 1.295691e-14 2.964264e-11 6.746864e-08 9.358315e-05 2.235333e-03

A2
J A [A] -1.328226e-14 -3.037920e-11 -6.942833e-08 -9.647769e-05 -2.370094e-03
J C [A] 1.328455e-14 3.037920e-11 6.942833e-08 9.647769e-05 2.370094e-03

A3
J A [A] -1.207576e-14 -2.774850e-11 -6.405003e-08 -9.359628e-05 -1.499261e-03
J C [A] 1.208389e-14 2.774850e-11 6.405003e-08 9.359628e-05 1.499261e-03

A4
J A [A] -1.297674e-14 -2.964586e-11 -6.747598e-08 -9.360842e-05 -2.235388e-03
J C [A] 1.295691e-14 2.964264e-11 6.746864e-08 9.358315e-05 2.235333e-03

We always let the cathode be grounded, namely the bias on the cathode is zero.
At first, we verify that our methods can guarantee the conservation of the computed terminal currents, see Table 2, 

which gives the computed terminal currents flowing in the anode ( J A[A]) and out from the cathode ( J C [A]) for different 
forward biases — positive biases on the anode. The negative sign represents the inflow of the current. From Table 2, we can 
see the conservation of the computed terminal currents even though there are some insignificant differences between the 
computed terminal currents of the two electrodes, which may be caused by rounding errors in the floating-point operations.

Then we study different performances of our four schemes when a forward bias is applied, and the results are shown 
in Fig. 2. They show that all schemes perform well when the forward bias is less than 1 V. Fig. 2(a) also illustrates that 
13



Q. Zhang, Q. Wang, L. Zhang et al. Journal of Computational Physics 458 (2022) 111086
Fig. 2. Current-voltage characteristics of the p − n junction: (a) Semilog plot (b) Cartesian plot.

Fig. 3. Current-voltage characteristics of the p − n junction.

Fig. 4. Ideal current-voltage characteristic of the p − n junction calculated by scheme A4.

the cut-in voltage is around 0.8 V, and the current increases exponentially as the bias increases before the bias reaches the 
cut-in voltage. But when the bias is higher than 1 V, currents calculated by schemes A1-A4 are apparently different. For 
scheme A4, the current increases linearly as the bias increases after the bias exceeds the cut-in voltage, which is in good 
accordance with the ideal current-voltage (I-V) characteristics of the silicon p − n junction. For scheme A3, the current is 
smaller than that obtained from scheme A4, and it seems to reach a saturation state when the bias is higher than 1 V. For 
scheme A2, the current is larger than that derived from scheme A4, and it increases faster than the linear speed. For scheme 
A1, the current increases so rapidly as the bias increases, and the scheme does not work when the bias is higher than 1.5 V. 
Therefore, only scheme A4 can produce an I-V curve meeting the ideal physical characteristics of the p − n junction well 
when the bias voltage is high.

To further check scheme A4, we compare it with the Zlámal finite element method [1], which can solve the three-
dimensional DD model directly on tetrahedral elements rather than on the control volumes. Fig. 3 shows that the current 
values calculated by these two methods are consistent, and scheme A4 can work with a higher voltage range than the 
Zlámal method, as shown in Fig. 4. In this numerical example, the Zlámal finite element method cannot work if the bias is 
14
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Fig. 5. Electron and hole concentration distributions computed with the scheme A4 on the cross-section y = 0 μm for different biases: (a) Vext|anode =
−1.0 V (b) Vext|anode = 0.2 V (c) Vext|anode = 0.5 V (d) Vext|anode = 1.0 V.

higher than 2.3 V, whereas scheme A4 can still work under as high as 20 V bias. Fig. 4 also illustrates that no virtual current 
flows initially when we apply a reverse bias. Electron and hole concentration distributions computed with scheme A4 on 
the cross-section y = 0 μm for different biases are plotted in Fig. 5. From these plots we find that the numerical results 
produced by scheme A4 don’t have spurious oscillations even though they display sharp interior layers in the neighborhood
15
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Fig. 6. A poor-quality grid for the p − n junction with 3839 tetrahedral elements.

Fig. 7. Current-voltage characteristics of the p − n junction.

of the p − n junction. This illustrates that our scheme can solve the instability problem of the standard FEM as effectively 
as the stable SUPG method or the even more robust SUPG-IP (interior penalty) method [15]. Moreover, Fig. 5 presents that 
the depletion layer (interior layer) width under a forward bias condition is obviously smaller than that under a reverse bias 
condition, and the depletion layer narrows as the forward bias increases.

At last, we test the robustness of our scheme A4 on a poor-quality grid shown in Fig. 6, which is an unstructured 
tetrahedral grid generated by Tetgen [47]. On this grid, the FVSG method [4] cannot solve the DD model even at the 
equilibrium state, and a tetrahedral mixed FEM [2] can solve the DD model with this grid only when the forward bias is no 
higher than 1.1 V, see Fig. 7. On a good grid, the terminal current produced by the tetrahedral mixed FEM is not accurate 
with the bias higher than 1.0 V. The current increases so rapidly as the bias increases, and the tetrahedral mixed FEM can 
only work for a bias lower than 1.75 V. Fig. 7 also shows that scheme A4 can still produce an I-V curve satisfying ideal 
physical properties of the p − n junction on this poor-quality grid, which is very close to that calculated with the FVSG 
method on a good grid.

Based on the numerical experience gained from this example, we next use scheme A4 to study the following semicon-
ductor device: an n-channel MOSFET.

5.3. An n-channel MOSFET

The basic MOSFET is composed of a silicon semiconductor part �S and a thin insulating oxide layer �O placed imme-
diately adjacent to �S . The device geometry considered in this numerical example is depicted in Fig. 8, where the ohmic 
contacts and the gate are respectively shaded. We still consider the abrupt junction, and the doping profile:

C = ND − NA =
{−1016, in p-type region,
1018, in n+-type region.

The substrate and source are grounded, which means biases on them are zero. Scheme A4 is employed in this numerical 
example.

We first study transfer characteristics and output characteristics of an ideal n-channel MOSFET. For an ideal MOSFET, the 
work function difference φms is set to be zero. In addition, we don’t consider the effect of charges in the oxide and traps 
at the oxide-semiconductor interface. The transfer characteristic, i.e., the drain current ID versus the gate bias VG , with a 
fixed drain bias V D = 0.5 V is plotted in Fig. 9, in which we note that a positive gate bias higher than the threshold voltage 
VT , i.e., VT = 0.85 V in this ideal situation, must be applied before a substantial drain current flows. This type of MOSFET 
is called the normally-off (enhancement) n-channel MOSFET. Electron and hole concentration distributions corresponding to 
16
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Fig. 8. An n-channel MOSFET, where the ohmic contacts and the gate are respectively shaded.

Fig. 9. The transfer characteristic of an ideal n-channel MOSFET with VD = 0.5 V.

the transfer characteristic on the cross-section y = 0 μm are shown in Fig. 10. From these plots we find that a negative 
gate bias (VG < 0) will make holes accumulate near the oxide-semiconductor interface. And in this accumulation case, no 
current flows in the device. If a positive voltage (VG > 0) is applied to the gate, electrons start to accumulate near the oxide-
semiconductor interface. When the number of electrons at the surface is greater than the number of holes, the surface is 
inverted, see Fig. 10(c) (weak inversion case) and Fig. 10(d) (strong inversion case).

Next, we consider the subthreshold characteristic still with the drain bias VD fixed at 0.5 V, see Fig. 11. The above 
transfer characteristic illustrates that the threshold voltage V T = 0.85 V. Fig. 11 shows the exponential dependence of ID on 
(VG − VT ) for VG < VT , and the subthreshold swing S , defined as [∂(lg ID )/∂VG ]−1, is around 88mV .

At last, we study the output characteristics, i.e., the drain current ID versus the drain bias V D , of the ideal n-channel 
MOSFET for different gate biases, which are plotted in Fig. 12. We consider the situation that the gate bias VG is higher than 
the threshold voltage VT . Therefore, an inversion is caused at the oxide-semiconductor interface. Initially, the drain bias V D

is small, then the drain current ID is proportional to VD , which is called the linear region. As the drain bias V D increases, 
it eventually reaches VDsat = VG − VT . The drain current ID gradually reaches the saturation region where ID is a constant 
regardless of an increase in the drain bias. But in Fig. 12, we notice that the drain currents calculated by our method still 
increase slightly in the saturation region, especially with high fixed gate biases, which implies that our scheme may not be 
perfect.

In Fig. 13 we plot the electron concentration distributions corresponding to the output characteristic with a fixed gate 
bias VG = 3.4 V on the cross-section y = 0 μm. From these plots, we find that the depletion region near the drain becomes 
wider as the drain bias increases.
17



Q. Zhang, Q. Wang, L. Zhang et al. Journal of Computational Physics 458 (2022) 111086
Fig. 10. Electron and hole concentration distributions on the cross-section y = 0 μm with a fixed VD = 0.5 V for different gate biases VG : (a) VG =−0.5 V
(b) VG = 0.0 V (c) VG = 0.7 V (d) VG = VT = 0.85 V.

For a general SiO 2− Si MOSFET, the work function difference φms, SiO 2− Si interface traps, and oxide charges will affect 
the value of the threshold voltage V T . The work function difference is related to the material of the metal placed on the gate. 
Without loss of generality, in the following part of this numerical example, we can still take φms = 0 and only consider the 
effect of the fixed charges located within approximately 3nm from the SiO 2− Si interface, assuming that the interface traps, 
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Fig. 11. The subthreshold characteristic of an ideal n-channel MOSFET with VD = 0.5 V.

Fig. 12. The output characteristics of an ideal n-channel MOSFET.

oxide traps, and mobile ionic charges in the oxide are all negligible. Fig. 14 shows the transfer characteristics for different 
fixed charge densities Q f with a fixed drain bias VD = 0.5 V. It is obvious that the fixed charges within the oxide can 
lower the threshold voltage V T . And when the fixed charge density reaches a certain value, such as Q f /q = 5.0e11 cm−2, 
a substantial drain current can flow at zero gate bias VG = 0 V. This type of MOSFET is called the normally-on (depletion) 
n-channel MOSFET corresponding to the normally-off (enhancement) n-channel MOSFET introduced at the beginning of 
this numerical example. In Fig. 15, we plot the electron and hole concentration distributions corresponding to the transfer 
characteristic with the fixed charge density Q f /q = 5.0e11 cm−2 on the cross-section y = 0 μm. From these plots, we 
see that an n-channel exists at zero gate bias, even at a negative gate bias, which once again verifies that a substantial 
current may flow at VG = 0. The output characteristics of this normally-on n-channel MOSFET with the fixed charge density 
Q f /q = 5.0e11 cm−2 are presented in Fig. 16. The slight increase of the drain current in the saturation region may be 
caused by our numerical method and we are trying to find a way to solve this problem.

5.4. Devices of different sizes

To further evaluate the robustness of scheme A4, we apply it to devices of different sizes, a 100 nm p −n junction and a 
300 μm n-channel MOSFET. We first scale down the p − n junction depicted in Fig. 1 by a factor of 100 and set the doping 
profile as follows:

C = ND − NA =
{−1020, in p-type region,

1020, in n-type region.

Fig. 17 shows the ideal current-voltage characteristic of the 100 nm p − n junction, and its trend is the same as that in 
Fig. 4.

Then we scale the n-channel MOSFET depicted in Fig. 8 by a factor of 100 and set the doping profile as

C = ND − NA =
{−1013, in p-type region,
1015, in n+-type region.
19



Fig. 13. Electron concentration distributions on the cross-section y = 0 μm with a fixed VG = 3.4 V for different drain biases VD : (a) VD = 0.05 V (b) 
VD = 0.5 V (c) VD = VDsat = 2.55 V (d) VD = 10.0 V.

Fig. 14. The transfer characteristics for different fixed charge densities Q f with VD = 0.5 V.

We only consider the ideal 300 μm n-channel MOSFET. Its transfer characteristic with a fixed drain bias V D = 0.5 V and 
output characteristics with different fixed gate biases are separately shown in Fig. 18 and Fig. 19. From Fig. 18, we note that 
the threshold voltage VT of this ideal device is 1.0 V. Fig. 19 shows that the drain current ID is proportional to the drain 
bias VD in the linear region. When VD reaches VDsat = VG − VT , the drain current ID gradually reaches a saturation region. 
In the saturation region, the drain current increases slightly. The trends of the output characteristics are the same as that in 
Fig. 12.

The above numerical experiments illustrate that scheme A4 can produce rational numerical results for devices of different 
sizes.

6. Conclusion

To solve the three-dimensional convection-dominated continuity equations in the DD model, we propose a series of 
finite element discretization methods. These methods firstly transform the continuity equations into self-adjoint equations 
with exponentially behaved coefficients (eψ or e−ψ ) by employing the Slotboom variables. Because the flux density varies 
Q. Zhang, Q. Wang, L. Zhang et al. Journal of Computational Physics 458 (2022) 111086
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Fig. 15. Electron and hole concentration distributions on the cross-section y = 0 μm with the fixed charge density Q f /q = 5.0e11 cm−2 and the drain bias 
VD = 0.5 V for different gate biases VG : (a) VG =−0.35 V (b) VG = 0.0 V (c) VG = 0.35 V.

Fig. 16. The output characteristics of a normally-on n-channel MOSFET with the fixed charge density Q f /q= 5.0e11 cm−2.
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Fig. 17. Ideal current-voltage characteristic of the 100 nm p − n junction.

Fig. 18. The transfer characteristic of an ideal 300 μm n-channel MOSFET with VD = 0.5 V.

Fig. 19. The output characteristics of an ideal 300 μm n-channel MOSFET.

moderately in the whole domain, we approximate it with a constant vector on each tetrahedral element. Correspondingly, 
the exponential coefficient is also approximated with a constant on the whole tetrahedron or each edge of the tetrahedron. 
In this work, we propose four different schemes based on different averaging techniques, denoted as A1-A4, to obtain the 
average of the exponential coefficient. The first one calculates the harmonic average directly on a whole tetrahedral element. 
The other three schemes calculate the average of the exponential coefficient respectively on the edge of the tetrahedral 
element. These methods can deal with the layer oscillation problems and guarantee the conservation of the computed 
terminal currents with our terminal current evaluation approach. In addition, derivation of our methods is simple and 
doesn’t require the construction of the dual Voronoi grid, which makes their parallel implementation easy. We first use 
a simple cube test to check the accuracy of our methods. Simulations of two realistic three-dimensional semiconductor 
devices, a p − n junction and an n-channel MOSFET, further validate the accuracy and stability of the methods. According 
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to the numerical results and simple analysis, we conclude that scheme A4 can produce more accurate numerical solutions 
than schemes A1-A3, particularly under high bias conditions. Our numerical results also show that scheme A4 can work 
with a larger bias range than the Zlámal finite element method, and it performs better than the FVSG method and a type of 
tetrahedral mixed FEM [2] on poor-quality grids. Numerical experiments about the n-channel MOSFET indicate that scheme 
A4 can simulate rich physical properties of this device well. In the future, we will further improve our methods and apply 
them to other numerical simulation fields, such as nanomaterial simulations.
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