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AN EFFECTIVE FINITE ELEMENT ITERATIVE SOLVER FOR A
POISSON--NERNST--PLANCK ION CHANNEL MODEL WITH

PERIODIC BOUNDARY CONDITIONS\ast 

DEXUAN XIE\dagger AND BENZHUO LU\ddagger 

Abstract. A system of Poisson--Nernst--Planck equations (PNP) is an important dielectric con-
tinuum model for simulating ion transport across biological membrane. In this paper, a PNP ion
channel model with periodic boundary value conditions, denoted by PNPic, is presented and solved
numerically with an effective finite element iterative method. In particular, the periodic boundary
value conditions are used to mimic an infinitely large ion channel membrane, and the PNPic finite
element solver includes (1) a PNPic solution decomposition scheme for overcoming the singularity dif-
ficulty caused by atomic charges, (2) Slotboom variables for transforming each related Nernst--Planck
equation to avoid gradient calculation for any electrostatic potential function, (3) an efficient modified
Newton iterative algorithm for solving each related nonlinear finite element equation, and (4) com-
munication operators for carrying out functions operations between different finite element function
spaces. This effective PNPic solver is implemented as a software package based on the state-of-the-art
finite element library from the FEniCS project and an ion channel mesh generation package developed
in Lu's group. Numerical results demonstrate the convergence of the PNPic finite element iterative
solver and the performance of the PNPic software package. Moreover, the PNPic model is validated
by the cation selectivity property and electric current experimental data of an ion channel protein.

Key words. Poisson--Nernst--Planck model, finite element method, ion channel protein, periodic
boundary conditions
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1. Introduction. Electrodiffusion describes a diffusion process of charged par-
ticles in a self-induced electric field (sometimes together with an external electric
field), which widely exists in electrochemistry, biology, nanofluidics, and semiconduc-
tor physics, etc. A dielectric continuum implicit solvent model defined by Poisson--
Nernst--Planck (PNP) equations has been recognized to have significant advantages
in computational efficiency and in the calculation of macroscopic properties (e.g.,
electric current) for a diffusion process at the mean field level compared to the cor-
responding explicit solvent model [45, 13, 8, 26]. In the last two decades, many
PNP ion channel models were developed through considering volume-exclusion en-
tropy effects [37, 28, 44], hard sphere interactions [4, 17, 18, 32, 44, 43], van der
Waals interactions [22], ionic solvation effects [33], electric charge correlations [29],
variable dielectric properties [34], and surface energies [51], etc. They were solved
numerically by using finite difference methods [14, 15, 26, 27, 54], finite element
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A PERIODIC PNP ION CHANNEL FINITE ELEMENT SOLVER B1491

methods [16, 30, 36, 38, 41, 49], finite volume methods [40], and spectral element
methods [21] in either a simplified one-dimensional or a complex three-dimensional
setting. Special numerical techniques and implementation strategies were developed
to improve the performance of PNP numerical solvers, including a second-order fi-
nite difference method [54], a parallel finite element method [49], a potential decom-
position technique [36], stabilized techniques [7, 50], energy and mass preservation
schemes [14, 15, 20, 27, 41], and mixed finite element methods [16]. Slotboom vari-
able transformation [47] and Gummel's iteration technique [19], developed in the early
semiconductor device system simulations, were also used to solve PNP ion channel
models [26, 36, 49].

Compared with finite difference and finite volume methods, one major advantage
of a finite element method is to be able to approximate a complex geometrical shape of
an ion channel protein in a high degree of accuracy due to using an irregular tetrahe-
dral mesh. Indeed, well retaining the geometry of a three-dimensional X-ray crystallo-
graphic ion channel molecular structure can significantly raise the quality of a PNP ion
channel model. But the generation of an irregular tetrahedral mesh that can fit well a
complex ion channel molecular surface is highly technical. In the last ten years, Lu's
research team developed an ion channel mesh software package based on the molecular
surface triangular mesh package TMSmesh [9, 30, 31]. This mesh package has been re-
leased to the public through the cloud computing website https://www.xyzgate.com.
As a unique ion channel tetrahedral mesh package, it will be applied to the develop-
ment of a new PNP ion channel finite element solver in this paper.

Typically, a PNP ion channel model is based on a box domain that is separated
into two solvent compartments by a membrane. A single ion channel protein is then
embedded centrally in the membrane and acts as the conduct for transporting ions
from one solvent compartment to the other. The membrane normal direction and
the ion channel pore are set to coincide with the z-axis direction for the simplicity
of implementation. To account for the influence of other ion channel proteins on this
single ion channel model, it is natural to set periodic boundary value conditions on
the four side surfaces of the box. In fact, periodic boundary techniques have been
routinely applied to molecular dynamics for a protein simulation in a box of water
molecules. They were also applied to the construction of Poisson--Boltzmann (PB)
ion channel models [5, 24] and a finite difference PNP solver [23]. Even so, they have
not been considered in any PNP finite element solver yet since it is very difficult to
develop a PNP ion channel finite element solver even in the case that does not consider
any periodic boundary. In this paper, we attempt to develop an improved PNP ion
channel model using the periodic boundary value conditions that are different from
those used in [5, 24]. In fact, the periodic boundary conditions in [5] are set on the
boundary of a box domain as if one side surface is adjacent to the opposing side surface,
while the periodic boundary value conditions in [24] are constructed by setting the
mesh nodes of two opposite side surfaces to have the same labeling numbers on the
four side surfaces of the box. In our periodic boundary value conditions, each PNP
unknown function is set to have the same values on the two opposite side surfaces as
done commonly in a periodic boundary value problem.

Another major difficulty in solving a PNP ion channel model comes from the
solution singularity caused by atomic charges. As shown in [53, Figure 3], such a
difficulty cannot be overcome unless all the singularity points can be isolated by a
solution decomposition scheme. Two different solution decomposition schemes were
reported in [11, 52], respectively, to overcome this difficulty in the numerical solution
of a PB model for a protein surrounded by an ionic solvent. We recall that in [11], a PB
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B1492 DEXUAN XIE AND BENZHUO LU

unknown function, u, which gives an electrostatic potential density of the electric field,
is split into three component functions, us, uh, and ur, within a protein regionDp only,
resulting in a Laplace boundary value problem of uh in Dp and a nonlinear interface
boundary value problem of ur in the box domain \Omega . Since Dp is a strongly non-
convex domain with a complicated nonsmooth boundary (i.e., a molecular surface),
especially for an ion channel protein, solving such a Laplace boundary value problem
may cause problems in solution accuracy and solution regularity. The equation of
ur is also difficult to solve due to involving a jumpily discontinuous flux interface
condition on the interface between Dp and a solvent region Ds. In contrast, in [52],

u is split into three component functions, G, \Psi , and \~\Phi , over the box domain \Omega such
that G, \Psi , and \~\Phi represent the electrostatic potentials induced by the atomic charges,
the potentials from the interfaces and boundary, and the ionic charges from a solvent
region, Ds, respectively. Since G contains all the singularity points of u, both \Psi and
\~\Phi become smooth within the solvent and solute regions. Note that ur = u within Ds,
and u = G+\Psi + \~\Phi . Hence, \~\Phi = ur  - G - \Psi . This shows that \~\Phi does not involve any
tough part of ur from G and \Psi so that it is much smoother than ur. As a result, the
interface boundary value problem of \~\Phi does not involve any jumpily discontinuous
flux interface condition and can be much easier to solve numerically than that of ur.
It is this splitting scheme that leads to an efficient PB finite element solver in [52].
The splitting scheme from [11] has been adapted to construct a PNP finite difference
solver in [54] and a PNP finite element solver in [49]. In this paper, we will adapt the
splitting scheme from [52] to construct a new finite element PNP ion channel solver
subject to periodic boundary constraints.

In order to reduce numerical complexity and computer memory requirement
sharply, a PNP iterative scheme is often constructed by classic successive relaxation
iterative techniques [42] (or related Gummel's iterative technique [19]). In such a
scheme, however, each Nernst--Planck equation of a PNP system is modified as an
equation that requires calculating the gradient of a given potential function. From
the finite element theory, it is known that a gradient calculation may decay one degree
of a finite element solution accuracy [6]. To avoid such a potential numerical prob-
lem, the Slotboom variables, introduced in [47], can be used to transform each related
Nernst--Planck equation as the one that does not involve any gradient of a potential
function, but on the other hand, the related linear Poisson dielectric equation is trans-
formed as a strongly nonlinear equation. Consequently, how to solve such a nonlinear
equation becomes a key step in the development of an effective PNP numerical solver.
Hence, one important task of this paper is to develop new numerical techniques for
solving each related nonlinear equation efficiently.

A system of PNP finite element equations involves ionic concentration functions
ci and an electrostatic potential function u that belong to two different finite element
function spaces, respectively. A communication operator is thus required to carry out
function operations between these two spaces. Currently, such a function operation
issue was simply addressed by extending each ci from Ds to \Omega through setting the
values of ci to be zero at the mesh nodes outside the solvent region Ds so that both
ci and u are defined on the same finite element function space based on a mesh
of \Omega . But this simple treatment may decay the accuracy of a PNP finite element
system significantly since it actually causes ci to be nonzero outside Ds on a layer
of tetrahedra along the interface between Ds and a protein-membrane region. Under
periodic boundary constraints, each of these two spaces is modified as a space with
a reduced dimensionality, further increasing the difficulty of dealing with this issue.
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A PERIODIC PNP ION CHANNEL FINITE ELEMENT SOLVER B1493

Fig. 1. An illustration of the region partition (2.2) of a rectangular box domain \Omega .

In this paper, we will directly construct a finite element function space for each ionic
concentration function ci based on an irregular tetrahedral mesh ofDs. We then derive
all the required communication operators so that we can well retain the accuracy of
a PNP finite element system in the implementation of function operations between
different function spaces.

The rest of the paper is organized as follows. In section 2, we present a PNP
ion channel model using periodic boundary value conditions (denoted by PNPic). In
section 3, we present a PNPic solution decomposition. In section 4, we reformulate
each equation of the PNPic solution decomposition into a variational problem. In sec-
tion 5, we describe the construction of our PNPic finite element solver. In section 6,
we report our PNPic software package and numerical results to demonstrate the con-
vergence and performance of our PNPic finite element iterative solver and to validate
our PNPic software package, along with two new formulas for estimating the distri-
bution of ions and electric current within an ion channel pore. Finally, conclusions
are made in section 7.

2. A PNP ion channel model with periodic boundary value conditions.
We construct a sufficiently large open box domain, \Omega , by

(2.1) \Omega = \{ (x, y, z) | Lx1 < x < Lx2, Ly1 < y < Ly2, Lz1 < z < Lz2 \} ,

and partition it and its boundary \partial \Omega , as illustrated in Figure 1, as follows:

(2.2) \Omega = Dp \cup Dm \cup Ds \cup \Gamma m \cup \Gamma p \cup \Gamma pm, \partial \Omega = \Gamma D \cup \Gamma N ,

where Lx1, Lx2, Ly1, Ly2, Lz1, and Lz2 are real numbers; Dp, Dm, and Ds denote an
ion channel protein region, a membrane region, and a solvent region, respectively;
\Gamma m denotes the interface between Dm and Ds, \Gamma p the interface between Dp and
Ds, and \Gamma pm the interface between Dp and Dm; and \Gamma D consists of the bottom and
top surfaces of the box domain \Omega and \Gamma N the four side surfaces of \Omega . In Figure 1,
Z1 and Z2 set the location of the membrane, Ds contains an ionic solvent with n
ionic species, and Dp hosts an ion channel protein with np atoms. We have set the
normal direction of the membrane in the z-axis direction and the z-axis to pass the
channel pore. Moreover, the position vector rj and charge number zj of atom j are
given from a three-dimensional X-ray crystallographic molecular structure of the ion
channel protein. The bulk concentration cbi and charge number Zi of species i are also
given for the ionic solvent.
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B1494 DEXUAN XIE AND BENZHUO LU

(a) Top view of membrane (in z-direction) (b) Two side views of membrane

Fig. 2. (a) A membrane embedded with many ion channel proteins of the same type. (b) An
illustration of the periodic boundary value conditions of a function u. Here the box domain for
simulation is colored in red; ul, ur, uf , and ub denote the boundary values of u on the left, right,
front, and back surfaces of each box domain, respectively; ion channel proteins are colored in green;
and the membrane is colored in yellow.

Based on the dielectric continuum approach, the three regions Dp, Dm, and Ds

are treated as dielectric media with permittivity constants \epsilon p, \epsilon m, and \epsilon s, respec-
tively. Since Dm consists of a double layer of phospholipid, cholesterol, and glycolipid
molecules whereas Dp is composed of amino acids, \epsilon m may be greater than \epsilon p [48, 24].

We can duplicate the box domain \Omega in the four side surface directions, as illus-
trated in Figure 2(a), to produce an infinitely large membrane that is embedded with
ion channel proteins of the same type. Since a dimensionless electrostatic potential
function, u, on each box is identical to each other, it satisfies the periodic boundary
value conditions, ul = ur and ub = uf , as illustrated in Figure 2(b). Here ul, ur, ub,
and uf , respectively, denote the values of u on the left, right, back, and front side
surfaces of the simulation box \Omega , which is marked in red to differ from its neighboring
boxes (in blue color). Hence, for a function, u(t, r), of time t and spatial variable r
with r = (x, y, z) \in \Omega , we obtain periodic boundary value conditions as follows:

u(t, Lx1, y, z) = u(t, Lx2, y, z), (y, z) \in D1,(2.3)

u(t, x, Ly1, z) = u(t, x, Ly2, z), (x, z) \in D2,

where D1 = \{ (y, z) | Ly1 < y < Ly2, Lz1 < z < Lz2 \} , D2 = \{ (x, z) | Lx1 <
x < Lx2, Lz1 < z < Lz2 \} . Similarly, we can obtain the periodic boundary value
conditions for an ionic concentration function, ci(t, r) for r \in Ds and t \geq 0, of species
i on the four side surface \Gamma N \cap \partial Ds of Ds. Here \partial Ds denotes the boundary of Ds.

Our PNP ion channel model using the above periodic boundary value conditions,
which is denoted as PNPic, consists of the Poisson equations

 - \epsilon p\Delta u(t, r) = \alpha 

np\sum 
j=1

zj\delta \bfr j , r \in Dp,(2.4)

 - \epsilon m\Delta u(t, r) = 0, r \in Dm,  - \epsilon s\Delta u(t, r) = \beta 

n\sum 
i=1

Zici(t, r), r \in Ds,
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A PERIODIC PNP ION CHANNEL FINITE ELEMENT SOLVER B1495

and the Nernst--Planck equations

(2.5)
\partial ci(t, r)

\partial t
= \nabla \cdot \scrD i [\nabla ci(t, r) + Zici(t, r)\nabla u(t, r)] , r \in Ds, t > 0,

for i = 1, 2, . . . , n, subject to the following interface conditions, initial value conditions,
and boundary value conditions:

\bullet Interface conditions:

(2.6)

u(t, s - ) = u(t, s+), \epsilon p
\partial u(t,\bfs  - )
\partial \bfn p(\bfs )

= \epsilon s
\partial u(t,\bfs +)
\partial \bfn p(\bfs )

, s \in \Gamma p,

u(t, s - ) = u(t, s+), \epsilon m
\partial u(t,\bfs  - )
\partial \bfn m(\bfs ) = \epsilon s

\partial u(t,\bfs +)
\partial \bfn m(\bfs ) , s \in \Gamma m,

u(t, s - ) = u(t, s+), \epsilon p
\partial u(t,\bfs  - )
\partial \bfn p(\bfs )

= \epsilon m
\partial u(t,\bfs +)
\partial \bfn p(\bfs )

, s \in \Gamma pm.

\bullet Initial value conditions:

(2.7) ci(0, r) = c0i (r), r \in Ds, i = 1, 2, . . . , n.

\bullet Dirichlet boundary value conditions on the bottom and top surfaces:

(2.8) u(t, s) = g(s), s \in \Gamma D, ci(t, s) = gi(s), s \in \Gamma D.

\bullet Periodic boundary value conditions on the four side surfaces:

(2.9) u(t, s) is periodic for s \in \Gamma N , ci(t, s) is periodic for s \in \Gamma N \cap \partial Ds.

\bullet Robin boundary value conditions on the interface \Gamma p \cup \Gamma m:

(2.10)
\partial ci(t, s)

\partial ns(s)
+ Zici(t, s)

\partial u(t, s)

\partial ns(s)
= 0, s \in \Gamma p \cup \Gamma m.

Here \delta \bfr j is the Dirac delta distribution at rj ; \alpha and \beta are defined by

(2.11) \alpha =
1010e2c
\epsilon 0kBT

, \beta =
NAe

2
c

1017\epsilon 0kBT
;

np, nm, and ns are the unit outward normal directions of Dp, Dm, and Ds, respec-
tively; g and gi are boundary value functions; c0i is an initial value function; and \scrD i

denote a diffusion coefficient function of the ith ionic species. Here \epsilon 0 is the permit-
tivity of the vacuum, ec is the elementary charge, kB is the Boltzmann constant, T
is the absolute temperature, and NA is the Avogadro number, which estimates the
number of ions per mole. Note that we have measured ionic concentration function ci
in moles per liter (mol/L), time t in picoseconds (ps), spatial length in angstroms (\r A),
and diffusion function \scrD i in units \r A2/ps. In physics, the Robin boundary condition
(2.10) reflects the fact that none of ionic particles cross the interface \Gamma p \cup \Gamma m to enter
the protein and membrane regions Dp and Dm; the boundary value functions g and gi
can be properly selected, as shown in (6.1) in section 6, to mimic an external voltage
across the membrane.

When u is known, an electrostatic potential function, \Phi , is found by

\Phi (t, r) =
kBT

ec
u(t, r), r \in \Omega , t > 0,

in volts. Due to the above relation, the dimensionless potential u can be viewed as
an electrostatic potential with the constant kBT/ec as its physical unit.

At T = 298.15, the values of \alpha , \beta , and kBT
ec

can be estimated as

\alpha \approx 7042.9399, \beta \approx 4.2413, kBT/ec \approx 0.0257 volts.

Thus, u = 1 is about 0.0257 volts or 25.7 millivolts (mV).
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B1496 DEXUAN XIE AND BENZHUO LU

3. PNPic solution decomposition. To overcome the singularity difficulty
caused by atomic charges, we split the electrostatic potential function u into three
component functions, G, \Psi , and \~\Phi , such that

(3.1) u(t, r) = G(r) + \Psi (r) + \~\Phi (t, r), r \in \Omega , t \geq 0,

where G is a potential induced by atomic charges from the protein region Dp, \Psi is

a potential induced by potentials from interface and boundary, and \~\Phi is a potential
induced by ionic charges from the solvent region Ds.

In particular, G can be found in the analytical expression

(3.2) G(r) =
\alpha 

4\pi \epsilon p

np\sum 
j=1

zj
| r - rj | 

as a solution of the Poisson equation in the whole space \BbbR 3:

(3.3)  - \epsilon p\Delta G(r) = \alpha 

np\sum 
j=1

zj\delta \bfr j , r \in \BbbR 3.

Since G and \Psi are independent of ionic concentrations ci, they can be calculated
prior to the calculation of ci and \~\Phi so that we can treat them as two given functions
during an iterative process of searching for ci and \~\Phi . With this observation, we
construct a linear interface boundary value problem of \Psi such that it collects all the
jumpily discontinuous interface conditions produced by the splitting formula (3.1) and
the related inhomogeneous boundary value conditions for the purpose of making the
equation of \~\Phi as simple as possible. Clearly, \~\Phi is periodic on the four side surfaces of
the box domain \Omega . To get its periodic boundary value conditions, we set \Psi to satisfy
the Dirichlet boundary value condition \Psi + G = 0 on \Gamma N . In this way, we derive a
linear interface boundary value problem of \Psi ,

(3.4)

\left\{                       

\Delta \Psi (r) = 0, r \in Dm \cup Dp \cup Ds,

\Psi (s - ) = \Psi (s+), \epsilon p
\partial \Psi (\bfs  - )
\partial \bfn p(\bfs )

= \epsilon s
\partial \Psi (\bfs +)
\partial \bfn p(\bfs )

+ (\epsilon s  - \epsilon p)
\partial G(\bfs )
\partial \bfn p(\bfs )

, s \in \Gamma p,

\Psi (s - ) = \Psi (s+), \epsilon m
\partial \Psi (\bfs  - )
\partial \bfn m(\bfs ) = \epsilon s

\partial \Psi (\bfs +)
\partial \bfn m(\bfs ) + (\epsilon s  - \epsilon m) \partial G(\bfs )

\partial \bfn m(\bfs ) , s \in \Gamma m,

\Psi (s - ) = \Psi (s+), \epsilon p
\partial \Psi (\bfs  - )
\partial \bfn p(\bfs )

= \epsilon m
\partial \Psi (\bfs +)
\partial \bfn p(\bfs )

+ (\epsilon m  - \epsilon p)
\partial G(\bfs )
\partial \bfn p(\bfs )

, s \in \Gamma pm,

\Psi (s) = g(s) - G(s), s \in \Gamma D,

\Psi (s) =  - G(s), s \in \Gamma N ,

and a linear interface boundary value problem of \~\Phi , which has continuous interface
conditions, a homogeneous Dirichlet boundary condition, and periodic boundary con-
ditions, as follows:

(3.5)

\left\{                               

\Delta \~\Phi (t, r) = 0, r \in Dm \cup Dp,

 - \epsilon s\Delta \~\Phi (t, r) = \beta 
n\sum 

i=1

Zici(t, r), r \in Ds,

\~\Phi (t, s+) = \~\Phi (t, s - ), \epsilon s
\partial \~\Phi (t,\bfs +)
\partial \bfn p(\bfs )

= \epsilon p
\partial \~\Phi (t,\bfs  - )
\partial \bfn p(\bfs )

, s \in \Gamma p,

\~\Phi (t, s+) = \~\Phi (t, s - ), \epsilon s
\partial \~\Phi (t,\bfs +)
\partial \bfn m(\bfs ) = \epsilon m

\partial \~\Phi (t,\bfs  - )
\partial \bfn m(\bfs ) , s \in \Gamma m,

\~\Phi (t, s - ) = \~\Phi (t, s+), \epsilon p
\partial \~\Phi (t,\bfs  - )
\partial \bfn p(\bfs )

= \epsilon m
\partial \~\Phi (t,\bfs +)
\partial \bfn p(\bfs )

, s \in \Gamma pm,

\~\Phi (t, s) = 0, s \in \Gamma D,

\~\Phi (t, s) is periodic, s \in \Gamma N .

D
ow

nl
oa

de
d 

12
/1

8/
20

 to
 1

56
.6

2.
3.

11
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A PERIODIC PNP ION CHANNEL FINITE ELEMENT SOLVER B1497

Here \partial G(\bfs )
\partial \bfn (\bfs ) = \nabla G(s) \cdot n(s) with \nabla G being given by

(3.6) \nabla G(s) =  - \alpha 

4\pi \epsilon p

np\sum 
j=1

zj
(s - rj)

| s - rj | 3
.

It can be easy to validate that the sum of G with \Psi and \~\Phi gives the solution of
the Poisson ion channel interface boundary value problem (2.4). Clearly, G contains
all the singular points of u. Thus, both \Psi and \~\Phi are smooth within Dp, Dm, or Ds.

Using the given G and \Psi , we can treat each Nernst--Planck equation of (2.5) as
an equation of ci and \~\Phi ,

(3.7)
\partial ci(t, r)

\partial t
= \nabla \cdot \scrD i

\Bigl[ 
\nabla ci + Ziciw + Zici\nabla \~\Phi (t, r)

\Bigr] 
, r \in Ds, t > 0,

for i = 1, 2, . . . , n. Here w = \nabla G(r) +\nabla \Psi (r), which has been calculated.
Consequently, a combination of (3.7) with (3.5) gives a system of equations for

solving \~\Phi and ci for i = 1, 2, . . . , n, together with the initial and boundary value
conditions (2.7)--(2.10). Note that this new system is much easier to solve numerically
than the original PNPic system since it avoids the solution singularity difficulties
induced by atomic charges, and \~\Phi is much smoother than u because the tough parts
G and \Psi of u have been removed from the construction of \~\Phi .

In the remaining part of this paper, we only consider the steady state of PNPic.
Since in the steady state ci, u, and \~\Phi become independent of time t, the system for
\~\Phi and ci is simplified as n steady Nernst--Planck boundary value problems,

(3.8)

\left\{           
\nabla \cdot \scrD i(r)

\Bigl[ 
\nabla ci(r) + Zici(r)w(r) + Zici(r)\nabla \~\Phi (r)

\Bigr] 
= 0, r \in Ds,

\partial ci(\bfs )
\partial \bfn s(\bfs )

+ Zici(s)
\partial u(\bfs )
\partial \bfn s(\bfs )

= 0, s \in \Gamma p \cup \Gamma m,

ci(s) = gi(s), s \in \Gamma D,

\~\Phi (s) is periodic, s \in \Gamma N ,

for i = 1, 2, . . . , n, plus one interface boundary value problem,

(3.9)

\left\{                               

\Delta \~\Phi (r) = 0, r \in Dm \cup Dp,

 - \epsilon s\Delta \~\Phi (r) = \beta 
n\sum 

i=1

Zici(r), r \in Ds,

\~\Phi (s+) = \~\Phi (s - ), \epsilon s
\partial \~\Phi (\bfs +)
\partial \bfn p(\bfs )

= \epsilon p
\partial \~\Phi (\bfs  - )
\partial \bfn p(\bfs )

, s \in \Gamma p,

\~\Phi (s+) = \~\Phi (s - ), \epsilon s
\partial \~\Phi (\bfs +)
\partial \bfn m(\bfs ) = \epsilon m

\partial \~\Phi (\bfs  - )
\partial \bfn m(\bfs ) , s \in \Gamma m,

\~\Phi (s - ) = \~\Phi (s+), \epsilon p
\partial \~\Phi (\bfs  - )
\partial \bfn p(\bfs )

= \epsilon m
\partial \~\Phi (\bfs +)
\partial \bfn p(\bfs )

, s \in \Gamma pm,

\~\Phi (s) = 0, s \in \Gamma D,

\~\Phi (s) is periodic, s \in \Gamma N .

When \~\Phi is known, we obtain u by the formula

u(r) = G(r) + \Psi (r) + \~\Phi (r), r \in \Omega .

4. Variational formulations. One key step in the development of a finite
element algorithm for solving the PNPic model is to derive the variational forms of
interface boundary value problems (3.4) and (3.9) and Nernst--Planck system (3.8). In
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B1498 DEXUAN XIE AND BENZHUO LU

this section, we obtain these forms and give them detailed proofs since their derivations
are nontrivial due to the complicated interface conditions and periodic boundary
value conditions. We then obtain a variational form of the system of (3.8) and (3.9).
Furthermore, we simplify the variational form of (3.4) into a variational problem
without involving any surface integral when the membrane permittivity constant \epsilon m
is set to be equal to the protein permittivity constant \epsilon p.

Let H1(\Omega ) and H1(Ds) be the Sobolev function spaces based on the box domain
\Omega and solvent region Ds, respectively [1]. We define their subspaces, U,U0, H

1
0 (\Omega ), V,

and V0, as follows:

U = \{ u \in H1(\Omega ) | u is periodic on \Gamma N \} , U0 = \{ u \in U | u = 0 on \Gamma D\} ,(4.1)

H1
0 (\Omega ) = \{ v \in H1(\Omega ) | v = 0 on \partial \Omega \} ,

(4.2) V = \{ v \in H1(Ds) | v is periodic on \Gamma N \cap \partial Ds \} , V0 = \{ v \in V | v = 0 on \Gamma D\} .

We first present a variational form of the interface boundary value problem (3.9)
in Theorem 4.1.

Theorem 4.1. The linear interface boundary value problem (3.9) has the follow-
ing variational form:

(4.3) Find \~\Phi \in U0 such that a(\~\Phi , v) = \beta 

n\sum 
i=1

Zi

\int 
Ds

civdr \forall v \in U0,

where U0 is defined in (4.1) and a(\~\Phi , v) is defined by

(4.4) a(\~\Phi , v) = \epsilon p

\int 
Dp

\nabla \~\Phi \cdot \nabla vdr+ \epsilon m

\int 
Dm

\nabla \~\Phi \cdot \nabla vdr+ \epsilon s

\int 
Ds

\nabla \~\Phi \cdot \nabla vdr.

Proof. We multiply the first and second equations of (3.9) with a test function
v \in U0; integrate it over Dp, Dm, and Ds, respectively; and then add them together
to get

 - \epsilon p

\int 
Dp

\Delta \~\Phi (r)v(r)dr - \epsilon m

\int 
Dm

\Delta \~\Phi (r)v(r)dr - \epsilon s

\int 
Ds

\Delta \~\Phi (r)v(r)dr

= \beta 

n\sum 
i=1

Zi

\int 
Ds

ci(r)v(r)dr.

Using Green's first identity, we can rewrite the above equation as

(4.5)

\epsilon p

\int 
Dp

\nabla \~\Phi (r) \cdot \nabla v(r)dr+ \epsilon m

\int 
Dm

\nabla \~\Phi (r) \cdot \nabla v(r)dr+ \epsilon s

\int 
Ds

\nabla \~\Phi (r) \cdot \nabla v(r)dr

= \epsilon p

\int 
\partial Dp

\partial \~\Phi (s)

\partial np(s)
v(s)ds+ \epsilon m

\int 
\partial Dm

\partial \~\Phi (s)

\partial nm(s)
v(s)ds+ \epsilon s

\int 
\partial Ds

\partial \~\Phi (s)

\partial ns(s)
v(s)ds

+ \beta 

n\sum 
i=1

Zi

\int 
Ds

ci(r)v(r)dr,

where \partial Dp, \partial Dm, and \partial Ds denote the boundaries of Dp, Dm, and Ds and np, nm,
and ns denote the unit outward normal vectors of Dp, Dm, and Ds, respectively. Note
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that the normal vectors have the relations

ns =  - np on \Gamma p, ns =  - nm on \Gamma m, nm =  - np on \Gamma pm,

nm = nb on \Gamma N \cap \partial Dm, ns = nb on \Gamma N \cap \partial Ds,

and the boundaries \partial Dp, \partial Dm, and \partial Ds can be expressed as

\partial Dp = \Gamma p\cup \Gamma pm, \partial Dm = \Gamma m\cup (\Gamma N\cap \partial Dm)\cup \Gamma pm, \partial Ds = \Gamma m\cup \Gamma p\cup \Gamma D\cup (\Gamma N\cap \partial Ds).

Hence, by v = 0 on \Gamma D, the three surface integrals of (4.5) can be simplified as follows:\int 
\partial Dp

\partial \~\Phi (s)

\partial np(s)
v(s)ds =

\int 
\Gamma p

\partial \~\Phi (s - )

\partial np(s)
v(s)ds+

\int 
\Gamma pm

\partial \~\Phi (s - )

\partial np(s)
v(s)ds,\int 

\partial Dm

\partial \~\Phi (s)

\partial nm(s)
v(s)ds =

\int 
\Gamma m

\partial \~\Phi (s - )

\partial nm(s)
v(s)ds - 

\int 
\Gamma pm

\partial \~\Phi (s - )

\partial np(s)
v(s)ds

+

\int 
\Gamma N\cap \partial Dm

\partial \~\Phi (s)

\partial nb(s)
v(s)ds,\int 

\partial Ds

\partial \~\Phi (s)

\partial ns(s)
v(s)ds =  - 

\int 
\Gamma m

\partial \~\Phi (s+)

\partial nm(s)
v(s)ds - 

\int 
\Gamma p

\partial \~\Phi (s+)

\partial np(s)
v(s)ds

+

\int 
\Gamma N\cap \partial Ds

\partial \~\Phi (s)

\partial nb(s)
v(s)ds,

where nb denotes the unit outward normal vector of the box domain \Omega . Applying the
above expressions and the interface conditions of (3.9)--(4.5), we obtain

a(\~\Phi , v) = \beta 

n\sum 
i=1

Zi

\int 
Ds

civdr+ \epsilon m

\int 
\Gamma N\cap \partial Dm

\partial \~\Phi (s)

\partial nb(s)
v(s)ds

+ \epsilon s

\int 
\Gamma N\cap \partial Ds

\partial \~\Phi (s)

\partial nb(s)
v(s)ds.

Clearly, the normal vectors nb = (\pm 1, 0, 0) and (0,\pm 1, 0) on the four side surfaces

of \Gamma N . Thus, the surface integral
\int 
\Gamma N\cap \partial Ds

\partial \~\Phi (\bfs )
\partial \bfn b(\bfs )

v(s)ds can be written as

\int 
\Gamma N\cap \partial Ds

\partial \~\Phi (s)

\partial nb(s)
v(s)ds

=

\int Z1

Lz1

\int Ly2

Ly1

\Biggl[ 
\partial \~\Phi (Lx2, y, z)

\partial x
v(Lx2, y, z) - 

\partial \~\Phi (Lx1, y, z)

\partial x
v(Lx1, y, z)

\Biggr] 
dydz

+

\int Lz2

Z2

\int Ly2

Ly1

\Biggl[ 
\partial \~\Phi (Lx2, y, z)

\partial x
v(Lx2, y, z) - 

\partial \~\Phi (Lx1, y, z)

\partial x
v(Lx1, y, z)

\Biggr] 
dydz

+

\int Z1

Lz1

\int Lx2

Lx1

\Biggl[ 
\partial \~\Phi (x, Ly2, z)

\partial y
v(x, Ly2, z) - 

\partial \~\Phi (x, Ly1, z)

\partial y
v(x, Ly1, z)

\Biggr] 
dxdz

+

\int Lz2

Z2

\int Lx2

Lx1

\Biggl[ 
\partial \~\Phi (x, Ly2, z)

\partial y
v(x, Ly2, z) - 

\partial \~\Phi (x, Ly1, z)

\partial y
v(x, Ly1, z)

\Biggr] 
dxdz,
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B1500 DEXUAN XIE AND BENZHUO LU

where Z1 and Z2 denote the starting and ending numbers of the membrane in the Z-
axis direction, respectively. Since each test function v satisfies the periodic boundary
conditions, the above expression becomes\int 

\Gamma N\cap \partial Ds

\partial \~\Phi (s)

\partial nb(s)
v(s)ds(4.6)

=

\int Z1

Lz1

\int Ly2

Ly1

\Biggl[ 
\partial \~\Phi (Lx2, y, z)

\partial x
 - \partial \~\Phi (Lx1, y, z)

\partial x

\Biggr] 
v(Lx1, y, z)dydz

+

\int Lz2

Z2

\int Ly2

Ly1

\Biggl[ 
\partial \~\Phi (Lx2, y, z)

\partial x
 - \partial \~\Phi (Lx1, y, z)

\partial x

\Biggr] 
v(Lx1, y, z)dydz

+

\int Z1

Lz1

\int Lx2

Lx1

\Biggl[ 
\partial \~\Phi (x, Ly2, z)

\partial y
 - \partial \~\Phi (x, Ly1, z)

\partial y

\Biggr] 
v(x, Ly1, z)dxdz(4.7)

+

\int Lz2

Z2

\int Lx2

Lx1

\Biggl[ 
\partial \~\Phi (x, Ly2, z)

\partial y
 - \partial \~\Phi (x, Ly1, z)

\partial y

\Biggr] 
v(x, Ly1, z)dxdz.

From the periodicity of \~\Phi on \Gamma N , it can imply that the partial derivatives \partial \~\Phi 
\partial x and

\partial \~\Phi 
\partial y satisfy the following periodic boundary conditions:

\partial \~\Phi (Lx1, y, z)

\partial x
=

\partial \~\Phi (Lx2, y, z)

\partial x
\forall (y, z) \in D1,

\partial \~\Phi (x, Ly1, z)

\partial y
=

\partial \~\Phi (x, Ly2, z)

\partial y
\forall (x, z) \in D2.

Applying the above equations to (4.6) immediately gives

(4.8)

\int 
\Gamma N\cap \partial Ds

\partial \~\Phi (s)

\partial nb(s)
v(s)ds = 0.

Similarly, we can prove that
\int 
\Gamma N\cap \partial Dm

\partial \~\Phi (\bfs )
\partial \bfn b(\bfs )

v(s)ds = 0. This completes the proof.

We next present a variational formulation of the Nernst--Planck system (3.8) in
Theorem 4.2.

Theorem 4.2. The system (3.8) of n steady Nernst--Planck equations has the
following variational form: Find ci \in V satisfying ci = gi on \Gamma D such that

(4.9)

\int 
Ds

\scrD i(r) (\nabla ci(r) + Zici(r)\nabla u(r))\nabla vi(r)dr = 0 \forall vi \in V0, i = 1, 2, . . . , n,

where V and V0 are given in (4.2).

Proof. We multiply a test function vi \in V0 on both sides of the first equation of
(3.8), integrate on the solvent region Ds, and use Green's first identity to get

(4.10)

\int 
\partial Ds

\scrD i

\biggl( 
\partial ci(s)

\partial ns(s)
+ Zici

\partial u(s)

\partial ns(s)

\biggr) 
vi(s)ds - 

\int 
Ds

\scrD i (\nabla ci + Zici\nabla u)\nabla vidr = 0.

Since the boundary \partial Ds of Ds can be expressed as

\partial Ds = \Gamma m \cup \Gamma p \cup \Gamma D \cup (\Gamma N \cap \partial Ds),
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A PERIODIC PNP ION CHANNEL FINITE ELEMENT SOLVER B1501

we can use the second equation of (3.8) and vi = 0 on \Gamma D to get\int 
\partial Ds

\scrD i

\biggl( 
\partial ci(s)

\partial ns(s)
+ Zici

\partial u(s)

\partial ns(s)

\biggr) 
vi(s)ds = \scrD i

\int 
\Gamma N\cap \partial Ds

\partial ci(s)

\partial nb(s)
vi(s)ds

+ \scrD iZi

\int 
\Gamma N\cap \partial Ds

ci
\partial u(s)

\partial nb(s)
vi(s)ds \forall vi \in U0,

where we have used the fact that ns = nb on \Gamma N and \scrD i is a constant on the side
surface \Gamma N \cap \partial Ds. Clearly, from the periodicities of ci and u, it can imply the peri-
odicities of the partial derivatives \partial ci

\partial x ,
\partial ci
\partial y ,

\partial u
\partial x , and

\partial u
\partial y on the side surfaces \Gamma N \cap \partial Ds

and \Gamma N , respectively. Similarly to what is done in the proof of (4.8), we can use the
periodicities of ci, vi,

\partial ci
\partial x , and

\partial ci
\partial y on \Gamma N \cap \partial Ds and the periodicities of u, \partial u

\partial x , and
\partial u
\partial y on \Gamma N to get\int 

\Gamma N\cap \partial Ds

\partial ci(s)

\partial ns(s)
vi(s)ds = 0,

\int 
\Gamma N\cap \partial Ds

ci
\partial u(s)

\partial ns(s)
vi(s)ds = 0.

Thus, we obtain \int 
\partial Ds

\scrD i

\biggl( 
\partial ci(s)

\partial ns(s)
+ Zici

\partial u(s)

\partial ns(s)

\biggr) 
vi(s)ds = 0.

Applying the above equation to (4.10) gives the weak form (4.9). This completes the
proof.

Furthermore, a variational form of the interface boundary value problem (3.4) is
presented in Theorem 4.3.

Theorem 4.3. The linear interface boundary value problem (3.4) has the follow-
ing variational form: Find \Psi \in H1(\Omega ) satisfying \Psi = g  - G on \Gamma D and \Psi =  - G on
\Gamma N such that

a(\Psi , v) = (\epsilon s  - \epsilon p)

\int 
\Gamma p

\partial G(s)

\partial np(s)
v(s)ds+ (\epsilon s  - \epsilon m)

\int 
\Gamma m

\partial G(s)

\partial nm(s)
v(s)ds(4.11)

+ (\epsilon m  - \epsilon p)

\int 
\Gamma pm

\partial G(s)

\partial np(s)
v(s)ds \forall v \in H1

0 (\Omega ),

where nm and np denote the unit outward normal vectors of Dm and Dp, respectively,
and a(\cdot , \cdot ) is defined in (4.4).

Proof. We multiply the first equation of (3.4) with a test function v \in H1
0 (\Omega );

integrate it over Dp, Dm, and Ds, respectively; and then add them together to get

\epsilon p

\int 
Dp

\Delta \Psi (r)v(r)dr+ \epsilon m

\int 
Dm

\Delta \Psi (r)v(r)dr+ \epsilon s

\int 
Ds

\Delta \Psi (r)v(r)dr = 0.

Applying Green's first identity to each of the above three integrals, we can get

(4.12)

\epsilon p

\int 
Dp

\nabla \Psi (r) \cdot \nabla v(r)dr+ \epsilon m

\int 
Dm

\nabla \Psi (r) \cdot \nabla v(r)dr+ \epsilon s

\int 
Ds

\nabla \Psi (r) \cdot \nabla v(r)dr

= \epsilon p

\int 
\partial Dp

\partial \Psi (s)

\partial np(s)
v(s)ds+ \epsilon m

\int 
\partial Dm

\partial \Psi (s)

\partial nm(s)
v(s)ds+ \epsilon s

\int 
\partial Ds

\partial \Psi (s)

\partial ns(s)
v(s)ds.
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By v = 0 on \Gamma D \cup \Gamma N (i.e., the boundary \partial \Omega ), the three surface integrals of (4.12)
can be simplified as follows:\int 

\partial Dp

\partial \Psi (s)

\partial np(s)
v(s)ds =

\int 
\Gamma p

\partial \Psi (s - )

\partial np(s)
v(s)ds+

\int 
\Gamma pm

\partial \Psi (s - )

\partial np(s)
v(s)ds,\int 

\partial Dm

\partial \Psi (s)

\partial nm(s)
v(s)ds =

\int 
\Gamma m

\partial \Psi (s - )

\partial nm(s)
v(s)ds - 

\int 
\Gamma pm

\partial \Psi (s - )

\partial np(s)
v(s)ds,\int 

\partial Ds

\partial \Psi (s)

\partial ns(s)
v(s)ds =  - 

\int 
\Gamma m

\partial \Psi (s+)

\partial nm(s)
v(s)ds - 

\int 
\Gamma p

\partial \Psi (s+)

\partial np(s)
v(s)ds.

Applying the above expressions and the interface conditions of (3.4)--(4.12), we obtain
(4.11). This completes the proof.

In PNP ion channel simulations, it is often to set \epsilon m = \epsilon p. In this case, the weak
form (4.11) can be simplified as follows: Find \Psi \in H1(\Omega ) satisfying \Psi = g - G on \Gamma D

and \Psi =  - G on \Gamma N such that

(4.13) a(\Psi , v) = (\epsilon s  - \epsilon p)

\int 
\Gamma 

\partial G(s)

\partial n(s)
v(s)ds \forall v \in H1

0 (\Omega ),

where n denotes the unit outward normal direction of the protein-membrane region
Dpm = Dp \cup Dm \cup \Gamma pm, \Gamma = \Gamma m \cup \Gamma p, which is the interface between Dpm and Ds,
and a(u, v) is simplified as follows:

(4.14) a(u, v) = \epsilon p

\int 
Dpm

\nabla u \cdot \nabla vdr+ \epsilon s

\int 
Ds

\nabla \~\Phi \cdot \nabla vdr.

Theorem 4.4. Let the gradient vector \nabla G be given in (3.6). If \epsilon m = \epsilon p and
\Gamma = \Gamma m \cup \Gamma p, then

(4.15)

\int 
\Gamma 

\partial G(s)

\partial n(s)
v(s)ds =  - 

\int 
Ds

\nabla G(r) \cdot \nabla v(r)dr.

Proof. Using Green's first identity, \Delta G = 0 in Ds, \partial Ds = \Gamma \cup \Gamma D \cup (\Gamma N \cap \partial Ds),
and v = 0 on \Gamma D \cup \Gamma N , we get

0 =

\int 
Ds

\Delta Gvdr =

\int 
\partial Ds

\partial G(s)

\partial ns(s)
v(s)ds - 

\int 
Ds

\nabla G(r) \cdot \nabla v(r)dr

=

\int 
\Gamma 

\partial G(s)

\partial ns(s)
v(s)ds - 

\int 
Ds

\nabla G(r) \cdot \nabla v(r)dr.

Since ns =  - n on \Gamma , from the above expression, it gives the identity (4.15). This
completes the proof.

Applying (4.15) to the variational problem (4.13), we obtain another variational
form of \Psi as follows: Find \Psi \in H1(\Omega ) satisfying \Psi = g  - G on \Gamma D and \Psi =  - G on
\Gamma N such that

(4.16) a(\Psi , v) = (\epsilon p  - \epsilon s)

\int 
Ds

\nabla G(r) \cdot \nabla v(r)dr \forall v \in H1
0 (\Omega ).

The above weak form simplifies the numerical calculation of \Psi since it does not involve
any surface integral. A surface integral can be more difficult to calculate than a
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A PERIODIC PNP ION CHANNEL FINITE ELEMENT SOLVER B1503

corresponding volume integral since a geometrical shape of the interface \Gamma is very
complicated in an ion channel simulation.

In summary, we have obtained a variational form of the system of (3.8) and (3.9)
as follows: Find \~\Phi \in V0 and ci \in U with ci = gi on \Gamma D for i = 1, 2, . . . , n such that

(4.17)

\left\{     
\int 
Ds

\scrD i

\Bigl[ 
\nabla ci + Zici(w +\nabla \~\Phi )

\Bigr] 
\nabla vidr = 0 \forall vi \in U0 for i = 1, 2, . . . , n,

a(\~\Phi , v) - \beta 
n\sum 

i=1

Zi

\int 
Ds

civdr = 0 \forall v \in V0,

where w = \nabla G(r)+\nabla \Psi (r) with \nabla G being given in (3.6) and \Psi is a solution of (4.11)
(or (4.16) in the case that \epsilon m = \epsilon p).

5. A PNPic finite element solver. Let \Omega h be an interface fitted irregular
tetrahedral mesh of a box domain \Omega . We use \Omega h to construct two linear Lagrange finite
element function spaces, \scrU 1 and \scrU 2, as two finite-dimensional subspaces of the function
spaces H1(\Omega ) and U , respectively. From \Omega h, we extract an irregular tetrahedral mesh,
Ds,h, of Ds to construct two linear Lagrange finite element function spaces, \scrV 1 and \scrV 2,
as two finite-dimensional subspaces of the function spacesH1(Ds) and V , respectively.
We also define three subspaces, \scrU 1,0, \scrU 2,0, and \scrV 2,0, by

\scrU 1,0 = \{ u \in \scrU 1 | u = 0 on \partial \Omega \} , \scrU 2,0 = \{ u \in \scrU 2 | u = 0 on \Gamma D\} ,
\scrV 2,0 = \{ v \in \scrV 2 | v = 0 on \Gamma D\} .

Here U and V have been defined in (4.1) and (4.2), respectively.
Since \Psi , \~\Phi , and ci belong to three different finite element spaces, \scrU 1, \scrU 2, and \scrV 2,

respectively, we construct three communication operators P1, P2, and P3 by

P1 : \scrU 2 \rightarrow \scrU 1, P2 : \scrU 1 \rightarrow \scrV 1, P3 : \scrV 2 \rightarrow \scrU 2.

For example, we map \~\Phi from the periodic boundary constrained finite element space
\scrU 2 onto the original finite element space \scrU 1 by linear operator P1 to complete the
addition of \~\Phi with G and \Psi . Using these linear operators, we approximate the system
(4.17) by a system of finite element equations as follows: Find \~\Phi \in \scrU 2,0 and ci \in \scrV 2

satisfying ci = gi on \Gamma D for i = 1, 2, . . . , n such that

(5.1)

\left\{         
\int 
Ds

\scrD i

\Bigl[ 
\nabla ci + Zici\nabla P2(G+\Psi + P1

\~\Phi )
\Bigr] 
\nabla vidr = 0 \forall vi \in \scrV 2,0

for i = 1, 2, . . . , n,

a(\~\Phi , v) - \beta 
n\sum 

j=1

Zj

\int 
Ds

P3cjvdr = 0 \forall v \in \scrU 2,0,

where G is given in (3.2) and \Psi has been calculated through solving a finite element
approximation of the variational problem (4.11). For example, in the case that \epsilon m =
\epsilon p, the finite element equation for computing \Psi is given as follows: Find \Psi \in \scrU 1

satisfying \Psi = g  - G on \Gamma D and \Psi =  - G on \Gamma N such that

(5.2) a(\Psi , v) = (\epsilon p  - \epsilon s)

\int 
Ds

\nabla G(r) \cdot \nabla v(r)dr \forall v \in \scrU 1,0,

where the bilinear form a(\cdot , \cdot ) is given in (4.14).
We recall that the Slotboom variable transformation is defined by

(5.3) ci = e - Ziu\=ci, i = 1, 2, . . . , n,
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B1504 DEXUAN XIE AND BENZHUO LU

where \=ci denotes the ith Slotboom variable [47]. From the periodicity of u and ci on
\Gamma N \cap \partial Ds, it can imply that \=ci is periodic on \Gamma N \cap \partial Ds. Using (5.3), we can get

(5.4) \nabla ci + Zici\nabla u = e - Ziu\nabla \=ci, i = 1, 2, . . . , n,

and then transform the system (5.1) into a new system of \~\Phi and \=ci as follows: Find
\~\Phi \in \scrU 2,0 and \=ci \in \scrV 2 satisfying \=ci = \=gi on \Gamma D for i = 1, 2, . . . , n such that

(5.5)

\left\{       
\int 
Ds

\scrD ie
 - ZiP2(G+\Psi +P1

\~\Phi )\nabla \=ci\nabla vidr = 0 \forall vi \in \scrV 2,0

for i = 1, 2, . . . , n,

a(\~\Phi , v) - \beta 
n\sum 

i=1

Zi

\int 
Ds

e - Zi(G+\Psi +P1
\~\Phi )P3\=ci, vdr = 0 \forall v \in \scrU 2,0,

where \=gi = eZiggi, which is derived from the boundary value conditions u = g and
ci = gi on \Gamma D. After finding \=ci, we recover ci using (5.3) for i = 1, 2, . . . , n.

We now construct a relaxation iterative scheme for solving the nonlinear finite
element system (5.5) using the classic successive relaxation iterative techniques [42].
Let \~\Phi k and \=cki denote the kth iterative approximations to \~\Phi and \=ci, respectively. We
define them for k = 0, 1, 2, . . . by

\=ck+1
i = \=cki + \omega (\=pi  - \=cki ), i = 1, 2, . . . , n,(5.6)

\~\Phi k+1 = \~\Phi k + \omega (\=q  - \~\Phi k),(5.7)

where \=pi \in \scrV 2 satisfying \=pi = \=gi on \Gamma D such that

(5.8)

\int 
Ds

Die
 - ZiP2(G+\Psi +P1

\~\Phi k)\nabla \=pi\nabla vidr = 0 \forall vi \in \scrV 2,0, i = 1, 2, . . . , n,

and \=q is a solution of the nonlinear variational problem: Find \=q \in \scrU 2,0 such that

(5.9) a(\=q, v) - \beta 

n\sum 
i=1

Zi

\int 
Ds

e - Zi(G+\Psi +P1\=q)P3\=c
k+1
i vdr = 0 \forall v \in \scrU 2,0,

\=c0i and \~\Phi 0 are given initial iterates, and \omega is a relaxation parameter between 0 and 1.
By default, we set that \=c0i = cbi , and

\~\Phi 0 is a solution of the variational problem:
Find \~\Phi 0 \in \scrU 2,0 such that

(5.10) a(\~\Phi 0, v) - \beta 

n\sum 
i=1

Zic
b
i

\int 
Ds

e - Zi(G+\Psi +P1
\~\Phi 0)vdr = 0 \forall v \in \scrU 2,0.

We stop this iteration process whenever the following criteria hold:

(5.11) \| \~\Phi k+1  - \~\Phi k\| < \epsilon and max
1\leq i\leq n

\| \=ck+1
i  - \=cki \| < \epsilon ,

where \epsilon is a tolerance (e.g., \epsilon = 10 - 5) and \| \cdot \| denotes the L2 norm.
In order to solve the nonlinear variational problem (5.9) in the kth iteration, we

construct an iterative sequence, \{ qjk\} , by

(5.12) qj+1
k = qjk + \xi jk, j = 0, 1, 2, . . . ,
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A PERIODIC PNP ION CHANNEL FINITE ELEMENT SOLVER B1505

where q0k = \~\Phi k and \xi jk is a solution of the variational problem: Find \xi jk \in \scrU 2,0 such
that

a(\xi jk, v) + \beta 

\int 
Ds

n\sum 
i=1

Z2
i P3\=c

k+1
i e - Zi(G+\Psi +P1q

j
k)\xi jkvdr(5.13)

= \beta 

\int 
Ds

n\sum 
i=1

Zie
 - Zi(G+\Psi +P1q

j
k)P3\=c

k+1
i vdr - a(qjk, v) \forall v \in \scrU 2,0.

To get the initial iterate \~\Phi 0, we construct an iterative sequence, \{ qj\} , for solving
the nonlinear variational problem (5.10) by

(5.14) qj+1 = qj + \xi j , j = 0, 1, 2, . . . ,

where initial iterate q0 is set as a solution of a linearized problem of (5.10),

(5.15) a(\phi , v) + \beta 

n\sum 
i=1

Z2
i c

b
i

\int 
Ds

\phi vdr =  - \beta 

n\sum 
i=1

Z2
i c

b
i

\int 
Ds

(G+\Psi )vdr \forall v \in \scrU 2,0,

and \xi j is a solution of the linear variational problem: Find \xi j \in \scrU 2,0 such that

a(\xi j , v) + \beta 

\int 
Ds

n\sum 
i=1

Z2
i c

b
ie

 - Zi(G+\Psi +P1q
j
k)\xi jvdr(5.16)

= \beta 

\int 
Ds

n\sum 
i=1

Zic
b
ie

 - Zi(G+\Psi +P1q
j
k)vdr - a(qjk, v) \forall v \in \scrU 2,0.

In (5.15), we have used the electroneutrality condition
\sum n

i=1 Zic
b
i = 0.

In the iterative process of (5.12), we use the iteration stopping criterion,

(5.17) either j > Ite max or \| qj+1
k  - qjk\| < \tau ,

where Ite max denotes the maximum allowable number of iterations and \tau is a tol-
erance. In calculation, we set Ite max = 10 and \tau = 10 - 5 by default. Similarly, we
stop the iterative process of (5.14) whenever

(5.18) either j > Ite max or \| qj+1  - qj\| < \tau .

For clarity, we summarize our relaxation iterative scheme in Algorithm 1.

Algorithm 1. Our finite element relaxation iterative scheme for solving the
steady state PNPic system of (3.8) and (3.9) for the electrostatic potential u and
ionic concentrations ci can be implemented in five steps:
Step 1. Initialization: Calculate G by (3.2); calculate \Psi by solving a finite element

approximation problem of (4.11) (or (5.2) when \epsilon m = \epsilon p); set the initial

iterates \=c0i = cbi for i = 1, 2, . . . , n; calculate \~\Phi 0 as a solution of the nonlinear
problem (5.10) by the iterative scheme (5.14); and set k = 0.

Step 2. Define \=ck+1
i by (5.6) with \=pi being a solution of the linear variational problem

(5.8) for i = 1, 2, . . . , n.
Step 3. Define \~\Phi k+1 by (5.7) with \=q being an iterate qjk of the iterative scheme (5.12)

for solving the nonlinear variational problem (5.9) satisfying the iteration stop
rule (5.17).
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B1506 DEXUAN XIE AND BENZHUO LU

Step 4. Check the convergence: If the iteration stop criteria of (5.11) hold, go to
Step 5 with \=ci = \=ck+1

i for i = 1, 2, . . . , n and \~\Phi = \~\Phi k+1; otherwise, increase k
by 1, and go back to Step 2.

Step 5. Define the steady state PNPic solution: u = G+\Psi + \~\Phi and ci = e - Ziu\=ci for
i = 1, 2, . . . , n.

Remark 1. The iterative scheme defined in (5.12) is a Newton iterative method
for minimizing the functional

J(v) =
1

2
a(v, v) + \beta 

\int 
Ds

n\sum 
i=1

\=ck+1
i e - Zi(G+\Psi +P1v)dr.

It can be shown that the minimizer of J gives a solution of the nonlinear variational
problem (5.9). This statement is true for the iterative scheme defined in (5.14) if
Slotboom iterates \=ck+1

i of J are replaced by the bulk concentrations cbi .

Remark 2. The iterative scheme of (5.14) is actually a finite element Newton
iterative scheme for solving a PB ion channel model using the periodic boundary con-
ditions given in (2.3). That is, this PB ion channel model is defined by the equations
of (3.3), (3.4), and (3.5) using ci = cbie

 - Ziu for i = 1, 2, . . . , n. It can be shown that
the solution u of this PB ion channel model can be constructed by

(5.19) u = G+\Psi + \~\Phi PB ,

where \~\Phi PB denotes a solution of the nonlinear variational problem (5.10). This PB
ion channel model and finite element solver are different from those reported in [24].

6. Numerical results. We implemented Algorithm 1 in Python as a software
package based on the state-of-the-art finite element library from the FEniCS project
[35] and the PB finite element solver program package reported in [52]. We used the
ion channel finite element mesh program package developed by Lu's research group
[10, 30, 31] to generate interface fitted irregular tetrahedral meshes for a box domain \Omega 
as illustrated in Figure 1. From a mesh of \Omega , we extracted the meshes of solvent region
Ds, membrane region Dm, and protein region Dp, denoted by Ds,h, Dm,h, and Dp,h,
respectively. We then used these meshes to define the finite element function spaces
\scrU 1 and \scrV 1. Furthermore, we modified \scrU 1 and \scrV 1 as the finite element function spaces
\scrU 2 and \scrV 2 using the periodic boundary value conditions. In this software package, we
set boundary value functions gi(r) and g(r) with r = (x, y, z) for ionic concentration
functions ci and electrostatic potential function u, respectively, as follows:

(6.1) gi(r) =

\biggl\{ 
cbi at z = Lz1 (bottom),
cbi at z = Lz2 (top),

g(r) =

\biggl\{ 
ub at z = Lz1 (bottom),
ut at z = Lz2 (top),

where cbi is a bulk concentration of species i and the difference between electrostatic
potential values ub and ut can be regarded as a voltage across the membrane. We
also followed what was done in [49, equation (27)] to define the diffusion coefficient
function \scrD i(r) with r = (x, y, z) by

\scrD i(r) =

\left\{       
Di,b, z < Z1 or z > Z2 (bulk part),

Di,c + (Di,c  - Di,b)ft(r), Z2 - \eta \leq z \leq Z2 (top buffer part),
Di,c, Z1 + \eta \leq z \leq Z2 - \eta (channel pore),

Di,c + (Di,c  - Di,b)fb(r), Z1 \leq z \leq Z1 + \eta (bottom buffer part),
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(a) Molecular structure of GA (b) Our protein region Dp fitting GA well

Fig. 3. (a) Two views of GA (PDB identification code 1MAG) depicted in sticks for the
molecular structure and cartoons for the two helical subunits. (b) Two views of our protein region
Dp, along with the GA molecular structure depicted in balls for oxygen atoms (in red), nitrogen
atoms (in blue), and carbon atoms (in gray).

where Di,b and Di,c are the diffusion constants of species i for the bulk and channel
pore regions, respectively; fb and ft are the interpolation functions given in [49,
equation (27)] such that each diffusion function is sufficiently smooth in the solvent
regionDs; and \eta is a parameter for adjusting the buffering region size. By default, each
finite element equation of (5.8) and (5.13) is solved, approximately, by the generalized
minimal residual method using incomplete LU preconditioning with the absolute and
relative residual errors being less than 10 - 6.

We did numerical tests on an ion channel protein, a gramicidin A (GA), in a
solution of anions Cl - and cations K+ to demonstrate the convergence of our nonlinear
relaxation iterative scheme and the computer performance of our program package.
Here the charge numbers Z1 = 1 and Z2 =  - 1. The GA channel is a small protein 0.4
nm in diameter and 2.5 nm in length composed of symmetric dimers of two \beta -helical
subunits. Two views of its molecular structure are given in Figure 3(a).

GA is an antibiotic peptide produced by Bacillus brevis and has been extensively
studied in experiments and various modelings [3, 46]. Due to the cation-selective
property and the simplicity in molecular structure compared with other ion channel
proteins [2], the GA channel has been a typical molecular force probe to explore how
changes in bilayer properties alter protein function [39]. With an X-ray crystallo-
graphic molecular structure [25] and the experimental data [12], the GA channel is
often selected to construct numerical tests for validating PNP ion channel models
[49, 54].

We downloaded the GA molecular structure file 1mag.pdb from the protein data
bank (PDB, https://www.rcsb.org). We then derived its PQR file that contains the
data missed in the PDB file, such as the hydrogen atoms, the atomic charge numbers,
and the atomic radii. The total number np of atoms is 280. We rotated the ion channel
and assembled it with a membrane, as illustrated in Figure 1, for a rectangular box
\Omega of dimensions 40 \times 40 \times 60 defined by Lx1 =  - 20.323, Lx2 = 19.677, Ly1 =
 - 20.0, Ly2 = 20.0, Lz1 =  - 33.421, Lz2 = 26.579, Z1 =  - 11, and Z2 = 6 for a
membrane thickness of 17 \r A. The meshes \Omega h and Ds,h have 24686 and 15828 mesh
points, respectively. We display them in Figure 4(a), (b) to show their geometrical
complexities. Because of the periodic boundary conditions, the dimensions 24686 and
15828 of \scrU 1 and \scrV 1 were reduced to the dimensions 22541 and 14203 of \scrU 2 and \scrV 2,
respectively.
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B1508 DEXUAN XIE AND BENZHUO LU

(a) Mesh for the box domain \Omega (b) Mesh for solvent region Ds

Fig. 4. The interface fitted irregular tetrahedral meshes of the box domain \Omega and solvent region
Ds for the ion channel protein GA (PDB identification code 1MAG) for our numerical tests. Here
the meshes of the membrane region Dm and protein region Dp are colored in yellow and green,
respectively, for clarity.

In the numerical tests, we set \epsilon s = 80, \epsilon p = 2, and \epsilon m = 2; D1,b = 0.196,
D1,c = 0.0196 (for K+ ions), D2,b = 0.203, and D2,c = 0.0203 (for Cl - ions); and
\eta = 3 (for the diffusion coefficient function \scrD i(r)). Since \epsilon m = \epsilon p, we calculated \Psi by
solving the finite element variational problem (5.2). All the numerical tests were done
on our iMac computer with one 4.2-GHz Intel core i7 processor and 64 GB memory.

One important feature of our PNPic software package is to be able to visualize
the values of ionic concentrations ci and electrostatic potential function u produced
by our PNPic finite element solver in color mapping on a surface mesh of ion channel
protein region Dp, membrane region Dm, or solvent region Ds. This feature makes
our PNPic software package particularly useful in the study of ion channel properties.
As an example, Figure 5 displays the values of u on the surface meshes of Dp, Ds,
and Dm, respectively. The three surface mesh plots of Figure 5 also display the
complicated shapes of the interfaces \Gamma p, \Gamma pm, and \Gamma m. From Figure 3(b), it can be
seen that our protein region Dp wraps well the molecular structure of GA.

Figure 6 displays the boundary values of the electrostatic potential u and con-
centrations c1 and c2 on the four side surfaces \Gamma N of the box domain \Omega and the
four side surfaces \Gamma N \cap \partial Ds of the solvent region Ds in color mapping. Here u, c1
and c2 were generated by our PNPic finite element software package using ub =  - 1,
ut = 1, and cbi = 0.5 mol/L for i = 1, 2. The plots from this figure confirm that our
PNPic finite element solution can well retain the periodic boundary value conditions
(2.9).

Figure 7 displays the convergence of our relaxation iterative scheme, defined in
(5.6) and (5.7) in terms of iteration numbers and the performance of our software
package in terms of computer CPU time, as a function of the relaxation parameter
\omega . Here we set ub = 1, ut = 0, and cb1 = cb2 = 0.1 mol/L. From the figure, it
can be seen that the number of iterations was reduced from 36 at \omega = 0.4 to 15
at \omega = 0.8 and that the corresponding computer CPU time was reduced from 209
seconds to 86 seconds. These test results show that the convergence and performance
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(a) Protein region Dp (b) Solvent region Ds (c) Membrane region Dm

Fig. 5. The electrostatic potential u produced by the PNPic finite element solver on the tri-
angular surface meshes of the protein, solvent, and membrane regions Dp, Ds, and Dm in color
mapping from blue for  - 2 to red for 2.

(a) Electrostatic potential u (b) K+ concentration c1 (c) Cl - concentration c2

Fig. 6. The periodic boundary value conditions (2.9) well retained in the PNPic finite element
solution (u, c1, c2). Here the color mapping ranges for u and ci are [ - 1, 1] and [0, 1], respectively,
from blue to red.

of our relaxation iterative scheme can be improved sharply through properly selecting
a relaxation parameter value.

Figure 8 reports the convergence processes of our PNPic relaxation iterative
scheme. From the figure, it can be seen that the iteration errors for both \~\Phi and
ci were reduced from 102 to 10 - 6 in 15 iterations, showing that our PNPic relaxation
iterative scheme has a fast rate of convergence.

Figure 9 reports a convergence process of our Newton iterative scheme (5.12) for
solving the nonlinear finite element equation of (5.9) for \~\Phi at the initial iteration
k = 0. Here the initial iterate \~\Phi 0 was generated by the modified Newton iterative
scheme (5.14) for solving our PB ion channel model. From this figure, it can be seen
that the iteration errors were reduced quickly from 106 to 10 - 6 in 16 iterations only.
Furthermore, as the iteration number k was increased for k \geq 1, the total number
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Fig. 7. Convergence and performance of our relaxation iterative scheme (5.6) for solving the
PNPic finite element system (5.5) as a function of \omega for a GA (PDB identification code 1MAG) in
the 0.1 molar KCl solution with ub = 1, and ut = 0.

Fig. 8. Iteration errors maxi=1,2 | | cj+1
i  - 

cji | | and | | \~\Phi j+1 - \~\Phi j | | of iteration j for the PN-
Pic relaxation iterative scheme defined in (5.6)
and (5.7) using \omega = 0.8.

Fig. 9. Iteration errors \| F (qj+1
k )\| and

\| qj+1
k  - qjk\| of iteration j for Newton scheme

(5.12) for finite element equation F (\~\Phi ) = 0 of
(5.9) at k = 0.

of iterations determined by the criteria (5.11) was further reduced due to using the
previous iterate \~\Phi k as the initial guess. It is this fast rate of convergence of our
modified Newton iterative scheme that makes our PNPic relaxation iterative scheme
particularly efficient.

Figure 10 displays the concentrations of anions Cl - and cations K+ and the
electrostatic potential u on a cross section (x = 0) of the solvent region Ds in color
mapping. Here we marked the membrane and protein regions in yellow and green
colors, respectively, to clearly show the values in the solvent region Ds. From the
figure, it can be seen that the electrostatic potential values are almost all negative (in
blue) within the channel pore, repelling the anions Cl - away from the channel pore
(in blue) while attracting the cations K+ to the channel pore (in red).

To visualize a three-dimensional concentration function as a curve across the
channel pore, we construct a rectangular box domain B such that B contains the
channel pore part fully. We then divide B uniformly into m sub-boxes, \{ Bj\} mj=1, in
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Fig. 10. The electrostatic potential u and the concentrations c1 and c2 of K+ and Cl - ions in
color mapping on a cross section (x = 0) of the solvent region Ds. Here the protein and membrane
regions are colored in green and yellow, respectively; concentrations are in mol/L; and electrostatic
potential u is in kBT/ec (\approx 0.0257 volts).

Table 1
Parameter values for the boundary value functions gi for i = 1, 2 and g defined in (6.1) and

the performance of our PNPic finite element solver.

ub ut cbi Iteration number CPU time (seconds)
 - 1 1 0.5 15 86.10
 - 1 1 0.1 15 85.41
 - 3 3 0.5 24 140.86

the z-axis direction and calculate a volume integral as follows:

(6.2) ci,j =

\int 
Bj

ci(r)dr, i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

where ci has been set to be zero outside the solvent region Ds to ensure the definition
of the above integrals. Clearly, cij gives the total amount of the ions of species i in
the sub-box Bj . We next set zj to be the z-coordinate of a midpoint of Bj to produce
m points, (zj , ci,j) for j = 1, , . . . ,m. Linking these points results in a curve of ci as a
function of z from z1 to zm. Clearly, such a curve provides us with a simple tool for
visualizing the distribution of an ionic species within the channel pore. It can also be
valuable for us to compare concentration functions.

We did numerical tests to study the effect of Dirichlet boundary value conditions
on the concentrations c1 and c2. Here B = [ - 1.791, 1.2125] \times [ - 0.8262, 1.6595] \times 
[ - 14.4, 10.6], and B was uniformly divided into 28 sub-boxes Bj (i.e., m = 26) to
produce 26 points (zj , ci,j). We solved the PNPic model using three different boundary
value functions as listed in Table 1, along with the performance data of our relaxation
iterative scheme. A comparison of the concentrations is displayed in Figure 11.

Figure 11 shows that changing the boundary value function of an electrostatic
potential u (i.e., changing a voltage across the membrane) has an impact on concen-
tration functions within and near the channel pore. We also see that changing the
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Fig. 11. A comparison of the concentrations of K+ and Cl - ions within and near the channel
pore ( - 11 < z < 6) generated by the PNPic model for GA (PDB identification code 1MAG) using
three different boundary value functions gi and g defined in (6.1).

bulk concentrations cbi caused significant changes outside the channel pore for cations
K+ and inside the channel pore for anions Cl - .

The test results of Figures 10 and 11 validate our PNPic model since they clearly
describe the distribution patterns of cations and anions, which match the well-known
fact that the GA is cation selective.

Finally, as an application of PNPic, we present a new formula for computing the
electric current across the membrane and compare computed values with experimental
data. It is known that the electric current IS passing a cross section S of the channel
pore can be calculated by

(6.3) IS =  - ecNA

103

n\sum 
i=1

ZiDi,c

\int 
S

\biggl[ 
\partial ci(s)

\partial z
+ Zici(s)

\partial u(s)

\partial z

\biggr] 
ds

provided that the normal direction of the cross section S coincides with the z-axis
direction, each ionic concentration ci is measured in mol/L, Di,c is a diffusion coef-
ficient within the channel pore in \r A/ps (picosecond), and the current is measured in
pA (picoampere). In the steady state, IS only varies with the cross surface S within

the channel pore since both \partial ci(\bfs )
\partial z and \partial u(\bfs )

\partial z with s = (x, y, z) are independent of z.
In calculation, different values of IS can be derived due to either numerical errors or
S having different sizes. Thus, an average value Iave of IS is often calculated using
several cross sections. However, for an irregular tetrahedral mesh of the solvent region
Ds, the calculation of IS is difficult since the calculation of a surface integral over S

requires a mesh of S and an interpolation of both \partial ci(\bfs )
\partial z and \partial u(\bfs )

\partial z onto this surface
mesh, which are very difficult tasks to be done numerically. To avoid these difficulties,
we present a new formula for computing Iave as follows:

(6.4) Iave =  - \theta 

hB

ecNA

103

n\sum 
i=1

ZiDi,b

\int 
B

\biggl[ 
\partial ci(r)

\partial z
+ Zici(r)

\partial u(r)

\partial z

\biggr] 
dr,

where B is a piece of the ion channel pore with height hB in the z-axis direction,
0 < \theta \leq 1, and Di,b is the diffusion coefficient of species i in the bulk solution region.
Here Di,c has been set as Di,c = \theta Di,b.
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Table 2
A comparison of the currents estimated by our new formula (6.4) with the experimental data

reported in [12] for GA (PDB identification code 1MAG) in a 0.1 molar NaCl solution. Here voltages
are in mV and currents in pA.

Voltage across the membrane 50 100 150 200
Averaged current by formula (6.4) 0.5878 1.2026 1.8430 2.5072

Experimental current reported in [12] 0.65 1.2 1.71 2.12
Relative error 0.0956 0.0022 0.0778 0.1826

In fact, since B \approx S \times [z1, z2] with z2 - z1 = hB , we can get that\int 
B

\biggl[ 
\partial ci(r)

\partial z
+ Zici(r)

\partial u(r)

\partial z

\biggr] 
dr \approx 

\int z2

z1

\int 
S

\biggl[ 
\partial ci(s)

\partial z
+ Zici(s)

\partial u(s)

\partial z

\biggr] 
dsdz

= hB

\int 
S

\biggl[ 
\partial ci(s)

\partial z
+ Zici(s)

\partial u(s)

\partial z

\biggr] 
ds,

where we have used the fact that the surface integral is independent of z. Applying
the above identity to (6.3), we show that Iave is an approximation to IS .

In the tests, we set B with the bottom surface at z =  - 8 and the top surface
at z = 2 since the buffer size \eta was set as 3 (i.e., hB = 10 \r A), cbi = 0.1 mol/L,
\theta = 0.0245, ut = 0, and ub = 50, 100, 150, and 200 mV (1 mV = 0.001 volts). The
test results are reported in Table 2. From these test results, it can be seen that
the currents computed by our PNPic finite element software package match well the
experimental data reported in [12]. These test results further validate our PNPic
model and software package.

7. Conclusions. We have presented a new PNP ion channel model using pe-
riodic boundary value conditions, called PNPic, and developed an effective finite
element relaxation iterative algorithm for solving PNPic. We then implemented this
PNPic finite element algorithm as a software package for the calculation of electro-
static potential density function, ionic concentration functions, and the distribution
of ions and electric current within an ion channel pore. This PNPic software pack-
age works for an ion channel protein with a three-dimensional X-ray crystallographic
molecular structure in an ionic solvent with multiple ionic species.

In particular, because of the periodic boundary value conditions, our PNPic model
can reflect the influence of ion channels from outside a simulation box on the cal-
culation of ionic concentrations and an electrostatic potential. Using our solution
decomposition scheme, we simplify the PNPic system as a new system that does
not involve any singularity and can be much easier to solve numerically so that the
complexity of PNPic is reduced remarkably. We also show that the accuracy of the
finite element solver can be well retained by using the Slotboom variable transforma-
tion technique. We have developed an efficient modified Newton iterative scheme for
solving each nonlinear finite element equation that is generated from the Slotboom
variable transformation. Through constructing proper communication operators, we
have successively carried out function operations between different finite element func-
tion spaces, which are defined on different physical domains (a solvent region for ionic
concentrations and a box domain for potential functions) and subject to periodic
boundary constraints. As applications, we have obtained new formulas for visualizing
the distribution of an ionic species within the channel pore in a simple curve (see
(6.2)) and for computing the electric current passing on average a cross section of
an ion channel pore (see (6.4)). Moreover, we did numerical tests on an ion channel
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protein and reported the numerical results that demonstrate the convergence and per-
formance of our PNPic finite element solver. Finally, we validated our PNPic model
using the cation selectivity property of an ion channel protein and the experimental
data from a chemical laboratory.

In this work, we have mainly focused on the presentation of our new PNPic model
and its effective finite element solver and only reported numerical results on a small
ion channel protein in a symmetric 1:1 ionic solvent. But our PNPic software package
can be applied to the calculation of electrostatic potential and ionic concentrations for
a large ion channel protein in ionic solvents with multiple species. It also can be used
to study the various properties of our PNPic model. For example, we will study how
and to what extent the periodic boundary value conditions can affect ion transport
and electric current across membrane or within an ion channel pore. Moreover, our
PNPic software package can be used to make various numerical experiments to justify
the novelty and advantage of our PNPic model in comparison to those reported in
[36, 49]. We will further improve the convergence and performance of our PNPic
finite element solver using other advanced numerical techniques to make our PNPic
software package a powerful tool for ion channel simulations.

Finally, it is worth noting that a repetition of one type of ion channel protein
along the membrane, as done in our construction of periodic boundary value condi-
tions, has been routinely used in state-of-the-art molecular dynamics for calculating
long-range electrostatic interactions by means of a simulation box containing a single
protein molecule. This treatment reduces the complexity of membrane modeling re-
markably, making it possible for us to count the electrostatic interactions outside a
simulation box. On the other hand, it does produce modeling errors since a real
cell membrane consists of various ion channel proteins as passage conduits for dif-
ferent ionic species. In order to improve the reliability of our PNPic model in the
calculation of electrostatics and ionic concentrations, it is important to estimate such
modeling errors either theoretically or numerically via the experimental data from
chemical laboratories and molecular dynamics simulations. We plan to do so in the
future.
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