双极器件 LPNP 辐照损伤效应的并行有限元数值模拟

王芹^{1,2},马召灿^{1,2},李鸿亮³,张林波^{1,2},卢本卓^{1,2}

(1. LSEC,国家数学与交叉科学中心,中国科学院数学与系统科学研究院,计算数学与科学工程计算研究所,北京 100190;2.中国科学院大学数学科学学院,北京 100049; 3.四川师范大学数学科学学院,成都 610066)

摘要: 在基于漂移扩散模型的半导体器件仿真模拟中,采用 Zlamal 有限元方法进行数值离散,结 合提出的电离损伤耦合模型,对横向 PNP (LPNP)双极晶体管(BJT, bipolar junction transistors)的电 离损伤效应进行模拟。基于三维并行自适应有限元软件平台 PHG (Parallel Hierarchical Grid) 实现了 模型和算法,并通过数值计算的方式成功模拟出了 LPNP 受电离辐射影响后出现的基极电流增大及 电流增益退化的现象。进行了网格规模达1亿单元、并行规模达1024 进程的大规模数值实验,展 示了算法良好的并行可扩展性。

关键词: Zlamal 有限元; 辐照损伤效应; LPNP 晶体管; 并行数值模拟
中图分类号: TP391.9 文献标识码: A 文章编号: 1004-731X (2020) 12-2376-07
DOI: 10.16182/j.issn1004731x.joss.20-FZ0477

Parallel Finite Element Simulations on Radiation Damage Effects of Lateral PNP BJTs

Wang Qin^{1,2}, Ma Zhaocan^{1,2}, Li Hongliang³, Zhang Linbo^{1,2}, Lu Benzhuo^{1,2}

(1. LSEC, NCMIS, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; 2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3. Department of Mathematics, Sichuan Normal University, Chengdu 610066, China)

Abstract: The Zlamal finite element discretization is applied in the drift-diffusion model for the simulations of semiconductor devices. Combined with the coupled ionization damage model, the ionization damage effects of lateral PNP (LPNP) bipolar junction transistors (BJT) are simulated. *The model and algorithm are implemented based on the three-dimensional parallel adaptive finite element toolbox PHG (Parallel Hierarchical Grid). The phenomena of excess base current and current gain degradation in LPNP BJTs are successfully simulated via numerical calculation. A large-scale numerical experiment with 100 million elements and 1 024 MPI processes is carried out, demonstrating the good parallel scalability of the algorithm.*

Keywords: Zlamal finite element; radiation damage effects; LPNP BJT; parallel simulation

引言

航天器在轨飞行过程中,电子控制及信息系统

收稿日期: 2020-03-31 修回日期: 2020-07-12; 基金项目:科学挑战专题(TZ2016003),国家重点研 发计划(2016YFB0201304),国家自然科学基金 (21573274,11771435);

作者简介: 王芹(1994-), 女, 江苏泰州, 博士生, 研究方向为 Poisson-Nernst-Planck 模型的有限元算法: 马召灿(1992-), 男, 河南开封, 博士生, 研究 方向为电离损伤数值模拟。

承担着控制航天器件的飞行和与地面保持信息与数 据的传送的重要任务。在这些系统中,双极晶体管 及电路被广泛地使用。空间高能带电粒子会对航天 器中的电子器件产生电离、位移及单粒子效应^[1]。 不同类型的电子器件对辐射效应的敏感性不同,横 向 PNP (LPNP)晶体管对辐射效应较为敏感,尤其 是在低剂量率的条件下^[2]。由于该实验测试一般是 在地面上进行且需要观察器件的长期效应,实验代 价十分昂贵。本文的主要研究内容是采用数值模拟 的方法,基于半导体器件模拟仿真与电离损伤耦合 模型观察电离损伤效应对 LPNP 晶体管的电学响 应的影响。

目前国内对于辐照损伤效应的仿真求解算法 和求解器均比较少。国外研究机构如 Florida 大学 采用有限体积法设计了电离损伤模拟的软件包 FLOODS,计算模拟了在一定辐照剂量下的界面态 密度等多种性质; Sandia 实验室采用有限元方法也 开发了一套半导体器件并行模拟器 CHARON。其 中,FLOODS 等提供的关于电离损伤模型的模拟 一般是一维或二维的,而 CHARON 主要是针对瞬 态位移损伤的模拟。商业软件如 Silvaco 公司的 TCAD 器件仿真求解器 ATLAS 下集成有 REM (Radiation Effect Module),但该求解器是在共享内 存计算机上进行多线程并行计算,而不支持基于分 布式内存和消息传递的并行计算。

在国产三维并行自适应有限元软件平台 PHG^[3] 上,基于经典的漂移扩散模型^[4-5],采用 Zlamal 有 限元^[6]进行空间离散,结合本文提出的电离损伤耦 合模型,给出 LPNP 晶体管受电离损伤影响的电学 输出的数值仿真结果,并对其进行并行效率测试。

半导体器件模拟仿真算法及电离 损伤耦合模型

1.1 半导体器件模拟仿真算法

1.1.1 漂移扩散模型

记求解区域为Ω⊂ℝ,经典漂移扩散模型^[4-5] 由一个 Poisson 方程和两个载流子连续性方程组成:

$$-\nabla \cdot \epsilon \nabla \phi = q(p - n + N_D - N_A) \quad \text{in } \Omega$$
$$\frac{\partial p}{\partial t} = -\nabla \cdot \boldsymbol{J}_p - R_p(\phi, p, n) \quad \text{in } \Omega$$
$$\frac{\partial n}{\partial t} = -\nabla \cdot \boldsymbol{J}_n - R_n(\phi, p, n) \quad \text{in } \Omega$$

其中,

$$\boldsymbol{J}_{p} = -D_{p}\nabla p + \mu_{p} p \left(-\nabla \phi + \frac{k_{B}T}{q} \nabla \log n_{ie} \right)$$

$$\boldsymbol{J}_n = -D_n \nabla n - \mu_n n \left(-\nabla \phi - \frac{k_B T}{q} \nabla \log n_{\text{ie}} \right)$$

式中:待求解的变量是静电势 ϕ ,空穴浓度p和电 子浓度n。Poisson 方程中, ϵ 是介电常数,q是单 位电荷, N_D 是施主杂质释放电子后留在晶格上的 带正电的离子浓度, N_A 是受主杂质俘获电子后留 在晶格上的带负电的离子浓度。连续性方程中, J_p 和 J_n 分别是空穴电流密度和电子电流密度。 D_p 和 D_n 分别是空穴和电子的扩散系数, μ_p 和 μ_n 分别是 空穴和电子的迁移率。 k_B 是 Boltzmann 常数,T是 温度, n_{ie} 是半导体材料的本征浓度。若半导体材 料为同质结且不考虑能带变窄效应,则 n_{ie} 为常数, $\nabla \log n_{ie} = 0$,且 Einstein 关系 $D_p = \frac{k_BT}{q}\mu_p$, $D_n = \frac{k_BT}{a}\mu_n$ 成立。引入变量 $u = \frac{q}{k_pT}\phi$,对静电势

 ϕ 进行无量纲化,则方程组变为:

$$-\nabla \cdot \epsilon \nabla u = \frac{q^2}{k_B T} (p - n + N_D - N_A) \quad \text{in } \Omega$$
$$\frac{\partial p}{\partial t} = -\nabla \cdot \boldsymbol{J}_p - R_p(\phi, p, n) \quad \text{in } \Omega$$
$$\frac{\partial n}{\partial t} = -\nabla \cdot \boldsymbol{J}_n - R_n(\phi, p, n) \quad \text{in } \Omega$$

其中,

$$\begin{split} \boldsymbol{J}_{p} &= -D_{p} \left(\nabla p + p \nabla u \right) \\ \boldsymbol{J}_{n} &= -D_{n} \left(\nabla n - n \nabla u \right) \\ \hat{\boldsymbol{L}}_{D,\phi} &= u_{D}, \\ \boldsymbol{u} \Big|_{\partial \Omega_{D,\phi}} &= u_{D}, \\ \boldsymbol{p} \Big|_{\partial \Omega_{D,c}} &= p_{D}, \ \boldsymbol{n} \Big|_{\partial \Omega_{D,c}} &= n_{D} \\ \nabla u \cdot \boldsymbol{n} \Big|_{\partial \Omega_{N,\phi}} &= 0 \\ \boldsymbol{J}_{p} \cdot \boldsymbol{n} \Big|_{\partial \Omega_{N,c}} &= 0, \ \boldsymbol{J}_{n} \cdot \boldsymbol{n} \Big|_{\partial \Omega_{N,c}} &= 0 \end{split}$$

式中:**n** 为边界单位外法向; $\partial \Omega_{D,\phi}$, $\partial \Omega_{D,c}$ 和 $\partial \Omega_{N,\phi}$, $\partial \Omega_{N,c}$ 分别为电势和载流子浓度的 Dirichlet 型和 Neumann 型边界,且有 $\partial \Omega = \partial \Omega_{D,\phi} \bigcup \partial \Omega_{N,\phi} =$ $\partial \Omega_{D,c} \bigcup \partial \Omega_{N,c}$ 。

1.1.2 Zlamal 有限元

对上述漂移扩散模型,我们采用 Zlamal 有限 元^[6]进行求解,该方法使用分片线性基函数进行空 间离散。首先引入 Slotboom 变量

$$\Phi_{p} = pe^{u}, \ \Phi_{n} = ne^{-u}$$
变量替换后,可得 J_{p} 和 J_{n} 为:

$$J_{p} = -D_{p}(\nabla p + p\nabla u) = -D_{p}e^{-u}\nabla \Phi_{p}$$

$$J_{n} = -D_{n}(\nabla n - n\nabla u) = -D_{n}e^{u}\nabla \Phi_{n}$$
考虑如下的齐次边界条件:

$$\Phi_{p} |_{\partial \Omega_{D,c}} = 0, \ \Phi_{n} |_{\partial \Omega_{D,c}} = 0$$
$$\boldsymbol{J}_{p} \cdot \boldsymbol{n} |_{\partial \Omega_{N,c}} = 0, \ \boldsymbol{J}_{n} \cdot \boldsymbol{n} |_{\partial \Omega_{N,c}} = 0$$

设 T_h 是区域 Ω 的协调四面体网格剖分, { x^i }_{*i*=1} 是网格上的顶点集合。假设电流密度 J_p 和 J_n 在单元 $T \in T_h$ 内为常数,且设常向量 j_p 和 j_n 分别 为 J_p 和 J_n 在单元上的逼近,即

 $\boldsymbol{j}_p = -D_p e^{-u} \nabla \Phi_p, \, \boldsymbol{j}_n = -D_n e^u \nabla \Phi_n$

设单元 *T* 的顶点为 x^1, x^2, x^3, x^4 , 单元 \hat{T} 为参考 单元,其顶点为(0,0,0), (1,0,0), (0,1,0), (0,0,1)。定 义从单元 \hat{T} 到单元 *T* 的一一映射 $x(\eta)$, 使得顶点 x^1 映射到顶点(0,0,0)。记 $\hat{u}(\eta) = u(x(\eta))$, $\hat{\Phi}_p(\eta) =$ $\Phi_p(x(\eta))$, $\hat{\Phi}_n(\eta) = \Phi_n(x(\eta))$,则常向量 j_p 和 j_n 可以表示为 η 的函数。于是有

 $e^{\hat{u}}J^{\mathrm{T}}\boldsymbol{j}_{p} = -D_{p}\nabla\hat{\Phi}_{p}, \ e^{-\hat{u}}J^{\mathrm{T}}\boldsymbol{j}_{n} = -D_{n}\nabla\hat{\Phi}_{n} \qquad (1)$

式中: J为映射 $x(\eta)$ 的 Jacobian 矩阵。

设 u^1, u^2, u^3, u^4 分别为 u 在顶点 x^1, x^2, x^3, x^4 上的 值,由于求解 Poisson 方程时使用的是线性元,电 场强度 $E = -\nabla \phi$ 在单元内为常数。对式(1)的第 j(j=1,2,3)个分量沿着 η_j 轴的[0,1]区间积分,可得

$$\boldsymbol{j}_{p} = -D_{p}e^{-u^{1}}(J^{T})^{-1}\tilde{B}_{T}\nabla\hat{\Phi}_{p} =$$
$$-D_{p}e^{-u^{1}}(J^{T})^{-1}\tilde{B}_{T}J^{T}\nabla\Phi_{p}$$
$$\boldsymbol{j}_{n} = -D_{n}e^{u^{1}}(J^{T})^{-1}B_{T}\nabla\hat{\Phi}_{n} =$$
$$-D_{n}e^{u^{1}}(J^{T})^{-1}B_{T}J^{T}\nabla\Phi_{n}$$

其中,

$$\begin{split} B_{T} &= \text{diag}(B(u^{1} - u^{2}), B(u^{1} - u^{3}), B(u^{1} - u^{4}))\\ \tilde{B}_{T} &= \text{diag}(B(u^{2} - u^{1}), B(u^{3} - u^{1}), B(u^{4} - u^{1}))\\ \mathcal{B}_{T} &= \{v \in H^{1}(\Omega) : v \Big|_{\partial \Omega_{D_{c}}} = 0\}, \quad \text{则连续性} \end{split}$$

方程的有限元弱形式为(这里假设为稳态的情况): 求 $\Phi_p \in H^1_c(\Omega)$ 和 $\Phi_n \in H^1_c(\Omega)$, 使得 $\forall v \in H^1_c(\Omega)$ 有

$$A_{p}(\Phi_{p},v) \coloneqq -\int_{\Omega} J_{p} \cdot \nabla v d\Omega = -\int_{\Omega} R_{p} v d\Omega$$
$$A_{n}(\Phi_{n},v) \coloneqq -\int_{\Omega} J_{n} \cdot \nabla v d\Omega = -\int_{\Omega} R_{n} v d\Omega$$
定义有限元函数空间

 $V_h := \{v_h \in C(\overline{\Omega}) : v_h |_{\partial\Omega_{D,c}} = 0, v_h |_T \in P_1, \forall T \in T_h\}$ 式中: P_1 为三维一阶多项式,即 V_h 是分片线性多 项式空间。设 $\{v_i\}_{i=1}^N$ 是 V_h 的一组基,满足 $v_i(x^k) = \delta_i^k, i, k = 1, ..., N$ 。定义相应的映射 $x(\eta)$, 使得顶点 x^k 映射到参考单元的顶点(0,0,0)。设 S_k 是 所有包含顶点 x^k 的单元集合,对于任意的 $v_h \in V_h$, v_h 可以由基函数表示为 $v_h = \sum_{i=1}^N \tilde{v}_i v_i$,于是可以定 义关于 Φ_p 和 v_h 的双线性型:

$$A_{ph}(\Phi_p, v_h) \coloneqq \sum_{i=1}^N \tilde{v}_i A_{ph}(\Phi_p, v_i)$$
$$A_{nh}(\Phi_n, v_h) \coloneqq \sum_{i=1}^N \tilde{v}_i A_{nh}(\Phi_n, v_i)$$

其中,

$$A_{ph}(\Phi_p, \mathbf{v}_i) \coloneqq -\sum_{T \in S_k} \int_T \boldsymbol{j}_p \cdot \nabla \boldsymbol{v}_i dT$$
$$A_{nh}(\Phi_n, \mathbf{v}_i) \coloneqq -\sum_{T \in S_k} \int_T \boldsymbol{j}_n \cdot \nabla \boldsymbol{v}_i dT$$

则连续性方程的有限元离散弱形式为: 求 $\Phi_{ph} \in V_h$ 和 $\Phi_{nh} \in V_h$, 使得 $\forall v_h \in V_h$ 满足

$$A_{ph}(\Phi_{ph}, v_h) = -\int_{\Omega} R_p v_h d\Omega$$
$$A_{nh}(\Phi_{nh}, v_h) = -\int_{\Omega} R_n v_h d\Omega$$

1.2 电离损伤耦合模型

电离损伤对于器件的影响主要有两类:第一类 是由被俘获的正氧化物电荷对电场的改变引起的 电流变化;第二类是由 SiO₂/Si 界面处的界面缺陷 引发的表面复合。

针对辐射导致的氧化层内正电荷对器件电场的影响,在计算 SiO₂ 区域内的电势时,我们需要 在 Poisson 方程的右端加上带电缺陷,即:

$$-\nabla \cdot \epsilon(\nabla \phi) = Q^+$$
, in Ω_{SiO_2}

式中: Q⁺为氧化层内带电缺陷的总电荷。

对于电离损伤导致的器件表面载流子浓度的

变化,需要在 SiO₂/Si 界面处加入由界面缺陷引发的表面复合。实验表明,表面复合率 U_s 和表面处非平衡载流子浓度(Δc)。成正比^[7],即:

 $U_s = rN_{\rm it}(\Delta c)_s$

式中: *N*_{it}为 SiO₂/Si 界面处的界面缺陷密度; *r*为 复合系数。可以看出,辐射导致界面缺陷密度 *N*_{it}增加,使得表面复合速度加快,以致影响器件的性能。在 SiO₂/Si 界面处,有

$$\int_{S} \boldsymbol{J} \cdot \boldsymbol{n} dS = \int_{S} U_{s} dS = \int_{S} r N_{\rm it} (\Delta c)_{s} dS$$

于是,

$$\boldsymbol{J} \cdot \boldsymbol{n} = (-D_c \nabla c + z_c \mu_c c (-\nabla \phi)) \cdot \boldsymbol{n} = -D_c \frac{\partial c}{\partial \boldsymbol{n}} - z_c \mu_c c \frac{\partial \phi}{\partial \boldsymbol{n}} = U_s$$

又根据界面处的静电势边界条件:

$$\epsilon \frac{\partial \phi}{\partial \boldsymbol{n}} = \sigma_{\mathrm{it}}$$

式中: [·]为界面处的跳量; z_c 为载流子的带电荷数; $\sigma_{it}=qN_{it}$ 为界面电荷密度,可以得到针对浓度 c 的边界条件:

$$D_{c} \frac{\partial c}{\partial n} = -z_{c} \mu_{c} c \frac{\partial \phi}{\partial n} - U_{s} = \left(-\frac{z_{c} \mu_{c} q}{\epsilon} c - r(\Delta c)_{s} \right) \cdot N_{\text{it}}$$

2 数值结果

2.1 LPNP 晶体管仿真结果

Bipolar Junction Transistor (BJT) 又称晶体管 或三极管,是集成电路中的重要组成部分。以 PNP 型晶体管为例,它的基本结构是两个 P 型硅中间 夹着一层很薄的 N 型硅,形成两个背靠背的 PN 结。通常发射极接地,在基极和发射极之间加一 较小的偏压 V_{BE}(<0),使发射结处于正向;在集电 极和发射极之间加一较大的偏压 V_{CE}(<0),使集电 结处于反向。当电路接通时,由于发射结处于正 向,发射区的空穴注入基区,基区的电子也会注 入发射区。在扩散过程中,发射区的空穴与基区 的电子发生复合,形成基极电流。由于基区宽度 远远小于扩散长度,注入到基区来不及复合的空 穴则被集电结的反向抽取作用拉到集电区。LPNP 晶体管由于其电流流向为横向,且直接位于氧化 层下方,更容易受到辐射的影响。在这一节中, 我们将通过数值模拟的方法计算 LPNP 晶体管的 电学特性以及辐照损伤对其电学性能的影响,所 模拟的 LPNP 晶体管横切面版图如图 1^[8]所示。相 关结构参数如表 1 所示。

图 1 LPNP 晶体管版图 Fig. 1 Layout of LPNP BJT

表 1 LPNP 晶体管结构参数 Tab 1 Structure parameters of LPNP BIT

Tab. 1 Structure parameters of E1101 B31				
参数	值			
基区宽度/μm	4			
氧化层厚度/nm	350			
基区掺杂浓度/cm ⁻³	3.0×10^{13}			
发射区掺杂浓度/cm ⁻³	5.0×10^{15}			
集电区掺杂浓度/cm ⁻³	1.0×10^{15}			

计算中所使用的四面体网格如图 2 所示,共包含 1 616 861 个单元,285 076 个顶点。

模拟不加辐射时 LPNP 晶体管的 Gummel 特性曲线。将发射极接地,固定集电极上的偏压 V_{CE}为-1.5 V,将基极上的偏压 V_{BE}由 0 V 反向升至-1.2 V,观察基极电流 I_B随基极偏压 V_{BE}的变化关系,计算结果如图 3 所示。在集电极上的偏压保持固定时,随着基极偏压的增大,发射结的正向偏压不断增大,从发射区注入基区的空穴随之增加;与此同时,集电结的反向偏压却减小,集电结反向抽取能力变弱,注入到基区的空穴与基区电子的复合增强,因此基极电流 I_B随之增大。

图 2 LPNP 晶体管四面体网格图 Fig. 2 Tetrahedral volume mesh for LPNP BJT

Fig. 3 Gummel plot

电离效应主要会在晶体管 SiO₂/Si 界面处生成 界面态,这些界面态往往可以起到复合中心的作 用,从而影响晶体管的电性能参数。为了结合我们 提出的电离损伤耦合模型对 LPNP 晶体管的辐照 损伤效应进行仿真,我们首先需要模拟计算出由辐 照引起的界面缺陷的密度,即模型中的 N_{it},辐照 部分的模型和算法可以参考文献[9-10]。由低剂量 率增强效应(Enhanced Low Dose Rate Sensitivity Effect, ELDRS 效应)^[11]可知,在固定总辐照剂量 的条件下,辐照引起的界面缺陷随着剂量率的降低 而增加。图 4 展示了总剂量为 10 krad 时不同剂量 率下由辐照引起的界面缺陷密度的计算结果,随着 剂量率的减小,界面缺陷密度显著增加,与 ELDRS 效应相吻合。

图 4 总剂量为 10 krad 时不同剂量率下界面缺陷的密度 Fig. 4 Plot of interface trap density vs. dose rate with total dose fixed to 10 krad

SiO₂/Si 界面处的界面缺陷形成复合中心,导 致基区的复合率增加,从而造成晶体管基极电流 $I_{\rm B}$ 的增加以及电流增益的退化。根据前面计算出 的界面缺陷密度,结合电离损伤耦合模型,我们 可以模拟计算辐照对 LPNP 晶体管的电学响应的 影响。以剂量率为 10^{-4} rad/s 时为例,此时 $N_{\rm it}$ 的 值为 9.34×10^{10} cm⁻²。辐射前后基极电流 $I_{\rm B}$ 随基 极偏压 $V_{\rm BE}$ 变化的特性曲线如图 5 所示。从图 5 中可见,基极电流 $I_{\rm B}$ 在辐射后显著增加,与理论 相符^[2, 12-13]。

令 ΔI_B表示辐射后基极电流的增大量,为了进 一步观察在固定总辐照剂量的条件下,基极电流的 变化幅度与剂量率的关系,我们绘制了 ΔI_B 随剂量 率的变化关系图,如图 6 所示。其中,基极偏压固 定为 0.8 V,总剂量为 10 krad。可以看到,在总剂 量保持不变的条件下,基极电流的增大幅度随剂量 率的减小而增大。数值计算的结果与 ELDRS 效应 相符。基极电流的增大会使得晶体管的电流增益发 生退化,图 7 中绘制了总剂量为 10 krad 时电流增 益随剂量率的变化曲线。可以看到,随着剂量率 的降低,电流增益的退化更加严重,由此也进一 步验证了低剂量率的辐照对晶体管性能的影响更 为显著。

图 7 总剂量为 10 krad 时不同剂量率下的电流增益系数 Fig. 7 Plot of normalized current gain vs. dose rate with total dose fixed to 10 krad

2.2 并行效率测试

以上述 LPNP 为例,在 PHG 中对其四面体网

格进行一致加密,加密后的测试网格共包含 103 479 104 个单元,17 494 317 个顶点。我们统计 求解零偏压状态所需的时间来测试算法的并行效 率。并行效率测试是在"科学与工程计算国家重点 实验室"LSSC-IV 集群上进行的。LSSC-IV 集群基 于联想深腾 8810 系统构建,包含超算和大数据计 算两部分。计算集群主体部分总共拥有 14 688 个 处理器核,理论峰值性能为 1 081 TFlops,实测 LINPACK 性能 703 TFlops。以 32 进程的运行时间 为基准,并行效率的计算公式为:

$$E = \frac{32 \times T_{32}}{p \times T_p},$$

式中: *T*₃₂为 32 进程的运行时间; *p*为当前使用的 进程数; *T_p*为*p*进程的运行时间。从表 2 中可以看 出, 1024 进程并行效率可以维持在 70%以上,展 示出算法良好的并行可扩展性。

	表	2	并行	效率测试	
ab	2	Par	rallel	efficiency	tests

rab. 2 raraner enterency tests		
进程数	时间/s	并行效率/%
32	2 508.8	
64	1 248.9	100.4
128	663.0	94.6
256	300.7	104.3
512	167.6	93.6
1024	110.6	70.9

3 结论

本文基于漂移扩散模型和电离损伤耦合模型, 对 LPNP 晶体管的电学特性以及电离辐射对其电 学性能的影响进行了数值模拟。数值结果成功模拟 出了 LPNP 晶体管受辐射后基极电流增大以及电 流增益退化的现象,与理论结果及文献中的实验趋 势^[2]基本吻合,验证了模型和算法的有效性。该算 法基于分布式内存和消息传递,最后的大规模并行 数值实验展示了算法良好的并行可扩展性。目前该 工作已集成到半导体器件及辐照损伤仿真软件系 统 3Ddevice^[14]中,详细情况可参考 www.xyzgate. com。由于缺乏文献中实验所使用的器件的详细尺

第 32 卷第 12 期	系统仿真学报	Vol. 32 No. 12
2020年12月	Journal of System Simulation	Dec., 2020

寸信息和准确的实验参数,本文只与实验数据进行 了定性的比较。未来我们希望可以得到进一步的实 验支持,结合实验结果进行定量的分析,从而可以 基于文中的模型对器件的电学响应特性以及受辐 照的影响做出更准确的预测。

参考文献:

- 李兴冀, 兰慕杰, 刘超铭, 等. 偏置条件对 NPN 及 PNP 双极晶体管电离辐射损伤的影响研究[J]. 物理学 报, 2013, 62(9): 485-490.
 Li Xingji, Lan Mujie, Liu Chaoming, et al. The Influence of Bias Conditions on Ionizing Radiation Damage of NPN and PNP Transistors[J]. Acta Physica Sinica, 2013, 62(9): 485-490.
- [2] Schmidt D, Fleetwood D, Schrimpf R, et al. Comparison of Ionizing-Radiation-Induced Gain Degradation in Lateral, Substrate, and Vertical PNP BJTs[J]. IEEE Transactions on Nuclear Science (S0018-9499), 1995, 42(6): 1541-1549.
- [3] Zhang L. A Parallel Algorithm for Adaptive Local Refinement of Tetrahedral Meshes Using Bisection[J]. Numerical Mathematics-theory Methods and Applications (S1004-8979), 2009, 2(1): 65-89.
- [4] Vanroosbroeck W. Theory of the Flow of Electrons and Holes in Germanium and Other Semiconductors[J]. Bell System Technical Journal (S0005-8580), 1950, 29(4): 560-607.
- [5] 成杰. 基于 PHG 平台的半导体器件模拟研究与结构 力学有限元软件研制[D]. 北京:中国科学院研究生 院, 2012.

Cheng Jie. Parallel Semiconductor Device Simulation and Parallel Structural Mechanics Software Development Using the Toolbox PHG[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2012.

[6] Zlamal M. Finite-Element Solution of the Fundamental Equations of Semiconductor-Devices. I[J]. Mathematics of Computation (S1088-6842), 1986, 46(173): 27-43.

[7] 刘恩科,朱秉升,罗晋生.半导体物理学.第7版[M]. 北京:电子工业出版社,2017.
Liu Erke, Zhu Bingssheng, Luo Jinsheng. The Physics of Semiconductors. 7th Edition[M]. Beijing: Publishing House of Electronics Industry, 2017.

- [8] 王芹,马召灿,白石阳,等. 三维半导体器件漂移扩 散模型的并行有限元方法研究[J].数值计算与计算机 应用,2020,41(2):85-104.
 Wang Qin, Ma Zhaocan, Bai Shiyang, et al. Research on Parallel Finite Element Methods for the Drift-Diffusion Model in Semiconductor Device Simulations[J]. Journal on Numerical Methods and Computer Applications, 2020,41(2):85-104.
- [9] Rowsey N L, Law M E, Schrimpf R D, et al. A Quantitative Model for ELDRS and H2 Degradation Effects in Irradiated Oxides Based on First Principles Calculations[J]. IEEE Transactions on Nuclear Science (S0018-9499), 2011, 58(6): 2937-2944.
- [10] Xu J, Ma Z, Li H, et al. A Multi-Time-Step Finite Element Algorithm for 3D Simulation of Coupled Drift-diffusion-Reaction Process in Total Ionizing Dose Effect[J]. IEEE Transactions on Semiconductor Manufacturing (S0894-6507), 2018, 31(1): 183-189.
- [11] Pease R L, Adell P C, Rax B G, et al. The Effects of Hydrogen on the Enhanced Low Dose Rate Sensitivity (ELDRS) of Bipolar Linear Circuits[J]. IEEE Transactions on Nuclear Science (S0018-9499), 2008, 55(6): 3169-3173.
- [12] 李兴冀. 星用双极型器件带电粒子辐照效应及损伤机 理[D]. 哈尔滨: 哈尔滨工业大学, 2010.
 Li Xingji. Radiation Effects and Damage Mechanisms Caused by Charged Particles on Bipolar Devices Used for Spacecraft[D]. Harbin: Harbin Institute of Technology, 2010.
- [13] Enlow E W, Pease R L, Combs W, et al. Response of Advanced Bipolar Processes to Ionizing Radiation[J]. IEEE Transactions on Nuclear Science (S0018-9499), 1991, 38(6): 1342-1351.
- [14] 黄成梓,白石阳,王芹,等. 3Ddevice:半导体器件及 其辐照损伤效应仿真软件系统[J].数值计算与计算机 应用, 2020, 41(2): 121-142.
 Huang Chengzi, Bai Shiyang, Wang Qin, et al. 3Ddevice: A Simulation Software System for Semiconductor Devices and Radiation Effects[J]. Journal on Numerical Methods and Computer Applications, 2020, 41(2): 121-142.