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ABSTRACT: The three-dimensional structures and shapes of
biomolecules provide essential information about their interactions
and functions. Unfortunately, the computational cost of bio-
molecular shape representation is an active challenge which
increases rapidly as the number of atoms increase. Recent
developments in sparse representation and deep learning have
shown significant improvements in terms of time and space. A
sparse representation of molecular shape is also useful in various
other applications, such as molecular structure alignment, docking,
and coarse-grained molecular modeling. We have developed an
ellipsoid radial basis function neural network (ERBFNN) and an
algorithm for sparsely representing molecular shape. To evaluate a
sparse representation model of molecular shape, the Gaussian density map of the molecule is approximated using ERBFNN with a
relatively small number of neurons. The deep learning models were trained by optimizing a nonlinear loss function with L1
regularization. Experimental results reveal that our algorithm can represent the original molecular shape with a relatively higher
accuracy and fewer scale of ERBFNN. Our network in principle is applicable to the multiresolution sparse representation of
molecular shape and coarse-grained molecular modeling. Executable files are available at https://github.com/SGUI-LSEC/
SparseGaussianMolecule. The program was implemented in PyTorch and was run on Linux.

■ INTRODUCTION

Recent advances in the field of deep learning and neural
networks have gained revolutionary achievements in computer
vision and related applications such as object detection,1 image
classification,2 and semantic segmentation.3 A radial basis
function (RBF) network is a special class of feedforward neural
networks (FNNs), which have certain advantages over other
types of FNNs, such as simpler network structures and a faster
training process. Due to good approximation capabilities, single-
output RBF networks are usually utilized to model nonlinear
functions in engineering applications. In practice, learning of
RBF networks includes two assignments: determining the RBF
network structure and optimizing the adaptable parameters
(such as centers and the radii of RBF neurons, and linear output
weights). Parameter optimization and network construction are
two important and closely related issues. Solving these two
issues at the same time is a difficult mixed integer problem.4

Owing to the lack of promising methods to address this
integrated problem, the two tasks are solved respectively in
many learning algorithms of RBF networks.5 In this case, the
network structure is determined in advance, and the parameters
are then trained by algorithms of supervised learning. Typically
optimizing the empirical risk leads to an overfitting problem,
which causes poor generalization capability. To tackle this issue,
regularization techniques, such as L1 and L2 regularization

techniques,6−8 are common components in modern machine
learning. Fundamentally, a regularization term is added to the
empirical risk to penalize over-complicated solutions. L1
regularization is implemented by adding a weighted L1 norm
of the parameter vector to the loss function, which ensures that
the sum of the absolute values of the parameters is small, while
L2 regularization uses the L2 norm, which makes the sum of the
squares of the parameters small. There has been an increasing
interest in L1 regularization because of its advantages over L2
regularization.9 For example, L1 regularization usually produces
sparse parameter vectors in which many parameters are close to
zero. Thus, more sparse solution can be obtained. In particular,
deep learning has significantly improved the sparsity of
molecular shape representation and related tasks such as
molecular docking, alignment, drug design, and multiscale
modeling.
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Biomolecules such as proteins are the fundamental functional
units of life activities. Geometric modeling of biomolecules plays
an important role in the fields of computer-aided drug design
and computational biology. In the computer-aided drug design
field, biomolecular shape has remained an important research
subject for many years, for instance, in shape-based docking
problems,10 molecular shape comparisons,11 calculating molec-
ular surface areas,12,13 coarse-grained molecular dynamics,14 the
generalized Born models,15 etc; and the biomolecular geometric
shape (especially molecular surface) is a prerequisite for using
the boundary element method (BEM) and finite element
method (FEM) in implicit solvent models.16

Due to high complexity and irregularity of the large size
molecular models, new issues arise in simulations and other
downstream applications.17 Therefore, efficient representation
of the molecular shape (as well as the “molecular surface” or
“molecular volume”) for large size biomolecules with high
quality is an open challenge.16

The molecular shape is defined in various ways.18 For
molecular volume, the Gaussian density map is a suitable
representation of the molecular shape, as its density maps
provide a realistic representation of the volumetric synthetic
electron density maps for the biomolecules. With respect to
molecular surfaces, there are four important molecular surfaces:
van der Waals (VDW) surface, solvent accessible surface
(SAS),19 solvent excluded surface (SES),20 and Gaussian
surface. The van der Waals surface is the smallest envelope
enclosing a collection of spheres representing all the atoms in the
system with their van der Waals radii. The SAS19 is the trace of
the centers of probe spheres rolling over the van der Waals
surface. The SES20 is the surface traced by the inward-facing
surface of the probe sphere. The Gaussian surface13,21 is a level
set of the summation of the spherically symmetrical volumetric
Gaussian density distribution centered at each atom of the
biomolecular system. In 2015, Liu et al. presented that the VDW
surface, SAS, and SES can be approximated well by the Gaussian
surface with proper parameter selection.12 Compared with
VDW surface, SAS and SES, the Gaussian surface is smooth and
has been widely used in many problems in computational
biology.10,11,13−15 Thus, in this paper, we adopt an ellipsoid RBF
neural network to approximate the Gaussian density maps of the
molecular shape. The Gaussian density maps and the Gaussian
surface descriptions of the specific forms will be discussed in the
next section.
For Gaussian density maps, the volume Gaussian function is

constructed by a summation of Gaussian kernel functions,
whose number depends on the total number of atoms in the
molecule. Thus, the computational cost for biomolecular surface
construction increases as the atom number (number of Gaussian
kernel functions) increases. This leads to a significant challenge
for their analysis and recognition. In the case of large
biomolecules, the number of kernels in their definition of
Gaussian molecular surface may reach millions. In 2015, Zhang
et al.22 put forward an atom simplification method for the
biomolecular structure based on the Gaussian molecular surface.
This method contains two main steps. The first step eliminates
low-contributing atoms. The second step optimizes the center
location, the radius and the decay rate of the remaining atoms
based on the gradient flow method.
In the area of computer-aided geometric design, the Gaussian

surface is a classical implicit surface representing method. In the
last two decades, the implicit surface reconstruction has gained a
key attention of the researchers. For example, Carr et al.23

proposed a method to reconstruct an implicit surface with RBFs
and performed a greedy algorithm to append centers with large
residuals to decrease the number of basis functions. However,
the result of this method is not sparse enough. Samozino et al.24

presented a strategy to put the RBF centers on the Voronoi
vertices. This strategy first picks a user-specified number of
centers by filtering and clustering from a subset of Voronoi
vertices, and then gets the reconstructed surface by solving a
least-squares problem. However, it leads to a larger approx-
imation error on the surface while approximating the surface and
center points equally. In 2016, Li et al.25 proposed a model of
sparse RBF surface representations. They constructed the
implicit surface based on sparse optimization with RBF. The
initial Gaussian RBF is on the medial axis of the input model.
They have solved the RBF surface by sparse optimization
technique. Sparse optimization has become a very popular
technique in many active fields, for instance, signal processing,
computer vision, etc.26 This technique has been applied in linear
regression,27 deconvolution,28 signal modeling,29 precondition-
ing,30 machine learning,31 denoising,32 and regularization.33 In
the last few years, sparse optimization has also been applied in
geometric modeling and graphics problems.34

In this paper, based on the structure of the RBF neural
network, we propose an ellipsoid RBF neural network for
reducing the number of kernels in the definition of the Gaussian
surface while preserving the shape of the molecular surface. We
highlight several differences and main contributions between
our method and previous L1 optimization methods with shape
representation:

1. Our focus is mainly on reducing the number of kernels in
Gaussian density maps by pruning useless ellipsoid RBF
neuron through L1 regularization. Our method uses fewer
number of kernels in Gaussian density maps as compared
to the state-of-the-art methods.

2. The loss function of our model is a complicated nonlinear
function with respect to the locations, sizes, shapes, and
orientations of RBFs.

3. Different initializations and training network algorithms
are proposed for solving the corresponding optimization
problem in our model.

The rest of this paper is organized as follows. Section “Methods”
reviews some preliminary knowledge about volumetric electron
density maps, Gaussian surface, ellipsoid Gaussian RBF, and
ellipsoid RBF network and then presents our model together
with an algorithm for representing the Gaussian density maps
sparsely. The experimental results and comparisons are
demonstrated in section “Results and Discussion”. Finally, the
paper is concluded in section “Conclusions”.

■ METHODS

Brief Review of Volumetric Electron Density Maps,
Gaussian Surface, Ellipsoid Gaussian RBF, and Ellipsoid
RBF Network. Volumetric Electron Density Maps.Volumetric
electron density maps35−37 are often modelled as volumetric
Gaussian density maps : 3 ϕ → . The definition of the
volumetric Gaussian density maps is as follows

x( ) e
i

N
d rx x

1

( )i i
2 2∑ϕ =

=

− − −

(1)
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where the parameter d is positive and controls the decay rate of
the kernel functions, xi and ri are the location and radius of atom
i.
Gaussian Surface. The Gaussian surface is defined as a level

set from volumetric synthetic electron density maps

cx x, ( )3 ϕ{ ∈ = } (2)

where c is the isovalue, and it controls the volume enclosed by
the Gaussian density maps. Figure 1 shows an example of a

Gaussian surface. This molecule contains the entire 70S
ribosome, including the 30S subunit (16S rRNA and small
subunit proteins), 50S subunit (23S rRNA, 5S rRNA, and large
subunit proteins), P- and E-site tRNA, and messenger RNA.
This molecule is obtained from 70S ribosome3.7A mod-
e l140 .pdb .gz on h t tp ://rna .uc sc . edu/ rnacente r/
ribosomedownloads.html. Figure 1a shows all the atoms in the
molecule, and Figure 1b shows the corresponding Gaussian
surface.
Ellipsoid Gaussian RBF. The RBF is written as ξi (x) = ξ(∥x

−ci∥), where ξ(x) is a nonnegative function defined on [0,∞), ci
is center location of the ith basis function. RBF has basic
properties as follows, ξ(0) = 1 and lim x→+∞ξ(x) = 0. A typical
choice of RBF is Gaussian function

x( ) e x 2
ξ = − (3)

In addition, there are other RBFs including thin plate spline
RBF, e.g., ξ (r) = r2 ln(r) for r ∈ .
Compared with other RBFs, we put forward ellipsoid RBF

with parameters with respect to the locations, sizes, shapes, and
orientations. The ellipsoid Gaussian RBF can be written as

x( ) e D x c( , , )( )1/2 2
ψ = α β γΘ− − (4)

where c c cc ( , , )1 2 3
T 3= ∈ is the center of the ellipsoid

Gaussian RBF, D = diag(d1, d2, d3), where di, i = 1, 2, 3 defines
the length of ellipsoid along the three main axes,Θ(α, β, γ) is the
total rotation matrix, and it is equal to the product of rotation
matrices from three directions

( , , ) ( ) ( ) ( )z y xα β γ γ β αΘ Θ Θ Θ= · · (5)

and Θx(α) is a rotation matrix of the x direction

( )
1 0 0
0 cos sin
0 sin cos

x α α α
α α

Θ = −

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (6)

Θy(β) is a rotation matrix of the y direction

( )

cos 0 sin

0 1 0
sin 0 cos

y β
β β

β β
Θ =

−

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (7)

Θz(γ) is a rotation matrix of the z direction

( )

cos sin 0

sin cos 0

0 0 1
z γ

γ γ
γ γΘ =

−Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (8)

so that Θ(α, β, γ) is equal to

cos cos cos sin sin
sin cos

sin sin
cos cos
sin

cos sin cos cos sin
sin sin

sin cos
cos

sin sin

sin cos sin cos cos

β γ α γ α
β γ

α γ
α γ
β

β γ α γ α
β γ

α γ
α

β γ

β β α α β

− + +

+ −
+

−

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
(9)

Ellipsoid RBF Networks. The RBF network (Figure 2) is a
special FNN consisting of three layers:

• an input layer

• a hidden layer with a nonlinear activation function

• a linear output layer

The choice of activation function is the ellipsoid Gaussian

function. For an input x 3∈ , the output of the ellipsoid RBF
network is calculated by

Figure 1. Example of Gaussianmolecular surface via VCMM.38 (a) The
VDW surface and (b) the Gaussian molecular surface generated using
TMSmesh.39−41 with parameter d and c being set as 0.9 and 1.0,
respectively. All coordinates and corresponding radii are drawn from
the PQR file that is transformed from the PDB file, using the PDB2PQR
tool.42

Figure 2. Structure of the ellipsoid RBF neural network.
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w wx x( ) ( ) e
i

N

i i
i

N

i
D x c

1 1

( , , )( )i i i i i i
1/2 2∑ ∑ψΨ = = α β γΘ

= =

− −

(10)

where c c cc , ,i i i i1 2 3
T 3= [ ] ∈ is the ith ellipsoid RBF center of

the hidden layer, Di = diag(di1, di2, di3) represents the lengths of
corresponding ellipsoid RBF along threemain axes of the hidden
layer,Θi(αi, βi, γi) is a rotation matrix of the ith neuron. wi is the
output weight between the ith hidden neuron and the output
node. And ∥·∥ is the L2 norm of the vector.
The parameters (i.e., the weights connecting the neuron to

the output layer, lengths of ellipsoid RBF along three main axes,
center coordinates, and rotation angles) of the hidden neuron
are denoted by w d c, , , , , NT 10σ α β γ= [ ] ∈ . The descrip-
tions of the specific forms of σ will be given in the following
section. Assume that the training data set is given by

m Mx y x y( , ) , , 1, 2, ,m m m m
3 { | ∈ ∈ = ··· }, where xm is the

mth inputs and ym is the desired output value for themth inputs.
The actual output vector can be calculated by

Y Hŵ = (11)

where

H

e e e

e e e

e e e M N

D x c D x c D x c

D x c D x c D x c

D x c D x c D x c

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

N N N

N N N

M M N N M N

1
1/2

1 1 1 2

2
2
1/2

2 1 2 2

2 1/2
1 2

2

1
1/2

1 2 1 2

2
2
1/2

2 2 2 2

2 1/2
2 2

2

1
1/2

1 1 2

2
2
1/2

2 2 2

2 1/2
2

2

μ

μ

∂ ∂ ∂

μ

=

Θ Θ Θ

Θ Θ Θ

Θ Θ Θ

− − − − − −

− − − − − −

− − − − − −
×

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
(12)

Ŷ = [ŷ1, ŷ2, ..., y ̂M]T is an output value vector for M inputs, w =
[w1, w2, ..., wN]

T is a N-dimensional vector, and wk is the weight
connecting the kth hidden neuron to the output layer. The error
vector is defined as

e e ee , , , N1 2
T= [ ··· ] (13)

with ei = ŷi − yi

Model and Algorithm. Modeling with an Ellipsoid RBF
Network. The major goal of this study is to create a sparse
representation of the Gaussian molecular model by the ellipsoid
RBF neural network. According to the definition of volumetric
electron density maps and structure of the ellipsoid RBF
network, the loss function for sparsely representing a Gaussian
molecular model is as follows

Ew d( ) ( )1 1 1 2 sσ σρ ρ= ·[ + ] + · (14)

and corresponding constrained condition is

w d w d0, 0, ,N N3 ≥ ≥ ∈ ∈ (15)

The first term in eq 14 is a L1 regularization term to reduce both
network complexity and overfitting. The formulate is as follows

w dw d
i

N

i
i

N

j
ij1 1

1 1 1

3

∑ ∑ ∑∥ ∥ + ∥ ∥ = | | + | |
= = = (16)

where w = [w1, w2, ..., wN], d = [d11, d12, d13, ..., dN1, dN2, dN3].
The second Es(σ) is density error between the sparsely

represented molecule and original molecule at the training
points set xm, m = 1, 2, ..., M. We have

E

w

x x

x

( ) ( ; ) ( )

e ( )

m

M

m m

m

M

i

N

i m
D x c

s
1

2

1 1

( )
2

i i m i
1/2

2
2

∑

∑ ∑

σ σ ϕ

ϕ

= [Ψ − ]

= −Θ

=

= =

− −

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (17)

where Ψ(x) is an ellipsoid RBF neuron network. ϕ(x) is the
volumetric electron density map (eq 1) and is approximated by
Ψ(x). x x xx ( , , )m m m m1 2 3

T 3= ∈ is the coordinates of themth

training point. c c cc ( , , )i i i i1 2 3
T 3= ∈ is the center of the ith

activation function of the ellipsoid RBF. Di = diag(di1,di2,di3)
defines the lengths of the ellipsoid along three main axes.Θi is a
rotation matrix. αi,βi,γi are rotation angles of the ith activation
function of the ellipsoid RBF neuron, i = 1, 2, ...,N andm = 1, 2,

Figure 3. Pipeline of our algorithm and results of each step.
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..., M. N is the number of the ellipsoid RBF neurons. M is the
number of training points. σ is the network parameter

w d c, , , , , Tσ α β γ= [ ] (18)

where w = [w1, w2, ..., wN], d = [d11, d12, d13, ..., dN1, dN2, dN3], c =
[c1, c2, ...,cN], α = [α1, α2, ..., αN], β = [β1, β2, ..., βN], and γ = [γ1,
γ2, ..., γN].
The two parameters ρ1 > 0 and ρ2 > 0 are used to balance the

two targets, accuracy (Es) and sparsity (L1-regularization), and
the constrained conditions are explained as follows, (i) w ≥ 0
indicates that the corresponding ellipsoid Gaussian RBF is
nonnegative. (ii) d ≥ 0 implies that the activation functions do
not blow up at infinity, which is consistent with the fitted
function ϕ. In order to transform the eqs 14 and 15 to an
unconstrained loss function, we perform the following
substitution,

w w

d d

i N q

,

,

1, 2, , , 1, 2, 3

i i

iq iq

2

2

= ̃

= ̃

= ··· =

l

m
ooooooo

n

ooooooo (19)

and corresponding D̃i = diag(d̃i1
2 , d̃i2

2 , d̃i3
2 ). For simplicity, we still

use wi,diq, Di to denote w̃i,d̃iq, D̃i.
Thus, the loss function of the ellipsoid RBF network for

sparsely representing a molecule is

w

w d

x

( )

e ( )
m

M

i

N

i m
D x c

1 1 1 2

1 1

2 ( )
2

i i m i 2
2∑ ∑

σ ρ ρ

ϕ

= ·[ + ] + ·

· −Θ

= =

− −

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (20)

Overview. In this section, we describe the algorithms to
construct sparse representation of Gaussian molecular density
by the ellipsoid RBF neural network. The inputs of our method
are PQR files which include a list of centers and radii of atoms.
The output of our method is network parameters which contain
the centers, the lengths, the rotation angles of the ellipsoid RBF
neural network, and the weights connecting the hidden neurons
to the output layer. The algorithm outline is as follows: first, set
the training points xm, m = 1,...,M and label corresponding value
ϕ(xm). Second, initialize the ellipsoid RBF network (i.e., the
number of neurons, the parameters of the ellipsoid RBF neural
network). Third, optimize the loss function in eq 20 using an
ADAM algorithm43 to minimize the sparsity and error terms in
eq 20 alternatively. Figure 3 illustrates the process of our
algorithm. The result shows that using our method, the original
Gaussian surface is approximated well by a summation of much
fewer ellipsoid Gaussian RBFs.
Training Points Set Initialization and Labeling. In order to

train a network, in the first step, the training points set is
initialized. The molecule is put in a bounding boxΩ (Figure 4a)
in 3 . The range of bounding box is [a, b]× [c, d]× [e, f ], where
a b c d e f, , , , , ∈ . The bounding boxΩ is discretized into a set
of uniform grid as shown in Figure 4b. The training points are
the grid points defined as follows

x y z x a i b a N y

c j d c N z e k f e N

( , , ) ( )/ ,

( )/ , ( )/

ijk i j k i x j

y k z

{ } = { | = + · −

= + · − = + · − } (21)

where i = 0, 1, 2, ...,Nx, j = 0, 1, 2, ...,Ny, and k = 0, 1, 2, ...,Nz.Nx,
Ny, andNz are the total number of indices i, j, and k, respectively.

In the second step, the points ijk{ } of the training set is
labeled for training network parameter. Label of ijk{ } is

calculated in the following form: ( )ijk ijklabel ϕ{ } = { } . A set of
training points {xm}m=1

M is chosen from the set of uniform grid
points ijk{ }. To achieve good preservation of the molecular
shape the selected points {xm}m=1

M are close to the Gaussian
surface defined in eq 2. In this paper, the training points set
{xm}m=1

M satisfying ∥ϕ(xm) −c∥2 ≤ 1 are selected.
Parameter Initialization of the Ellipsoid RBF Neural

Network. In this section, we initialize the ellipsoid RBF neural
network parameters σ defined in eq 18. Considering that the
Gaussian RBF is a degradation case of the ellipsoid Gaussian
RBF, the activation function ψ can be initialized in the same
manner as ϕ. Thus, the strategy of initialization is as follows,

1. The lengths of ellipsoid RBFs d are set to be constant
vectors. In this paper, the initial d can be set as follows

d 0.5, 0.5, , 0.5 NT 3= [ ··· ] ∈ (22)

where N is the number of atoms.
2. The initial angles of ellipsoid RBFs Θ are set to be zeros

0 N3Θ = ∈ (23)

3. The initial center coordinates c of ellipsoid RBFs are given
by the centers of atoms as follows

x y z i Nc , , , 1, 2, ,i
i i i

atom
( )

atom
( )

atom
( ) T= [ ] = ··· (24)

Figure 4. Training points set initialization. (a) A real molecule
(PDBID: 1GNA) within a bounding box. (b) A set of uniform grid of
the bounding box. (c) Initial training points.
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where xatom
(i) , yatom

(i) , and zatom
(i) are coordinates of the ith

atom.

4. While d, ci, and Θi have been chosen and atom radii r =
[r1, r2,..., rN] are given, to initialize ellipsoid RBF activation
function ψ similar to RBF ϕ, we set the weight w of the
ellipsoid Gaussian RBF as follows

w e , e , , er r r/4 /4 /4 TN1
2

2
2 2

= [ ··· ] (25)

Sparse Optimization. After initialization of the ellipsoid RBF
neural network, the sparsity of Gaussian RBF representation is
computed by minimizing the loss function (eq 20). We aim at
finding a sparse weight vector w = [w1, w2, ..., wN]

T and a sparse
decay rate vector d = [d1, d2, d3]

T of ψ(σ) as defined in eq 10
such that the ellipsoid RBF network ψ is a good fit of ϕ at the
training points set {xm}m=1

M . Algorithm 1 represents the main
modules of our sparse optimization method, which is described
below.

Step 1 shows the initialization of parameters σ for the ellipsoid
RBF neural network. Step 2 selects training points set {xm}m=1

M .
Step 3 and step 4 initialize some variables, i.e., the number of
maximum iterations, the number of sparse optimization
iterations, error tolerance, and the coefficients ρ1 and ρ2. Step
5 sets the size of the batch (Batch_size = min{M, 10 000})
for the optimization algorithm. Step 6 shows the numerical
algorithm of optimization for the loss function (eq 20). Step 6.1
prunes the ellipsoid RBF neuron useless if the corresponding
weightwi connecting the ith hidden neuron to the output layer is
less than tol1 per checkstep steps. In this paper, we set tol1 =
1e − 3 and checkstep = 20. Step 6.2 calculates the prediction
value ψ for all training points set. Step 6.3 checks the maximum
of error between ψ and ϕ at training points set {xm}m=1

M and
updates the coefficients ρ1 and ρ2(tol2 = 0.1). Step 6.4, after
performing SparseNiter iterations, with the number of
effective neurons fixed, keeps performing some steps of
minimization of Es to achieve better accuracy of the
approximation on training points set. Step 6.5 updates the
network parameter σ and optimizes loss function ( )σ by the
batch ADAM43 method. The pipeline of step 6.5 is as follows

m m

v v

(1 )

(1 ) ( )

k k k

k k k

k k

m

v

1 1 1

2 1 2
2

1
1

1

k
k

k
k

1

2

σ σ

β β

β β

τ

= · + − ·∇

= · + − ·∇

= − ×
+ ϵ

β

β

−

−

−
−

−

where τ = 0.002 is the learning rate. β1, β2, and ϵ are set as default
values (β1 = 0.9, β2 = 0.999, and ϵ = 10−8), mk is the kth biased
first moment estimate (m0 = 0). vk is the kth biased second raw
estimate (v0 = 0).

■ RESULTS AND DISCUSSION
In this section, we present some numerical experimental
examples to illustrate the effectiveness of our network and
methods for representing the Gaussian surface sparsely.
Comparisons are made among our network, the original
definition of Gaussian density maps and sparse RBF methods.25

A set of biomolecules taken from the RCSB Protein Data Bank is
chosen as a benchmark set. The number of atoms in these
biomolecules ranges from hundreds to thousands. These
molecules are chosen randomly from RCSB Protein Data
Bank, and no particular structure is specified. The implementa-
tion of the algorithms is based on PyTorch.44 All computations
are run on an Nvidia Tesla 1080Ti GPU. Further quantitative
analysis of the result is given in the following subsections.

Sparse Optimization Results. Twenty biomolecules are
chosen to be sparsely represented by our ellipsoid RBF neural
network and the sparse RBF method.25 The Sparse RBF is a
sparse RBF surface representation method for a general implicit
surface. The process of the Sparse RBF method is as follows.
First, the centers of RBF are set on the medial axis of the input
surface mesh. Second, the surface points and offset points are set
according to the input surface. Finally, the ADMM algorithm45

is used to solve the corresponding L1minimization problem.We
emphasize several differences between our method and the
sparse RBF method: (1) Our focus is mainly on reducing the
number of kernels in Gaussian density maps (eq 1) for
biomolecular complexes, and sparse RBF method focuses on
sparsely representing surface meshes; (2) The input of the
Sparse RBF method is a point cloud from the surface mesh. The
input of our method is a set of constrained grid points close to
the Gaussian surface; (3) Different initializations are proposed
for solving the corresponding sparse optimization problem in
our model. Base on analytical Gaussian density maps, the
locations of our initial RBFs are given by the centers of atoms.
For the sparse RBF method, the coordinates of initial RBFs are
set by the medial axis of surface; (4) The objective function of
the sparse RBF method is a linear function with respect to the
combination coefficients of RBFs, and the objective function of
our model is a complicated nonlinear function with respect to
the combination coefficients, locations, sizes, shapes, and
orientations of RBFs. So our model is a nonlinear optimization
problem with contributions, locations, orientations, and shapes
of basis, since all these parameters are optimizable. This leads to
much sparser results. Table 1 shows the final number of effective
basis functions from the results of our method and the sparse
RBF method.
Figure 5 presents the relationship between the number of

ellipsoid RBF neurons in final sparse representation and the
number of atoms in the corresponding molecule. The number of
atoms for the original Gaussian molecular density map is shown
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by green lines with pentagram markers. To present sparsity of
final results from our method, we define the sparse ratio Rs as:

R N
Ns

ERBF

ATOM
= , whereNERBF is the number of ellipsoid RBF neurons

and NATOM presents the number of atoms. In Figure 5, the
changes of sparse ratios with respect to number of atoms for
different decay rates (d in eq 1 equals to 0.3, 0.5 and 0.7) are
shown by solid lines with square, triangle, and circle markers.
The results show that the larger the decay rate d (leading tomore
rugged and complex molecular surface), the bigger the sparse
ratio is going to be. The sparse ratios for the Gaussian molecular
density map with d = 0.3 are smaller than those of Gaussian
molecular density map with d = 0.7 as shown in Figure 5. Table 2
shows the sparse ratio for 20 test proteins. The maximum sparse
ratio is 0.1419. The minimum sparse ratio is 0.0421.

Figure 6 shows the loss function and the number of ellipsoid
RBF neurons decrease as the number of iterations increases in
the sparse optimization procedure for molecule 1MAG. In this
experiment, the MaxNiter and SparseNiter are set to be
10 000 and 6000, respectively. After 6000 iterations, ρ1 is set at
zero to minimize Es term solely, thus the value of the loss
function has an abrupt change. The number of ellipsoid RBF
neurons decreases dramatically during the iteration process. As
shown in Figure 6, the model with 46 ellipsoid RBF neurons
achievesminimum error with a relatively less number of ellipsoid
RBF neurons.
The computation time of training algorithm is shown in Table

3 for our network. From our experiments, the runtime is
approximately proportional to the number of atoms.

Shape Preservation and Further Result Analysis. In this
subsection, we first check whether the Gaussian surface is
preserved after the process of sparse representation through our
method. The area, the volume enclosed by the surface, and the
Hausdorff distance are the three criteria to judge whether two
surfaces are close enough. These criteria can be calculated on the
triangular mesh of the surface. The triangular meshes of
molecular surfaces before and after sparse representation are
generated through isosurface function in MATLAB. For a
triangular surface mesh, the surface area S is determined using
the following equation

S V V V V
1
2 i

n
i i i i

1
1 2 1 3

f

∑= ×
=

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯ ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯

(26)

where nf is the number of triangle elements and V1
i , V2

i , and V3
i

denote the coordinates of the three vertices for the ith triangle.
The volume V enclosed by the surface mesh is determined

using the following equation

V V V V V c
1
6 i

n
i i i i

i
1

2 1 3 1

f

∑= × ·
=

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯ ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯ →

(27)

where ci is the vector from the center of the ith triangle to the
origin.
The relative errors of area/volume and the Hausdorff distance

are used to characterize the difference between the surfaces
before and after sparse representation. The relative errors of area
and volume are calculated using the following formulas

A A

A
errorA

our original

original
=

| − |

(28)

V V

V
errorV

our original

original
=

| − |

(29)

where Aoriginal and Aour denote the surface areas of the original
and our sparsely represented surfaces respectively. Voriginal and
Vour denote the corresponding volumes enclosed by the original
and our surfaces respectively.
The Hausdorff distance between two surface meshes is

defined as follows

H S S p S p S( , ) max(max e( , ), max e( , ))
p S p S

1 2 2 1
1 2

=
∈ ∈ (30)

where

p S d p pe( , ) min ( , )
p S

= ′
′∈ (31)

Table 1. Sparse Optimization Results for 20 Test Protein
Moleculesa

INDEX PDBID NATOM Sparse RBF our method

1 ADP 39 13 5
2 2LWC 75 51 6
3 3SGS 94 56 9
4 1GNA 163 108 17
5 1V4Z 266 266 22
6 1BTQ 307 252 25
7 2FLY 355 267 28
8 6BST 478 315 49
9 1MAG 552 502 46
10 2JM0 569 424 52
11 1BWX 643 537 54
12 2O3M 714 566 62
13 FAS2 906 722 76
14 2IJI 929 742 72
15 3SJ4 1283 953 132
16 3LOD 2315 1810 180
17 1RMP 3514 2871 271
18 1IF4 4251 3288 301
19 1BL8 5892 3491 452
20 AChE 8280 4438 748

aNATOM is the number of atoms for each molecule. The fourth
column shows the number of RBFs by the Sparse RBF method. The
last column shows the number of the ellipsoid RBF neural network.
The decay rate d in eq 1 is uniformly taken as 0.5.

Figure 5.Relationship between the number of atoms and the number of
ellipsoid RBF neurons after sparse representation.
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S1 and S2 are two piecewise surfaces spanned by the two
corresponding surface meshes, and d(p, p′) is the Euclidean
distance between the points p and p′. In our work, we use
Metro46 to compute the Hausdorff distance.
The areas and the volumes enclosed by the surfaces before

and after the sparse representation for each of the molecules are
listed in Table 4. The Hausdorff distances between the original
surface and the final surface for the biomolecules are also listed
in the last column of Table 4.
Figure 7 shows some visual results of the sparse optimization

model. The first column shows original Gaussian surface for five
molecules. The second column is the final ellipsoid Gaussian
surface in our method, where the blue points represent the
location of Gaussian RBF centers. It indicates that our method

needs fewer number of ellipsoid RBFs neurons to represent a
molecular surface. The third column is the original surface
overlapped with the final surface. It shows that the final surface is
close to the original surface. The last column shows the
configurations of ellipsoid RBF neurons in the sparse
representation of five molecules from our method. It
demonstrates that after the process of sparse representation,
the number of ellipsoid RBF neurons are much sparser than the
RBFs. Obviously, each ellipsoid RBF is a local shape descriptor
of the molecular shape.

Electrostatic Solvation Energy Calculation Based on
the Sparsely Represented Surface. The algorithms
introduced in the Methods section are used to generate the
sparse surface. We here also test the applicability of the original

Table 2. Sparse Ratio for 20 Test Proteinsa

d = 0.3 d = 0.5 d = 0.7

PDBID NATOM NERBF Rs NERBF Rs NERBF Rs

ADP 39 4 0.1026 5 0.1282 5 0.1282
2LWC 75 4 0.0533 6 0.0800 7 0.0933
3SGS 94 8 0.0851 9 0.0957 11 0.1170
1GNA 163 11 0.0675 17 0.1043 20 0.1227
1V4Z 266 16 0.0602 22 0.0827 31 0.1165
1BTQ 307 21 0.0684 25 0.0814 36 0.1173
2FLY 355 21 0.0592 28 0.0789 38 0.1070
6BST 478 32 0.0669 49 0.1025 60 0.1255
1MAG 552 31 0.0562 46 0.0833 67 0.1214
2JM0 569 30 0.0527 52 0.0914 68 0.1195
1BWX 643 35 0.0544 54 0.0840 74 0.1151
2O3M 714 38 0.0532 62 0.0868 89 0.1246
FAS2 906 51 0.0563 76 0.0839 111 0.1225
2IJI 929 53 0.0571 72 0.0775 101 0.1087
3SJ4 1283 82 0.0639 132 0.1029 182 0.1419
3LOD 2315 112 0.0484 180 0.0778 270 0.1166
1RMP 3514 153 0.0435 271 0.0771 389 0.1107
1IF4 4251 179 0.0421 301 0.0708 481 0.1131
1BL8 5892 269 0.0457 452 0.0767 672 0.1141
AChE 8280 349 0.0421 748 0.0903 1160 0.1401

aThe decay rate d in eq 1 equals to 0.3, 0.5 and 0.7.

Figure 6.One test of our algorithm on molecule 1MAG. The blue curve is the objective function trajectory during the 10 000 iterations. The red line
represents the number of basis functions. The number of initial ellipsoid RBF neurons for this trial is 552 and the number of final ellipsoid RBF neurons
is 46.
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and the sparse surface in the computations of Poisson−
Boltzmann (PB) electrostatics. The boundary element method
software used is a publicly available PB solver, AFMPB.47 Table
5 shows that AFMPB can undergo and produce converged
results using the sparse represented surface, and the calculated
solvation energies are close to the results using the original
surface. Figure 8, using VISIM (www.xyzgate.com), shows the
computed electrostatic potentials mapped on the molecular
surface. In the future, we can consider adding the charge
information to the sparse representation.

■ CONCLUSIONS
In this paper, a sparse Gaussian molecular shape representation
based on ellipsoid RBF neural network is proposed for arbitrary
molecules. The original Gaussian density maps is approximated
with the ellipsoid RBF neural network. The sparsity of the
ellipsoid RBF neural network is computed by solving an L1
regularization optimization problem. Comparisons and exper-
imental results indicate that our network needs much fewer
number of ellipsoid RBF neurons to represent the original
Gaussian density maps than the isotropic RBF method.

Table 3. Running Time for 20 Test Proteinsa

INDEX PDBID NATOM computation time(s)

1 ADP 39 119.773094
2 2LWC 75 118.807773
3 3SGS 94 139.218693
4 1GNA 163 135.889053
5 1V4Z 266 142.258237
6 1BTQ 307 115.450601
7 2FLY 355 140.081313
8 6BST 478 145.544162
9 1MAG 552 144.182071
10 2JM0 569 119.617039
11 1BWX 643 146.913441
12 2O3M 714 130.578282
13 FAS2 906 156.919386
14 2IJI 929 162.848709
15 3SJ4 1283 273.632593
16 3LOD 2315 375.636324
17 1RMP 3514 608.246697
18 1IF4 4251 795.421310
19 1BL8 5892 1154.25146
20 AChE 8280 2096.61695

aThe decay rate d in eq 1 is uniformly taken as 0.5.

Table 4. Areas, Volumes, and Hausdorff Distances are Obtained with the Original and the Final Surfaces for 10 Biomoleculesa

area (Å2) volume (Å3)

molecule original our errorA original our errorV distance (Å)

ADP 367.9334 358.4047 0.0259 458.0317 454.5578 0.0076 0.6605
2LWC 504.8863 494.5004 0.0206 856.9564 850.5393 0.0075 0.4497
1GNA 1006.1213 995.4826 0.0106 1862.7883 1855.4815 0.0039 0.4764
1BTQ 1782.1843 1749.4445 0.0184 3412.7345 3406.8652 0.0017 0.6027
1MAG 2479.4398 2438.4246 0.0165 5732.9858 5700.8069 0.0056 0.5441
1BWX 2925.0557 2890.7706 0.0117 6638.2112 6609.3813 0.0043 0.7311
FAS2 3771.6093 3690.4698 0.0215 9198.0803 9168.8722 0.0032 0.7484
2IJI 3783.6502 3731.7199 0.0137 9537.9781 9502.8469 0.0037 0.6187
3SJ4 5887.9106 5797.6176 0.0153 13208.3953 13175.7877 0.0025 0.7209

aIsovalue ϕ = 1.0, initial decay rate d = 0.5.

Figure 7. Visual results of our optimization algorithm. Left to right:
Original surface (left column), final surface (middle left column), and
original surface overlapped with final surface (middle right column), the
ellipsoid Gaussian RBFs in the sparse representation from our method
(last column). From top to bottom: 1MAG (first row), FAS2 (second
row), 3LOD (third row), 1BL8 (fourth row), and AChE (fifth row).
The blue points represent the locations of Gaussian RBF centers.

Table 5. Solvation EnergyObtained with theOriginal Surface
and the Sparsely Represented Surface for Five Biomoleculesa

solvation energy (kcal/mol)

molecule original sparse relative error

ADP −225.992 −230.075 0.0181
2FLY −238.927 −242.670 0.0157
6BST −916.715 −920.137 0.0037
2O3M −3034.82 −3056.04 0.0070
2IJI −659.502 −665.894 0.0097

aIsovalue ϕ = 1.0, initial decay rate d = 0.5.
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For extremely large biomolecular complexes, enough con-
strained points have to be sampled that are close to the original
Gaussian surface. This will lead to a larger optimization problem
and will take longer time to solve. As for future work, we will
develop more efficient optimization algorithm for our sparse
model. Further applications of our model, such as structure
alignment and coarse-grained modeling, will also be considered
as our future work.
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