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a b s t r a c t

The Poisson–Nernst–Planck (PNP) model characterizing the electro-diffusion pro-
cess is widely used in ion channel simulations. The standard finite element method
often fails to converge, due to complicated geometries, strong fixed charges and
huge bias of electric potentials or ion concentrations. We propose a novel stabilized
finite element method named SUPG–IP, which inherits the upwind characteristic of
the streamline-upwind/Petrov–Galerkin (SUPG) method and the smoothing effect
of the interior penalty method. Numerical experiments have demonstrated that
the SUPG–IP method has much better performance in positivity preserving and
robustness than the standard FE and SUPG methods. Especially, the benchmark
simulation of the KcsA ion channel implies that the SUPG–IP method still
converges successfully under an unprecedented range of membrane potentials and
ion concentrations, while the SUPG method diverges.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The Poisson–Nernst–Planck (PNP) model is widely used to characterize the electro-diffusion process of
ions in electrolyte solution. Compared with discrete models, such as molecular dynamics model [1] and
Brownian dynamics model [2], the PNP model has higher computational efficiency and is convenient to
extract macroscopic properties of certain biological systems such as current–voltage characteristics and
conductance rectification. Analogous models were developed in simulations of semiconductor devices [3] and
nanopores.

The molecular surface geometry of an ion channel, which is usually highly irregular, sorely affects the
transport behavior of ions in the channel. The finite difference [4] and finite volume methods [5] are two
popular numerical methods, because they have advantage in implementation and preservation of numerical
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flux, respectively. However, performance of the above two methods for simulations of three-dimensional ion
channels always suffers from poor mesh quality. The finite difference method prefers regular structured
meshes and the finite volume method prefers Delaunay meshes. The finite element (FE) method [6] is a
natural choice for discretization of the PNP model in ion channel simulations, for its lower requirements
for mesh quality. Actually, it is difficult to mesh a three-dimensional ion channel, especially to obtain high-
quality mesh. Lu’s group has developed a specific mesh generation tool chain [7] based on the software
TMSmesh [8] for membrane-channel protein systems. Then ion channel simulations with FE discretization
can be implemented efficiently. However, simulation with a large electrostatic potential is still a challenging
problem, because the PNP model turns to be a convection-dominated problem. Moreover, for ion channel
systems, complicated geometries of proteins, along with singularity of permanent charges, lead to rapid
changes of the electrostatic potential and ionic concentrations around the protein surface, which greatly
increases the difficulty of simulation.

As we know, there usually exist internal layers or exponential boundary layers in the exact solution
of the convection-dominated model. A common approach to overcoming such difficulty is to employ the
“upwind technique” in numerical schemes. One of the most successful and extensively used stabilized FE
methods is the streamline-upwind/Petrov–Galerkin (SUPG) method [9], which introduces a streamline
upwind perturbation to the standard Galerkin weighting function. When employing the SUPG method in
actual ion channel simulations, we find that it also has the phenomenon of non-physical oscillations, i.e., the
ionic concentrations may appear negative and lead to divergence of numerical solution. Motivated by the
SUPG method and the interior penalty (IP) method [10,11], we propose a novel stabilized FE method
for the PNP model, which is named SUPG–IP. The IP method adds a penalizing term corresponding to
gradient jumps across element boundaries to enforce a smoother solution. The SUPG–IP method inherits
the “upwind” characteristic of the SUPG method and the smoothing effect of the IP method. We test the
performance of the standard FE, SUPG and SUPG–IP methods, and the details will be presented in a later
section. A benchmark test on the KcsA ion channel implies that the SUPG–IP method has unexpected
robustness, which succeeds in converging under an unprecedented range of membrane potentials and bulk
concentrations while the SUPG method fails.

The rest of the paper is organized as follows: In Section 2, we introduce the PNP model and the basic
setup of ion channel simulations. The novel SUPG–IP method is constructed and detailed algorithms of the
PNP model are presented as well. Numerical performance of the standard FE, SUPG and SUPG–IP methods
can be found in Section 3. Our work is summarized in Section 4.

2. Materials and methods

2.1. The Poisson–Nernst–Planck model for ion channels

Let Ω ⊂ R3 denote an open domain. The subdomain Ωm ⊂ Ω represents the solute region, i.e., the protein
nd membrane region, with an outer boundary Γm, and the remaining space Ωs = Ω \ Ω̄m represents the

solvent region, including the channel, with an outer boundary Γs. The two subdomains are separated by
a molecular interface Γ , i.e., Γ = ∂Ωs

⋂
∂Ωm. A two-dimensional illustration of the model system in a

imulation box is shown in Fig. 1.
The Nernst–Planck equations are as follows:

∂ci

∂t
= ∇ · Di(∇ci + β∇(qiϕ)ci) + fi, in Ωs, i = 1, . . . , K, (1)
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Fig. 1. A cut plane through the center of the simulation box along the z axis.

nd the Poisson equation with internal interface Γ reads as:

−∇ · ϵ∇ϕ = ρf + λ

K∑
i=1

qici, in Ω , (2)

ϕm = ϕs, ϵm
∂ϕm

∂n
= ϵs

∂ϕs

∂n
, on Γ , (3)

where ϕ and K stand for the electrostatic potential and the number of multiple ion species, respectively. ϵ is
the piecewise dielectric constant with ϵ = ϵmϵ0 in Ωm and ϵ = ϵsϵ0 in Ωs, where ϵ0 is the dielectric constant
of vacuum. In ion channel systems, typical values of ϵm and ϵs are 2 and 80, respectively. ρf =

∑
k qkδ(x−xk)

is an ensemble of fixed charges qk located at xk. λ is the indicator function of Ωs. qi = ziec specifies the
charge carried by each particle of the ith ion species with ec for the elementary charge. ci is the concentration
of the ith ion species and Di is the corresponding diffusivity. β = 1/(kBT ) is the inverse Boltzmann energy,
where kB is the Boltzmann constant and T is the absolute temperature. fi are the source terms. n is the unit
normal of the interface Γ pointing from Ωm to Ωs. In this paper, since our focus is on the space discretization,
we will only study the steady state, i.e., ∂ci/∂t = 0.

The system is augmented with the following boundary conditions:

ϕ = ϕD, on ΓD,ϕ, (4)
ci = ci,D, on ΓD,ci

, i = 1, . . . , K, (5)
∇ϕ · n = 0, on ΓN,ϕ, (6)
J i · n = 0, on ΓN,ci

, i = 1, . . . , K, (7)

where J i = −Di(∇ci + β∇(qiϕ)ci). n is the outward unit normal of the boundary. ΓD,ϕ, ΓN,ϕ and ΓD,ci
,

ΓN,ci
refer to the Dirichlet boundary and the Neumann boundary for the electrostatic potential and ionic

concentrations, respectively.
To deal with singular permanent charges, an effective strategy is to decompose the electrostatic potential

into three components: a singular component G, a harmonic component H and a regular component ϕr with
G and H restricted to Ωm [6]. The final PNP equations consist of the regularized Poisson equation with an
interface condition:

−∇ · ϵ∇ϕr = λ

K∑
i=1

qici, in Ω , (8)

ϕr
m = ϕr

s, ϵs
∂ϕr

s − ϵm
∂ϕr

m = ϵm

(
∂G + ∂H

)
, on Γ , (9)
∂n ∂n ∂n ∂n
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and the steady-state NP equations:

− ∇ · Di(∇ci + β∇(qiϕ
r)ci) = fi, in Ωs, i = 1, . . . , K. (10)

For simplicity, we introduce a new variable u = ecβϕr to nondimensionalize the electrostatic potential.
hen the steady-state PNP equations become:

− ∇ · ϵ∇u = e2
cβλ

K∑
i=1

zici, in Ω , (11)

− ∇ · Di(∇ci + zici∇u) = fi, in Ωs, i = 1, . . . , K. (12)

.2. The SUPG–IP stabilized finite element method

In this subsection, we will discuss a novel stabilized finite element method for the coupled PNP equations
n detail. We decouple the nonlinear system (11)–(12) by Gummel iteration. In each iteration, the Poisson
quation and each NP equation are solved successively. The ionic concentrations are treated as given
unctions when solving the electrostatic potential, and vice versa. The process is repeated until the change
f the solutions in two adjacent iterations becomes smaller than a given tolerance.

Define H1
u(Ω) = {v ∈ H1(Ω) : v|ΓD,ϕ

= 0}. The weak form of the Poisson equation (11) is to find
∈ H1(Ω) satisfying the Dirichlet boundary condition (4) such that∫

Ω

ϵ∇u · ∇φdΩ = e2
cβ

∫
Ω

λ

K∑
i=1

ziciφdΩ − ecβ

∫
Γ

ϵm

(
∂G

∂n
+ ∂H

∂n

)
φdΓ , ∀φ ∈ H1

u(Ω). (13)

ere Γ is the molecular interface and n is the unit normal of Γ pointing from Ωm to Ωs. The weak form
f the NP equation for the ith (i = 1, . . . , K) ion species (12) is to find ci ∈ H1(Ω) satisfying the Dirichlet

boundary condition (5) such that

A(ci, v) :=
∫
Ω

Di(∇ci + zici∇u) · ∇vdΩ =
∫
Ω

fivdΩ , ∀v ∈ H1
ci

(Ω), (14)

where H1
ci

(Ω) = {v ∈ H1(Ω) : v|ΓD,ci
= 0}. Stabilization is imposed on the NP equations. Define the Peclet

number Pe as an indication for convection intensity:

PeT = ∥bi∥2hT

2Di
,

here bi = −Dizi∇u is the velocity field. hT is the diameter of the element T and PeT denotes the value of
Pe in T . Let F int

h be the set of the interior element boundaries. The stabilization term and the corresponding
right-hand side term are defined as:

S(ci, v) :=
∑

T

∫
T

(
−∇ · Di(∇ci + zici∇u)

)
vstabdT +

∑
F ∈F int

h

ατi,F

∫
F

[∇ci · n][∇v · n]dF,

L(v) :=
∑

T

∫
T

fivstabdT,

here vstab = σT bi · ∇v. The stabilizing parameter σT is defined based on Pe:

σT = hT

2∥b ∥
ξ(PeT ), ξ(PeT ) =

{
PeT /3, 0 ≤ PeT ≤ 3,
i 2 1, P eT > 3.
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α is a positive constant and n is the outward unit normal of F . The stabilizing parameter τi,F is motivated
by [12] and defined as follows:

τi,F :=
h3

F ∥bi∥2
L2(F )

∥bi∥L2(F )hF + Di
,

here hF is the diameter of F . Then the weak form of the NP equation after stabilization is to find
i ∈ H1(Ω) satisfying the Dirichlet boundary condition (5) such that

A(ci, v) + S(ci, v) =
∫
Ω

fivdΩ + L(v), ∀v ∈ H1
ci

(Ω). (15)

. Results and discussion

.1. Numerical accuracy tests

We carry out a suite of test problems to examine the accuracy and robustness of the SUPG–IP method
nd compare it with the standard FE and SUPG methods. All the numerical algorithms are implemented
ased on the three-dimensional parallel finite element toolbox Parallel Hierarchical Grid (PHG) [13]. The
arameter α in the SUPG–IP method is set to 0.02, which is determined by numerical experiments to achieve
ptimal performance in balance of accuracy and robustness.

xample 1. In this example, we solve a problem with an analytical solution. The open domain Ω is specified
s a [0 Å, 1 Å]3 cube. Two charged species K+ and Cl− are considered in the system. The analytical solution
or the concentrations of the charged species is defined as follows:

c1(x, y, z) = τ1 + τ1

2 cos (πx) cos (πy) cos (πz), c2(x, y, z) = τ1 − τ1

2 cos (πx) cos (πy) cos (πz), (16)

where τ1 = 0.05 M. The analytical solution for the electrostatic potential consists of two parts ϕ1 and ϕ2:

ϕ(x, y, z) = ϕ1(x, y, z) + ϕ2(x, y, z), (17)

where
ϕ1(x, y, z) = τ2 cos (πx) cos (πy) cos (πz), ϕ2(x, y, z) = τ3z.

τ3 is set to 0.1 V. ϕ2 is a linear function of z and does not contribute to the Poisson equation. τ2 is calculated
o make the Poisson equation satisfied. Substitution of the solution (16) for ionic concentrations in the NP
quations produces the source terms fi and boundary data. The boundary conditions for the electrostatic
otential are set with Dirichlet boundary conditions on the top and bottom faces of the cube and Neumann
oundary conditions on the lateral faces. For the NP equations, Dirichlet boundary conditions are prescribed
n all the faces.

We solve the example problem on five grids with elements bisected three times successively. The results are
isplayed in Table 1. The second column presents times of bisection. Obviously, the relative errors decrease
s times of refinement increase. The relative errors and convergence orders of the SUPG–IP method are
omparable to those of the SUPG method. After three times of refinement, the L2 norms of the relative
rrors of the SUPG–IP scheme are all less than 3.0 × 10−4, verifying its accuracy and applicability to
hree-dimensional PNP modeling.

xample 2. In this example, we strengthen the convection term by raising the voltage applied. Ionic
oncentrations are increased simultaneously to make the problem more challenging. This time we consider
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Table 1
The L2 norms of the relative errors of the SUPG and SUPG–IP methods.

Method Grid ||ϕh − ϕ|| Order ||c1h − c1|| Order ||c2h − c2|| Order

SUPG

0 5.842024e−08 – 6.980832e−04 – 6.793810e−04 –
3 2.304957e−08 1.3417 2.968621e−04 1.2336 2.951311e−04 1.2029
6 8.507302e−09 1.4380 1.133355e−04 1.3892 1.129783e−04 1.3853
9 2.052790e−09 2.0511 2.905586e−05 1.9637 2.901428e−05 1.9612
12 5.422815e−10 1.9205 7.576687e−06 1.9392 7.570478e−06 1.9383

SUPG–IP

0 5.845009e−08 – 6.988103e−04 – 6.799854e−04 –
3 2.305302e−08 1.3422 2.969473e−04 1.2347 2.952093e−04 1.2038
6 8.507593e−09 1.4381 1.133463e−04 1.3895 1.129893e−04 1.3856
9 2.052790e−09 2.0512 2.905660e−05 1.9638 2.901503e−05 1.9613
12 5.422814e−10 1.9205 7.576736e−06 1.9392 7.570528e−06 1.9383

Fig. 2. Concentration distributions of K+ on the yOz cut plane. Left: standard FE method. Center: SUPG method. Right: SUPG–IP
method.

Fig. 3. Concentration distributions of Cl− on the yOz cut plane. Left: standard FE method. Center: SUPG method. Right: SUPG–IP
method.

a [−50 Å, 50 Å]3 cube with the charged species K+ and Cl− as well. The source terms f1 = f2 = 0.
Only Dirichlet boundary conditions are used in this problem. The system is augmented with the following
boundary conditions:

ϕ = 5.0 V on Γ 1
D,ϕ, and ϕ = 0.0 V on Γ 2

D,ϕ,

ci = 1.0 M on Γ 1
D,c, and ci = 0.0 M on Γ 2

D,c, i = 1, 2,

where Γ 1
D,ϕ = {(x, y, z) | x = 50 or y = 50 or z = 50}, Γ 2

D,ϕ = ∂Ω\Γ 1
D,ϕ, Γ 1

D,c = {(x, y, z) | z = 50}, and
Γ 2

D,c = ∂Ω\Γ 1
D,c.

We have computed the numerical solution with three methods: the standard FE, SUPG and SUPG–IP
methods. The concentration distributions of K+ and Cl− on the yOz cut plane are displayed in Figs. 2 and
3, respectively. The numerical solution of the standard FE method suffers from spurious oscillations, making
the results unusable (see the left columns). The SUPG method significantly depresses oscillations but still
has some unreasonable overshoots and undershoots, resulting in the presence of negative concentrations. In
contrast, the SUPG–IP method effectively obviates nonphysical oscillations and has the least overshoots and
undershoots, with all the ionic concentrations staying positive.
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Fig. 4. The unstructured tetrahedral volume mesh for the KcsA ion channel. The membrane region is colored blue and the protein
region is colored red. The rest is the solvent region.

3.2. Simulations of the KcsA ion channel

The mechanism study of ion transport through channel proteins is a vital application of the PNP model.
Several different ion channels include GA [Protein Data Bank (PDB) ID: 1MAG], VDAC [PDB ID: 2JK4]
and PA [PDB ID: 1V36] have been simulated with FE methods and their macroscopic properties like current–
voltage characteristics and ion conductance were analyzed in the previous works [14–16]. Our focus in this
work is on the stability and robustness of the FE methods. Thus, the challenging KcsA K+ channel [PDB
ID: 1BL8] is selected for our simulations.

The channel protein consists of 5892 atoms, with three primary sections: an opening pore on the
cytoplasmic side of the cell interior, a large water-filled cavity, and a narrow selectivity filter [16]. The
unstructured tetrahedral volume mesh for the KcsA ion channel used in our experiment is shown in Fig. 4.
The mesh over the whole domain has a total of 73174 vertices and 441475 tetrahedral elements. The
complicated surface geometry and highly charged protein often lead to difficulties in convergence of numerical
solution.

To investigate the robustness of these methods, we design two groups of experiments. In the first group,
we fix the potential difference between the top and bottom faces of the simulation box to 0.1 V. Then, we
increase the bulk concentrations and watch the convergence performance of the three methods: the standard
FE, SUPG and SUPG–IP methods. In the second group, similarly, we fix the bulk concentrations to 0.1 M
and vary the potential difference between the top and bottom faces of the simulation box.

Table 2 displays the convergence performance and numbers of Gummel iterations of the three methods
under different bulk concentrations and voltages. The maximum number of Gummel iterations is set to
1000. “Fail” means failing to converge. To further test the stability and robustness of these FE methods, we
increase the bulk concentrations in the first group up to 4.5 M and the voltages in the second group up to
25 V. Although these conditions seem unreasonable in ion channel systems, they can be common in other
systems which share analogous models, for instance, large biases in simulations of semiconductor devices [17]
and high concentration electrolyte solutions in simulations of nanopores, and the KcsA ion channel is taken
as a representative to illustrate the convergence problem of the FE methods for the PNP model. As can be
seen, the standard FE method fails to converge in most cases. The SUPG method can deal with a much
wider range of bulk concentrations and voltages than the standard FE method. Nevertheless, the SUPG–IP
method demonstrates the best performance in convergence, especially when the voltages applied are very
high, which manifests the great advantages of this novel scheme. Table 2 shows that the numbers of Gummel
iterations of these methods are similar under most conditions. We here list the CPU time cost under two
conditions: voltage = 0.1 V, ci,bulk = 0.05 M and voltage = 2 V, ci,bulk = 0.1 M. The CPU time cost by the
standard FE method with 128 MPI processes is 148.10 s and 134.90 s respectively, while the corresponding
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Table 2
Number of Gummel iterations of the three FE methods.

voltage = 0.1 V ci,bulk = 0.1 M

ci,bulk (M) Standard FE SUPG SUPG–IP voltage (V) Standard FE SUPG SUPG–IP

0.05 202 204 203 0.5 310 286 244
0.1 198 200 197 1 253 222 232
0.15 Fail 200 199 2 198 199 198
0.5 Fail 197 199 4.2 1000 199 199
2 Fail 197 198 15 Fail 200 198
2.8 Fail 197 193 18 Fail 215 198
3 Fail Fail 210 19 Fail Fail 198
4.5 Fail Fail 206 25 Fail Fail 198

time cost by the SUPG–IP method is 165.84 s and 149.47 s. Overall, the SUPG–IP method only adds a little
bit more computation relative to the standard FE method.

4. Conclusions

In this work, we propose a novel stabilized finite element method to solve the PNP equations. The example
problem with an analytical solution verifies the accuracy and convergence rate of our method. Further
numerical experiments demonstrate the advantages of the novel method in preventing numerical oscillations
and preserving positivity. Simulations of the KcsA channel protein system confirm its applicability in a
realistic setting, and results show that the SUPG–IP method performs much better in terms of stability and
robustness than the standard FE and SUPG methods. The SUPG–IP method succeeds in converging under
conditions of much higher bulk concentrations and membrane potentials than previous FE methods, even
for highly charged protein molecules like KcsA. Moreover, the method and program can be utilized in other
systems sharing analogous models such as semiconductor devices and nanopores as well. Our future work
includes exploring applicability of this method to other modified PNP models or alternative formulations,
and further numerical analysis of the method for PNP solution.
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