
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2018-0098

Vol. 25, No. 4, pp. 1235-1258
April 2019

COMPUTATIONAL SOFTWARE

DASHMM Accelerated Adaptive Fast Multipole

Poisson-Boltzmann Solver on Distributed Memory

Architecture

Bo Zhang1,∗, Jackson DeBuhr1, Drake Niedzielski2, Silvio Mayolo3,
Benzhuo Lu4 and Thomas Sterling1

1 Center for Research in Extreme Scale Technologies, School of Informatics
Computing, and Engineering, Indiana University, Bloomington, IN, 47404, USA.
2 Department of Physics, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
3 Department of Computer Science, Tennessee Technological University, Cookeville,
TN, 38505, USA.
4 State Key Laboratory of Scientific/Engineering Computing, Academy of
Mathematics and Systems Science, Chinese Academy of Sciences, Beijing,
100190, China.

Received 9 April 2018; Accepted (in revised version) 25 September 2018

Abstract. We present DAFMPB (DASHMM-accelerated Adaptive Fast Multipole
Poisson-Boltzmann solver) for rapid evaluation of the electrostatic potentials and
forces, and total solvation-free energy in biomolecular systems modeled by the lin-
earized Poisson-Boltzmann (LPB) equation. DAFMPB first reformulates the LPB into
a boundary integral equation and then discretizes it using the node-patch scheme [33].
It solves the resulting linear system using GMRES, where it adopts the DASHMM li-
brary [14] to accelerate the matrix-vector multiplication in each iteration. DASHMM
is built on top of a global address space allowing the user of DAFMPB to operate on
both shared and distributed memory computers with modification of their code. This
paper is a brief summary of the program, including the algorithm, implementation,
installation and usage.

AMS subject classifications: 45B05, 31C20, 92C05, 68N19

Key words: Poisson-Boltzmann equation, boundary element method, DASHMM, distributed
computing.

∗Corresponding author. Email addresses: zhang416@indiana.edu (B. Zhang),
debuhj@gmail.com (J. DeBuhr), niedzd97@gmail.com (D. Niedzielski), sdmayolo42@students.tntech.edu
(S. Mayolo), bzlu@lsec.cc.ac.cn (B. Z. Lu), tron@indiana.edu (T. Sterling)

http://www.global-sci.com/ 1235 c©2019 Global-Science Press

1236 B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258

Program Summary

Program title: DAFMPB

Nature of problem: Numerical solution of the linearized Poisson-Boltzmann equation that de-
scribes electrostatic interactions of molecular systems in ionic solutions.

Software license: GNU General Public License, version 3

CiCP scientific software URL:

Distribution format: .gz

Programming language(s): C++

Computer platform: x86 64

Operating system: Linux

Compilers: GCC 4.8.4 or newer. icc (tested with 15.0.1)

RAM:

External routines/libraries: HPX-5 version 4.1.0, DASHMM version 1.2.0

Running time:

Restrictions:

Supplementary material and references: https://github.com/zhang416/dafmpb

Additional comments:

1 Introduction

The Poisson-Boltzmann (PB) continuum electrostatic model has been adopted in many
simulation tools for theoretical studies of electrostatic interactions between biomolecules
such as proteins and DNA in aqueous solutions. Various numerical techniques have been
developed to solve the PB equations and help elucidate the electrostatic role in many
biological processes, such as enzymatic catalysis, molecular recognition and bioregula-
tion. Packages such as DelPhi [27, 28], MEAD [7], UHBD [3, 36], PBEQ [21], ZAP [19],
and MIBPB [10] are based on finite-difference methods. Packages such as the Adaptive
Poisson-Boltzmann Solver (APBS) [2] are based on finite volume/multigrid methods. In
a circumstance where the linearized PB is applicable, the partial differential equations
can be reformulated into a set of surface integral equations (IEs) by using Green’s theo-
rem and potential theory [8, 12, 16, 17, 22, 26, 32, 33, 35, 44, 49, 51]. The unknowns in the
IEs are located on the molecular surface, and the resulting discretized linear system can
be solved very efficiently and accurately with certain fast algorithms, such as the fast
multipole method (FMM) [8, 32, 51], pre-corrected FFT [26], or tree codes [17]. This strat-
egy has been implemented in the Adaptive Fast Multipole Poisson-Boltzmann (AFMPB)
solver [31, 51], the predecessor of DAFMPB, and many other recent works [12, 16, 44],
where [12, 16] also utilized GPU acceleration.

B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258 1237

There are two earlier versions of AFMPB. The first one was released as a sequential
package written in Fortran [31]. The second one was released in 2015 [51] that used Cilk
runtime for parallelization on shared memory computers and provided built-in surface
mesh generation capability. Over time, the target applications grew larger and required
higher accuracy, which meant that it became difficult or impossible to find a shared mem-
ory computer with sufficient memory or processing capacity to solve the problems of in-
terest. The goal of the DAFMPB package is to extend AFMPB’s operation to distributed
memory architectures to handle larger molecules or situations with higher accuracy re-
quirements, and at the same time, allow its users to operate on both shared and dis-
tributed memory computers without modifying their code.

To achieve this goal, the Dynamic Adaptive System for Hierarchical Multipole Method
(DASHMM) [14, 15] library was adopted as the central driver of the multipole methods
used by DAFMPB. DASHMM is fine-grained, data-driven, and has very good strong-
scaling performance. It is built on top of the asynchronous many-tasking HPX-5 [23, 25]
runtime system, which provides a global address space. As a result, the adoption of
DASHMM fulfills the design goal of DAFMPB. In addition to the distribution of the
FMM computation, the use of GMRES by DAFMPB needs to work in distributed mem-
ory architectures as well. A GMRES implementation closely following the one used in
SPARSKIT [1] is provided in DAFMPB.

The organization of this paper is as follows. Section 2 reviews the mathematical mod-
els and discretization methods adopted in DAFMPB, where DASHMM can be applied,
and how the solvation-free energy is computed. Section 3 describes how DASHMM is
integrated into DAFMPB. Section 4 provides installation guide and job examples. Sec-
tion 5 shows numerical results on accuracy, convergence, and strong scalability. Section 6
concludes the paper.

2 Overview of the DAFMPB solver

The electrostatic force is considered to play an important role in the interactions and
dynamics of molecular systems in aqueous solution. In the Poisson equation model,
when the charge density that describes the electrostatic effects on the solvent outside
the molecules is approximated by a Boltzmann distribution, the continuum nonlinear
Poisson-Boltzmann (PB) equation assumes the following form

−∇·(ǫ∇φ)+κ̄2 sinh(φ)=
M

∑
k=1

qkδ(r−rk). (2.1)

In the formula, the molecule is represented by M point charges {qk} located at {rk}, ǫ
is the position-dependent dielectric constant, φ is the electrostatic potential at location
r, κ̄ is the modified Debye-Hückel parameter, where κ̄ = 0 in the molecule region and
κ̄=

√
ǫκ in the solution region, and κ is the inverse of the Debye-Hückel screening length

1238 B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258

determined by the ionic strength of the solution. When the electrostatic potentials are
small, the linearized Poisson-Boltzmann (LPB) equation

−∇·(ǫ∇φ)+κ̄2φ=
M

∑
k=1

qkδ(r−rk) (2.2)

becomes valid, equipped with the interface conditions [φ] = 0 (by the continuity of the

potential) and [ǫ ∂φ
∂n] = 0 (by the conservation of flux). Here, [] denotes the jump across

the molecular surface and ∂
∂n is the outward (towards the solvent) normal direction at the

surface.
When Green’s second identity is applied, traditional boundary integral equations for

the linearized PB equation take the form

1

2
φint

r =
∮ PV

S
[GL,rr′

∂φint
r′

∂n
− ∂GL,rr′

∂n
φint

r′]dSr′+
1

ǫint
∑

k

qkGL,rrk
, r∈S, (2.3)

1

2
φext

r =
∮ PV

S
[−GY,rr′

∂φext
r′

∂n
+

∂GY,rr′

∂n
φext

r′]dSr′ , r∈S, (2.4)

where Ω is the molecular domain, S= ∂Ω is its boundary, i.e., solvent-accessible surface,
φint

r and φext
r are the interior and exterior potential at the surface position r∈ ∂Ω, respec-

tively, ǫint is the interior dielectric constant, r′∈∂Ω is an arbitrary point on the boundary,
n is the outward normal vector at r′, and PV represents the principal value of the inte-
gral to avoid the singular point when r′ → r in the integral equations. In the formulae,

GL,rr′ =
1

4π|r−r′| and GY,rr′ =
exp(−κ|r−r′|)

4π|r−r′| are the fundamental solutions to the correspond-

ing Poisson and LPB equations, respectively. Integrals of the form
∮ PV

S GL,rr′ f (r
′)dSr′ and

∮ PV
S GY,rr′ f (r

′)dSr′ are called single-layer Laplace and Yukawa potentials and integrals of

the form
∮ PV

S

∂GL,rr′
∂n f (r′)dSr′ and

∮ PV
S

∂GY,rr′
∂n f (r′)dSr′ are called double-layer Laplace and

Yukawa potentials. These equations can be easily extended to multi-domain systems in
which Eq. (2.3) is enforced for each individual domain and the integration domain in
Eq. (2.4) includes the collection of all boundaries.

To complete the system, the solutions to the interior (Eq. (2.3)) and exterior (Eq. (2.4))

are matched by the boundary conditions φint=φext and ǫint
∂φint

∂n =ǫext
∂φext

∂n , where ǫext is the
exterior (solvent) dielectric constant. Using these conditions, we can define f =φext and

h= ∂φext

∂n as the new unknowns and recover other quantities using boundary integrals of f
and h. Unfortunately, theoretical analysis shows that the corresponding system for f and
h is in general a Fredholm integral equation of the first kind and hence ill-conditioned,
i.e., when solved iteratively using Krylov subspace methods, the number of iterations
increases with the number of unknowns, and the resulting algorithm becomes ineffi-
cient for large systems. Instead of this “direct formulation”, Müller [39], Rokhlin [41],
Kress [24], introduced a method where the single and double layer potentials are com-
bined in order to derive an optimized second kind Fredholm integral equation. This type

B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258 1239

v1

v2

v3

Figure 1: Illustration of the node-patch scheme used to discretize boundary integral equation (2.5) in DAFMPB.
For each node v, its patch is enclosed by the edges connecting the centroid of the elements which v belongs to
and the midpoints of the edges incident at v. When the nodes are far apart, such as v1 and v3, the integrands
of the integrations (2.7) are taken as constant on the patch. When the nodes are close, such as v1 and v2, the
integrations (2.7) are computed directly using detailed information of the patches.

of well-conditioned form also appeared in the work of Juffer et al. [22] and the condi-
tion number has been studied in [29]. The well-conditioned form, also called deriva-
tive boundary integral form (dBIE) can be obtained by linearly combining the derivative
forms of Eqs. (2.3)-(2.4) (another equation is similarly obtained by combining the equa-
tion themselves):

(1

2ǭ
+

1

2

)

fr =
∮ PV

S

[

(GL,rr′−GY,rr′)hr′−
(1

ǭ

∂GL,rr′

∂n
− ∂GY,rr′

∂n

)

fr′

]

dSr′

+
1

ǫext
∑

k

qkGL,rrk
, r∈S,

(1

2
+

1

2ǭ

)

hr =
∮ PV

S

[

(
∂GL,rr′

∂n0
− 1

ǭ

∂GY,rr′

∂n0
)hr′−

1

ǭ

(∂2GL,rr′

∂n0∂n
− ∂2GY,rr′

∂n0∂n

)

fr′

]

dSr′

+
1

ǫext
∑

k

qk
∂GL,rrk

∂n0
, r∈S, (2.5)

where n0 is the unit normal vector at point r and ǭ= ǫext/ǫint. DAFMPB and its prede-
cessor AFMPB [31,51] adopt the above formulations. As a Fredholm integral equation of
the second kind, the formulation provides the analytic foundation for a well-conditioned
system of equations with an adequate discretization method.

DAFMPB and its predecessor AFMPB discretize the integral equation (2.5) using the
node-patch scheme [33]. The node-patch around each node v, denoted by ∆Sv, is con-
structed by connecting the centroid points of the elements that node v belongs to and
the midpoints of the edges that are incident to v. Fig. 1 provides an illustration of the
node-patch approach on mesh of triangular elements. For instance, the node-patch as-

1240 B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258

sociated with v1 is formed from six surrounding triangular elements. On each patch,
the node-patch scheme assumes that the unknowns are constant. This can be considered
as a compromise between the traditional constant element method and the linear ele-
ment method. It draws upon the advantages of both methods with only a slight cost on
calculating the node-patch information: (1) the numerical complexity is as simple as in
constant element method, while the degree of freedom (DOF) is reduced to about half of
that in constant element method (in this aspect, the DOF of node-patch method is as the
same as in linear element method) and gaining an overall speedup by 2∼4 times (since
the matrix size is quadrupled when DOF is doubled); (2) A similar accuracy as in the
linear element method is well maintained. More detailed discussions on this method can
be found in [33, 50]. Using the node-patch scheme, equation (2.5) can be discretized as

(

1

2ǭ
+

1

2

)

fi =∑
j

(Aijhj−Bij f j)+
1

ǫext
∑

k

qkGL,ik,

(

1

2ǭ
+

1

2

)

hi =∑
j

(Cijhj−Dij f j)+
1

ǫext
∑

k

qkGL,ik, (2.6)

where fi = f (ri), hi = h(ri), the summation on the right-hand side is over all the node-
patches {∆Sj} on the surface, and

Aij=
∮

∆Sj

(GL,ij−GY,ij)dS,

Bij=
∮

∆Sj

(

1

ǭ

∂GL,ij

∂n
− ∂GY,ij

∂n

)

dS,

Cij=
∮

∆Sj

(

∂GL,ij

∂n0
− 1

ǭ

∂GY,ij

∂n0

)

dS,

Dij=
∮

∆Sj

1

ǭ

(

∂2GL,ij

∂n0∂n
− ∂2GY,ij

∂n0∂n

)

dS. (2.7)

In matrix-form, this can be written as

[

(1
2ǭ +

1
2)I+B −A

D (1
2ǭ +

1
2)I−C

][

f
h

]

=
1

ǫext

[

∑k qkGL,ik

∑k qk
∂GL,ik

∂n0

]

, (2.8)

where I is the identity matrix. The discretized system is well-conditioned and can be
solved efficiently using Krylov subspace methods. For (2.7), when i and j are far-away,
such as v1 and v3 in Fig. 1, the integrands in (2.7) are taken as constants; when i and
j are close, such as v1 and v2 in Fig. 1, each integration is computed directly and the
computation requires detailed information on the constitution of the patch. For this
reason, coefficients {A,B,C,D} for near-field integrations are computed only once and
saved in DAFMPB. It is worth mentioning here that the singular integrals in AFMPB and

B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258 1241

DAFMPB are ignored. For a traditional constant element BEM for solution of the PBE,
the unknowns are considered to be located at the center of each element (triangle here)
where it is locally flat and smooth. In this case, all the singular integral can be semi-
analytically and accurately calculated, see [35]. Whereas in AFMPB and DAFMPB, we
use a node-patch method. The unknown is actually located at each node and the node-
patch is not smooth. For a discretized molecular surface, almost every node is like a
corner and is geometrically singular. In this case, it is hard to accurately treat singular
(strongly singular and hypersingular) integrals. Fortunately, as the Laplace and Yukawa
potentials approach the same value when the distance goes to zero, and the two main
terms in Eq. (2.5) (the first term in the integral of the first sub-equation, and the second
term in the integral of second sub-equation) are subtraction of these two kernels and their
derivatives, respectively, we estimate that these two terms are negligibly small in singu-
lar integrals where the distance is small. Based on this observation, in our calculations
for each node-patch (or node), we actually ignore all the singular integrals within the
node-patch. For all the other patches in the near-field list generated by the tree struc-
ture for each node, we directly calculate near-singular integrals using the same Gaussian
quadrature method. For all far-field patches, the integrals are computed through FMM.
All of our numerical experiments in former (e.g. see [32, 34]) and this work demonstrate
that such treatments on singular integrals are acceptable and the solver provides suffi-
ciently accurate results based on the accuracy analysis and comparisons with analytical
solutions for sphere case and results by other different solvers like APBS (using finite
difference method). It is worth noting that avoiding singularity was also an original goal
of the Juffer et al.’s work [22] which derived the boundary integral formulation adopted
in AFMPB and DAFMPB.

The overall computation flow of DAFMPB can be summarized as follows:

1. Compute the right-hand side of (2.8) using FMM with single-layer and double-layer
Laplace potentials.

2. For each pair of nodes i and j whose patch integrations (2.7) are near-field, compute
and save Aij, Bij, Cij, and Dij.

3. Solve equation (2.8) using Krylov subspace method. For each matrix-vector multi-
plication,

(a) Compute the near-field contribution using the {A,B,C,D} coefficients stored
in the previous step.

(b) Compute the far-field contribution with four FMM calls, using single-/double-
layer Laplace and Yukawa potentials.

DAFMPB also computes the total free energy by combining the nonpolar and polar
(electrostatic) contributions

∆E=∆Enp+∆Ep. (2.9)

1242 B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258

The nonpolar term Enp includes the energetic cost of cavity formation, solvent rearrange-
ment and solute-solvent dispersion interactions introduced when the uncharged solute
is brought from vacuum into the solvent environment. It is computed using an empirical
approach that depends on the molecular surface area and volume

∆Enp=γS+pV+b, (2.10)

where S and V are the surface area and volume of the cavity created by the molecule,
respectively, and γ, p and b are fitted parameters specified through the command line
arguments. Parameter γ has the dimensions of a surface tension coefficient, parameter
p has the pressure dimensions, and parameter b has the energy dimensions. These pa-
rameters depend on the force field and the definition of molecular surface because the
atomic radii and charges (from the force field) and the surface definition determine to-
gether the boundary between the solvent and the solute and, therefore, the surface area
S, volume V, and the polar contributions to free energies. For instance, the particular val-
ues γ=0.005kcalmol−1Å−2, p=0.035kcalmol−1Å−3, and b=0kcalmol−1 are used in [45].
In this paper, we omit the attractive nonpolar solvation interactions, for the same rea-
son given in [45]. We mention that the nonpolar solvation energy expressions similar to
Eq. (2.10) can be derived using the scaled particle theory [40]. A more detailed informa-
tion for the evaluation of these terms is given in [37]. Eq. (2.10) reduces to the popular
area-only nonpolar implicit model when p=0 [38, 43].

The polar term Ep is determined by the PB solution. Once the electrostatic potential
φ(r) is obtained, the electrostatic contribution is computed by

∆Ep=
1

2

M

∑
k=1

qkφ(rk)=
1

2

M

∑
k=1

qk

∮

S

(

ǭGL,kjhj−
∂GL,kj

∂n
f j

)

dSj

=
1

2

M

∑
k=1

qk∑
j

(

ǭGL,kjhj∆Sj−
∂GL,kj

∂n
f j∆Sj

)

. (2.11)

3 DAFMPB implementation

There are two main computational modules in DAFMPB: the GMRES module that solves
the discretized system (2.8) and the FMM module that accelerates the matrix-vector mul-
tiplication used in each GMRES iteration. The FMM module is implemented using the
DASHMM (Dynamic Adaptive System for Hierarchical Multipole Method) library. In
this section, we first describe the extension made to the DASHMM to implement DAFMPB
and then describe the distributed GMRES implementation.

B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258 1243

3.1 Multipole computation using DASHMM

3.1.1 DASHMM 1.2.0

DASHMM is an open-source scientific software library that aims to provide an easy-to-
use system that can provide scalable, efficient, and unified evaluations of general hier-
archical multipole methods on both shared and distributed memory architectures. Here,
we briefly describe the latest public release of DASHMM. Readers interested in more
implementation details and their execution characteristics are referred to [13–15].

The parallelization strategy employed in DASHMM deviates significantly from con-
ventional practice in many existing MPI+X implementations, which use static partition-
ing of the global tree structure and bulk-synchronous communication of the locally es-
sential tree [46–48]. Instead, DASHMM leverages the asynchronous multi-tasking HPX-
5 [23, 25] runtime system for asynchrony management. HPX-5 defines a broad API that
covers most aspects of the system. HPX-5 programs are organized as diffusive, message
driven computation, consisting of a large number of lightweight threads and active mes-
sages, executed within the context of a global address space, and synchronized through
the use of lightweight synchronization objects. The HPX-5 runtime is responsible for
managing global allocation, address resolution, data and control dependence, schedul-
ing lightweight threads and managing network traffic.

For general end-science users, the DASHMM APIs are completely independent of
HPX-5 and no knowledge of the runtime is required. A basic use can be achieved simply
through the Evaluator object

dashmm::Evaluator<SourceData, TargetData, Expansion, Method>

that takes source data, target data, expansion, and method as template parameters. The
method class describes which pair of boxes need to interact with each other and the as-
sociated translation operator. The expansion class implements various translation oper-
ators for a particular interaction type (kernels). DASHMM comes with a set of widely
used kernels, including the Laplace, Yukawa, and the low-frequency Helmholtz kernels.
It also provides three built-in methods: Barnes-Hut, the classical FMM, and an variant of
FMM that uses exponential expansions [20], which is called FMM97 method in the library.
The multipole computation can be simply performed by calling the evaluate method of
the Evaluator object. For instance, the following code performs a computation of the
Laplace potentials using the adaptive FMM method.

dashmm::Evaluator<SourceData, TargetData,

dashmm::Laplace, dashmm::FMM> laplace_fmm;

laplace_fmm.evaluate(source_handle, target_handle, refinement_limit,

method, accuracy, kernel_params);

Additionally, users of DASHMM can implement their own expansion or special method
provided their implementations conform to the public APIs of the built-in expansions
and methods, and the implementation needs to be done only sequentially.

1244 B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258

Finally, DASHMM makes a distinction between the mathematical concept of an ex-
pansion, and the concept used in DASHMM. The mathematical concept is a truncated
series of some form (e.g., spherical harmonics) that represents some potential and is re-
ferred as a View object. The concept of an expansion in DASHMM is wider: each expan-
sion in DASHMM can contain multiple mathematical expansions. In other words, each
expansion in DASHMM is a collection of Views, or referred as a ViewSet object. The views
of a ViewSet can represent the same potential, each from a different perspective, which
is the case for exponential expansions in the FMM97 method. The views of a ViewSet can
also represent different potentials. This allows the four FMM kernel evaluations in each
iteration step of the DAFMPB solver to be processed concurrently.

3.1.2 Extensions to DASHMM 1.2.0

When solving Eq. (2.8) using Krylov subspace methods, each iteration involves four
FMM computations: single-/double-layer Laplace potentials and single-/double-layer
Yukawa potentials. The single-layer Laplace and Yukawa potentials are provided by
DASHMM as built-in expansions. Therefore, to complete the computation of each step,
DAFMPB requires the implementation of double-layer Laplace and Yukawa potentials.
Notice that the multipole/local expansion for the double-layer Laplace (Yukawa) poten-
tial shares the same form as the single-layer potential. This means, only three operators
are needed for each new kernel:

1. S to M operator that generates a multipole expansion from a set of source points.

2. S to L operator that generates a local expansion from a set of source points.

3. L to T operator that evaluates the local expansion at target points.

The other operators such as the M to M operator that translates the multipole expansion
from child to parent can be shared between the single and double layer potentials.

In addition to implementing two new expansion classes, DAFMPB also requires im-
plementing a new method. In adaptive FMM, the surroundings of a box is organized into
four categories [9], usually referred as lists (see Fig. 2 for a 2D illustration). The definitions
of the lists are as follows:

1. L1(Bt), the list-1 of Bt, is empty if Bt is a non-leaf node. Otherwise, it contains all
the leaf source nodes that are adjacent to Bt.

2. L2(Bt), the list-2 of Bt, is the interaction list of Bt.

3. L3(Bt), the list-3 of Bt, is empty if Bt is a non-leaf node. Otherwise, it contains all
the nodes that are not adjacent to Bt, but whose parents are adjacent to Bt.

4. L4(Bt), the list-4 of Bt, consists of all the leaf source nodes that are adjacent to Bt’s
parent, but not to Bt itself.

B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258 1245

Bt1

1 1 1

1
1 1 1

2

2

2

2

2 2 2 2

2

3

3

3 3 3

4

4 4

4

f f

f

f

Figure 2: Illustration of the four types of lists associated with a node of the target tree Bt in 2D.

Traditionally, if Bs ∈ L3(Bt), then the interaction between Bs and Bt is processed by the
M to T operator, which evaluates the multipole expansion of Bs at each target location
contained in Bt. However, to achieve the required accuracy, list-3 boxes in DAFMPB
need to be processed in the same way as list-1 boxes, using the S to T operator. This new
method can be implemented with a slight modification of the built-in FMM97 method:
For each list-3 type interaction pair discovered, change its associated operator from the
M to T operator to the S to T operator.

To facilitate the GMRES solving phase, six new APIs are added to the Evaluator

object. In version 1.2.0 of DASHMM, the multipole evaluation is done in a monolithic
way through the single evaluatemethod. It first constructs the auxiliary structures, such
as the dual tree and the directed acyclic graph (DAG), and then evaluates the DAG. This
approach provides an easy-to-use and complete evaluation of a given multipole method.
However, this one-size-fits-all approach is not well tuned for iterative methods that uses
the same DAG multiple times with different input data. To address this, DASHMM now
supports evaluation split into phases, including:

• create tree: Partition the source and target points into two trees. The trees can be
identical, partially overlapping, or completely disjoint. In DAFMPB, the right-hand
side of (2.8) is a case where the sources (atoms inside the molecule) are completely
disjoint from the targets (mesh nodes on the molecule surface), and the left-hand
side of (2.8) is a case where the sources and targets are the same (mesh nodes on the
molecular surface).

1246 B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258

• create DAG: This method takes the handle of the tree constructed from create tree

and a given multipole method object to connect the trees into a DAG.

• execute DAG: This method performs the evaluation of the multipole method.

• reset DAG: This method resets various DASHMM internal control objects. Once
complete, the DAG is ready to execute a new round of execution.

• destroy DAG: This method destroys the DAG.

• destroy tree: This method destroys the dual trees.

By separating the evaluation into phases DAFMPB can build the tree and DAG only once,
and evaluate that DAG repeatedly. This saves the overhead of building an identical tree
and DAG for each iteration.

Another extension implemented in DASHMM for DAFMPB is the Serializer object.
In (2.8), the near-field computation requires the generation of the {A,B,C,D} coefficients.
One can first generate these coefficients before starting the iterative solution phase. This
synchronization barrier blocks the far-field evaluation of the first matrix-vector multipli-
cation of the iterative solve, and increases the overall execution time. Instead, DAFMPB
directly enters the iterative solve phase, generates and saves the {A,B,C,D} coefficients
for future iterations while making progress on the far-field evaluation. This suggested
additional functionality from DASHMM: the detailed patch information associated with
each node is needed only in the first iteration and one should avoid communicating un-
necessary large messages. The Serializer object is introduced to address this issue. It
has three member functions:

• size: This takes a handle to the object in question and returns the size in bytes of
the serialized object.

• serialize: This serializes the given object into the buffer provided and then re-
turns the address after the serialized data.

• deserialize: This deserializes the given object into the buffer provided and then
returns the address after the data used in the deserialization.

Furthermore, DASHMM defines a method, set manager, on its Array type that allows
the array to update its binding to a Serializer during the course of execution. Two
Serializer objects are defined in DAFMPB: one serializes detailed patch information
and is used only in the first iteration, and the other serializes the new input vector gener-
ated from the Krylov solver in the successive iterations.

3.2 GMRES

DAFMPB uses GMRES to solve the discretized system (2.8). Notice that the system is a
second-kind Fredholm integral equation and it was shown in [29] that the computed con-
dition number of the generated matrix was not large. Together with our past numerical

B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258 1247

tests in the previous works, the system has been demonstrated to be well-conditioned.
For these reason, the GMRES implementation follows closely to the restarted one in
SPARSKIT [1], skipping statements on preconditioners. Notice further that the input
to DASHMM in each iteration is the last orthonormal basis formed. Therefore, to reduce
unnecessary communications, the Krylov basis are distributed exactly the same way as
the mesh nodes. In other words, each Node object has a gmres member that stores the
corresponding Krylov basis components.

4 Software installation and job examples

DAFMPB package depends on two external libraries: DASHMM and HPX-5. Assume
the DAFMPB source has been unpacked into the folder /path/to/dafmpb. Tarball of
version 4.1.0 of HPX-5 can be found in the /path/to/dafmpb/contrib folder. DASHMM
is automatically downloaded by DAFMPB when the package is built.

Users of DAFMPB must install HPX-5 on their systems first. HPX-5 currently specifies
two network interfaces: the ISend/IRecv interface with the MPI transport, and the Put-
with-completion (PWC) interface with the Photon transport. The PWC interface supports
remote direct memory access. HPX-5 can be built with or without network transports.
Assume that you have unpacked the HPX-5 source into the folder /path/to/hpx and
wish to install the library into /path/to/install. The following steps should build and
install HPX-5 without network support.

cd /path/to/hpx

./configure --prefix=/path/to/install

make

make install

To configure HPX-5 with the MPI transport, simply add --enable-mpi to the con-
figure line. The configuration will search for the appropriate way to include and link
to MPI: (1) HPX-5 will try and see if mpi.h and libmpi.so are available with no addi-
tional flags; (2) HPX-5 will test for an mpi.h and -lmpi in the current C INCLUDE PATH

and {LD} LIBRARY PATH respectively; and (3) HPX-5 will look for an ompi pkg-config

package.

To configure HPX-5 with the Photon transport, one adds --enable-photon to the
configure line. HPX-5 does not provide its own distributed job launcher, so it is neces-
sary to also use either the --enable-mpi or --enable-pmi option in order to build sup-
port for mpirun or aprun bootstrapping. Note that if you are building with the Photon
network, the libraries for the given network interconnect you are targeting need to be
present on the build system. The two supported interconnects are InfiniBand (libverbs
and librdmacm) and Cray’s GEMINI and ARIES via uGNI (libugni). On Cray machines
you also need to include the PHOTON CARGS=‘‘--enable-ugni’’ to the configure line so
that Photon builds with uGNI support. Finally, the --enable-hugetlbfs option causes

1248 B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258

the HPX-5 heap to be mapped with huge pages, which is necessary for larger heaps on
some Cray Gemini machines.

Once the HPX-5 system is installed, one needs to modify the following environment
variables

export PATH=/path/to/install/bin:$PATH

export LD_LIBRARY_PATH=/path/to/install/lib:$LD_LIBRARY_PATH

export PKG_CONFIG_PATH=/path/to/install/lib/pkgconfig:$PKG_CONFIG_PATH

and then completes the installation using cmake (version 3.4 and above) as follows

> mkdir build; cd build

> cmake /path/to/dafmpb

> make

The previous commands will automatically download and build the DASHMM library,
so no extra steps are required to satisfy that dependency.

The default name of the executable of the package is dafmpb. It can be used simply as

./dafmpb --pqr-file=FILE

which will discretize the molecule using the built-in mesh generation tool and compute
the potentials and solvent energy. Other available options to the program can be queried
using ./dafmpb --help, which include

–mesh-format=num Available choices are 0, 1, 2. 0 indicates built-in mesh, 1 indicates
MSMS mesh [42], and 2 indicates TMSmesh [11].

–mesh-file=FILE Required if the mesh format is not zero.

–mesh-density=num Specifies mesh density if built-in mesh is selected.

–probe-radius=num Specifies probe radius if built-in mesh is selected.

–dielectric-interior=num Specifies the interior dielectric constant.

–dielectric-exterior=num Specifies the exterior dielectric constant.

–ion-concentration=num Specifies the ionic concentration in mM.

–temperature=num Specifies the temperature.

–surface-tension=num Specifies the surface tension coefficient.

–pressure=num Specifies the pressure.

–accuracy=num Specifies the accuracy of DASHMM, available choices are 3 and 6.

–refine-limit=num Specifies the refinement limit used by the multipole method.

B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258 1249

–rel-tolerance=num Specifies relative tolerance of (5.1) for GMRES solver.

–abs-tolerance=num Specifies absolute tolerance of (5.1) for GMRES solver.

–restart=num Specifies the maximum dimension of Krylov space before it restarts.

–max-restart=num Specifies the maximum number of times GMRES can restart.

–log-file=FILE Name of the log file.

–potential-file=FILE Name of the file containing computed potentials on each mesh
node.

Next, we use the 3K1Q molecule to be discussed in Section 5 to present some sample
job scripts. On a cluster using Slurm workload manager, a job using 512 compute nodes
looks like

#! /bin/bash -l

#SBATCH -p queue

#SBATCH -N 512

#SBATCH -J jobname

#SBATCH -o output

#SBATCH -e error

#SBATCH -t 00:10:00

srun -n 512 -c 48 ./dafmpb --pqr-file=3k1q.pqr --mesh-format=2 \

--mesh-file=3k1q.off --log-file=3k1q.out512 --accuracy=6 --restart=79 \

--max-restart=5 --hpx-threads=24

It is worth noting that each compute node of the above cluster is equipped with two Intel
Xeon E5 12-core CPUs with hyperthreading enabled. This means, Slurm sees 48 cores per
compute node. The option -c 48 is to create one MPI process per compute node during
the HPX-5 bootstrapping phase. As there are only 24 physical cores on each compute
node, the option --hpx-threads=24 means that after initial bootstrapping, HPX-5 will
create only 24 scheduler threads, one for each physical core. If the above cluster were
using the PBS workload manager, the script will look like

#! /bin/bash -l

#PBS -l nodes=512:ppn=48

#PBS -l walltime=00:10:00

#PBS -q queue

aprun -n 512 -d 48 ./dafmpb

1250 B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258

5 Numerical examples

In this section, we demonstrate the accuracy and parallel efficiency of the DAFMPB pack-
age. The accuracy aspect is demonstrated by considering a spherical case with known an-
alytic solution, a comparison against the APBS [6] package for an asymmetric case, and
a convergence study using protein fasciculin II. The parallel efficiency aspect is demon-
strated by applying DAFMPB to two large molecule systems: an aquareovirus virion
3K1Q and a dengue virus 1K4R. The results reported in this section were collected from
a Cray XC30 cluster at Indiana University. Each compute node has two Intel Xeon E5
12-core CPUs and 64 GB of DDR3 RAM. The HPX-5 runtime was configured with the
Photon network transport.

The error tolerance for the GMRES solver is chosen to be

ǫrel‖b‖2+ǫabs, (5.1)

where b represents the right-hand side of (2.8), and the relative and absolute tolerance
ǫrel and ǫabs depend on DASHMM’s accuracy, and the molecule system. When DASHMM
computes the matrix-vector multiplication with 6-digit relative accuracy, the lower bound
for ǫrel is 10−6. When DASHMM computes the matrix-vector multiplication with 3-digit
relative accuracy, the lower bound for ǫrel is 10−3.

The first test example used an imaginary spherical shaped molecule of 50Å radius
carrying 50 elementary charges at the center. The ionic concentration was set to 0 mM. We
computed the numerical solution using a surface mesh consisting of 1,310,720 triangle el-
ements and 655,362 nodes. When DASHMM operates with 3-digit relative accuracy, the
polar solvation energy computed from the DAFMPB solver is −4065.42kcal/mol. When
DASHMM operates with 6-digit relative accuracy, the polar solvation energy computed
from the DAFMPB solver is −4057.83kcal/mol. The analytical solution of the polar solva-
tion energy is −4045.5878kcal/mol and the relative differences computed from DAFMPB
are 0.49% and 0.3%, respectively. It is worth mentioning that the reason we chose such
a big sphere is to avoid issues in numerical integrations caused by the extremely small
triangle elements when using high resolution meshes. In fact, in a separate test, we used
a sphere with 1Å radius and 1 elementary charge (this is more suitably mimicking a
surface-exposed charge, as did in Altman et al.’s work [4]) and DAFMPB computed a po-
lar solvation energy of −81.8401kcal/mol, achieving a 1.1% relative accuracy compared
to the analytical solution, when using a much coarser mesh with 642 nodes and 1280 tri-
angle elements. However, when the resolution of the mesh was further increased, the
triangle element became too small for numerical integration, and DAFMPB was unable
to compute results with better accuracy.

In the second example, we consider a non-symmetric case, similar to the setup in
the work of Altman et al. [4]. Specifically, we compute the electrostatic solvation-free
energy for a protein-sized sphere of radius 20Å with a charge of +1e placed 2Å inside
the surface, using both DAFMPB and another popular package APBS. As shown in Fig. 3,

B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258 1251

0 1 2 3 4 5 6 7 8 9 10

−22.5

−22

−21.5

−21

Inverse of grid space (APBS) or triangle edge length (DAFMPB) Å−1

∆
E

p

DAFMPB

APBS

Figure 3: Convergence study in ∆Ep for a protein-sized sphere of radius 20Åwith a charge of +1e placed 2Åinside

the surface. For APBS, the grid space ranges from 1Åto 0.1Å. For DAFMPB, the grid space is calculated as
the average length of the triangles of the mesh and the range is from 3Åto 0.18Å.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

−220

−200

DOF

∆
∆

E
p

Figure 4: Convergence study in differences of solvation free energies ∆∆Ep of fas2 between the normal state
∆p,normal and a low-pH state (with five residues neutralized) ∆p,neutralized.

both methods converge quite well and results obtained from the finest meshes are very
close, with a relative difference about 0.06%.

In practice, one needs to calculate an energy difference between two states, i.e., ∆∆Ep,
which is usually small (less than a few tens of kcal/mol). This means, a small relative
accuracy provided by DAFMPB can lead to a sufficiently good absolute accuracy with
respect to ∆∆Ep, say, a chemical accuracy ∼ 0.2kcal/mol. We demonstrate this in the
following example using the fasciculinII (fas2), a 68 residue protein. In the tests, we
computed the differences in polar solvation free energies of fas2 between two different
states, a normal state and a state with solvent-exposed acidic side chains neutralized,
mimicking low pH environment (There are 2 GLU and 3 ASP residues whose side chains
are neutralized, which makes the total charge increased by +5e)

∆∆Ep =∆Ep,neutralized−∆Ep,normal.

The result is shown in Fig. 4 and it can be seen that ∆∆Ep has a good convergence per-
formance when the number of unknowns (DOFs) increases. Particularly, the variation in
∆∆Ep is within −0.23kcal/mol when the DOF is larger than 12,000.

Surface meshes for the 3K1Q and 1K4R examples used in the parallel efficiency tests

1252 B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258

(a) 3K1Q (b) 1K4R

Figure 5: Visualization of the surface potential of the aquareovirus virion (left) and dengue virus (right) systems
using VCMM [5]. The surface mesh is generated using TMSmesh and the color bar for the surface potentials
is in the unit of kcal/mol.e.

were generated using TMSMesh [11,30]. The smaller molecule, 3K1Q, consists of 203,111
atoms and its mesh consists of 7,788,246 triangle elements and 3,888,281 nodes. We were
able to test the DAFMPB solver on this molecule with both three and six digit accu-
racy requirements on DASHMM. At 3-digits of accuracy, the polar energy is −8.81762×
104 kcal/mol. At 6-digits of accuracy, the polar energy is −8.81808×104 kcal/mol. The
relative difference between the two accuracy requirement is 0.005%, indicating that the
lower accuracy input on DASHMM is also acceptable for energy calculations. The larger
molecule, 1K4R, consists of 1,082,160 atoms and its mesh consists of 19,502,784 triangle
elements and 9,758,426 nodes. For this molecule, we required three digits of accuracy
and the polar energy is −3.999067×105 kcal/mol. The output from the DAFMPB package
can be visualized by the package VCMM [5]. Fig. 5 shows the visualization of the surface
potentials of the two molecule systems. The potential results for the 3K1Q molecule on
the left were computed with 6-digit accuracy on DASHMM.

The parallel efficiency tests focused on the strong-scaling performance of the DAFMPB
solver. We measured the execution time of the DASHMM evaluation phase and the GM-
RES phase. Here, the DASHMM phase accumulates the total time spent on matrix-vector
multiplication and the GMRES phases accumulates the time spent on generating the basis
of the Krylov subspace and estimating the approximation error. The GMRES implemen-
tation is based on the modified Gram-Schmidt procedure with reorthogonalization and
most of the GMRES time was spent on computing inner products. As each inner prod-
uct is a global barrier, we also count the number of inner products performed in each
test case. For each test case, we started with the smallest number of compute nodes that
could complete the computation in specified accuracy requirement and used up to 512
compute nodes for a total of 12,288 cores. We set the GMRES to restart after 80 iterations
and allowed the GMRES to restart five times. In all the test cases, DAFMPB converged

B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258 1253

Table 1: Strong scaling efficiency of the DASHMM phase for the test cases reported in Fig. 6. The efficiency
at p cores is defined as tss/tp p, where s is the smallest number of cores used to complete the computation.

Cores 3K1Q, 3-digit 3K1Q, 6-digit 1K4R, 3-digit

192 98% N/A N/A

384 97% N/A N/A

768 89% N/A N/A

1536 57% 65% 95%

3072 66% 98% 87%

6144 45% 69% 60%

12288 27% 42% 45%

well before that limit. For 3K1Q, GMRES took 11 iterations (77 inner products) to con-
verge when DASHMM gave 3-digit accuracy, and 133 iterations (4803 inner products) to
converge when DASHMM gave 6-digit accuracy. For 1K4R, GMRES took 10 iterations
(66 inner products) to converge. Furthermore, in all test cases, the GMRES phase takes
approximately 5% of the total execution and the overall scaling is currently determined
by that of DASHMM.

The results are summarized in Fig. 6 and Table 1. From the figure, one notices that
the results for the GMRES phase depend on how DASHMM distributes the data. For
instance, DASHMM didn’t do an optimal job distributing the data at 1536 cores for
3K1Q because the molecular surface is highly irregular (Fig. 5). However, DASHMM
distributed the data very well at 3072 cores as the strong-scaling efficiency for GMRES is
almost 100%. Nonetheless, each inner product is a global reduction and as the number of
compute nodes increases the computation will become insufficient to hide the network
communication latency. This explains why all the GMRES curves flatten out at 12288
cores. From the table, one notices that the scaling efficiency is very good up to 768 cores
for 3K1Q at lower accuracy requirement and then decays rapidly. For DASHMM, an in-
put size around 4 million points is very small to strong scale beyond 1000 cores. In fact,
each single matrix-vector of this size can be completed in a single compute node. The
reason we ran the example in distributed memory regime is to have access to sufficient
memory space to store the basis of the Krylov subspace. For higher accuracy require-
ment or large molecule, the scaling efficiency can stay above 60% up to 6144 cores, which
is consistent with the ones reported in [14]. However, the efficiency at 12288 cores over
512 compute nodes are much worse, and the cause is very different from the execution
characteristic analysis reported in [13].

The inferior scaling performance at 12288 cores is caused by the fact that DAFMPB
does not distinguish types 1 and 3 lists in the adaptive FMM (see Section 3.1). In the
adaptive FMM, if a source box Bs is in list-3 for target box Bt, their interaction is handled
by the M to T operator. If Bs and Bt are on different compute nodes, one needs to commu-
nicate the multipole expansion of Bs and the M to T operator has enough floating point

1254 B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258

96 192 384 768 1,536 3,072 6,144 12,288

2−1

21

23

25

27

29

211

Cores

R
u

n
ti

m
e

(s
ec

o
n

d
s)

3K1Q, 3-digit, DASHMM 3K1Q, 3-digit, GMRES

3K1Q, 6-digit, DASHMM 3K1Q, 6-digit, GMRES

1K4R, 3-digit, DASHMM 1K4R, 3-digit, GMRES

Figure 6: Strong-scaling performance of DASHMM and GMRES phases of DAFMPB on a Cray XC30 cluster.
Each compute node has 24 cores and 64 GB of RAM. Each test case started with the smallest number of
compute nodes that could complete the computation and used up to 512 compute nodes for a total of 12288
cores.

operations (such as spherical harmonic evaluations) to amortize the communication cost.
In DAFMPB, this interaction is handled by the S to T operator and Bs needs to send
“particles” (component of the Krylov basis) to Bt. First, Bs can be a nonleaf box which
contains many particles, making the message much larger. Second, once the {A,B,C,D}
coefficients are computed, for each particle information received, Bt simply does four
multiplications, which is not sufficient to amortize the communication cost. The team is
currently working on extending the library to heterogeneous architectures. When com-
plete, offloading the near-field interaction should be able to improve the scaling perfor-
mance.

Finally, we point out that one often chooses restarted GMRES due to the memory
limitation on storing the Krylov basis and it often takes more iterations to converge
when GMRES restarts. When there are more resources available, one can afford not
to restart GMRES and this could lead to shorter time-to-completion. For the 3K1Q ex-
ample at 6-digit accuracy, we set GMRES to restart at 140 iterations and GMRES actu-
ally converged at iteration 89 and the execution time is 30% faster. The polar energy is
−8.83353×104 kcal/mol. Compared with the one obtained when GMRES restarted, the
relative difference is less than 0.17%.

B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258 1255

6 Conclusion

We have presented the DAFMPB package for computing electrostatic properties and sol-
vation energies of biomolecular systems. DAFMPB adopted DASHMM as its main com-
putational engine for the FMM solver. On the one hand, DASHMM leverages the global
address space of the HPX-5 runtime system, which allows the users of DAFMPB to oper-
ate on both shared and distributed memory computers without any modification of their
code. On the other hand, the adoption of DASHMM also revealed several issues requir-
ing further study. A better treatment of the near-field interaction is needed to recover
the scaling demonstrated by DASHMM in other contexts. One possible approach would
be the use of accelerators for near field interactions. The current implementation of the
GMRES solver follows closely the one in SPARSKIT. The modified Gram-Schmidt proce-
dure involves many global synchronizations. Given the current breakdown of execution
time devoted to FMM and GMRES, it should be possible to hide this synchronization
overhead within the matrix-vector multiplication using strategies mentioned in [18] and
references therein.

Acknowledgments

Author Lu acknowledges the support of Science Challenge Project (No. TZ2016003), the
National Key Research and Development Program of China (Grant No. 2016YFB0201304),
and China NSF (NSFC 21573274, 11771435). Authors Zhang, DeBuhr, and Sterling were
supported in part by National Science Foundation grant number ACI-1440396. Authors
Niedzielski and Mayolo gratefully acknowledge the support of the National Science
Foundation’s REU program. This research was supported in part by Lilly Endowment,
Inc., through its support for the Indiana University Pervasive Technology Institute.

References

[1] http://www-users.cs.umn.edu/~saad/software/.
[2] APBS. http://www.poissonboltzmann.org/apbs.
[3] UHBD. http://mccammon.ucsd.edu/uhbd.html.
[4] M. D. Altman, J. P. Bardhan, J. K. White, and B. Tidor. Accurate solution of multi-region con-

tinuum biomolecule electrostatic problems using the linearized poisson-boltzmann equation
with curved boundary elements. J. Comput. Chem., 30:132–153, 2009.

[5] S. Bai and B. Lu. VCMM: A visual tool for continuum molecular modeling. J. Mol. Graphics
Modell., 50:44–49, 2014.

[6] N. A. Baker, D. Sept, S. Joseph, and M. J. Holst. Electrostatics of nanosystems: Application
to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A., 98:10037–10041, 2001.

[7] D. Bashford. An object-oriented programming suite for electrostatic effects in biological
molecules. Lecture Notes in Computer Science, 1343:233–240, 1997.

[8] A. H. Boschitsch, M. O. Fenley, and H. X. Zhou. Fast boundary element method for the
linear Poisson-Boltzmann equation. J. Phys. Chem. B, 106:2741–2754, 2002.

1256 B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258

[9] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm for particle
simulations. SIAM J. Sci. Stat. Comp., 9:669–686, 1988.

[10] D. Chen, Z. Chen, C. Chen, W. Geng, and G. Wei. MIBPB: A software package for electro-
static analysis. J. Comput. Chem., 32:756–770, 2011.

[11] M. Chen and B. Lu. TMSmesh: A robust method for molecular surface mesh generation
using a trace technique. J. Chem. Theory Comput., 7:203–212, 2011.

[12] C. D. Cooper, J. P. Bardhan, and L. A. Barba. A biomolecular electrostatics solver using
Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern lay-
ers. Comput. Phys. Commun., 185:720–729, 2014.

[13] J. DeBuhr, B. Zhang, and L. D’Alessandro. Scalable hierarchical multipole methods using an
asynchronous many-tasking runtime system. In Parallel and Distributed Processing Symposium
Workshops, pages 1226–1234, 2017.

[14] J. DeBuhr, B. Zhang, and T. Sterling. Revision of DASHMM: Dynamic Adaptive System for
Hierarchical Multipole Mthods. Comm. Comput. Phys., 2017.

[15] J. DeBuhr, B. Zhang, A. Tsueda, V. Tilstra-Smith, and T. Sterling. DASHMM: Dynamic Adap-
tive System for Hierarchical Multipole Methods. Communications in Computational Physics,
20:1106–1126, October 2016.

[16] W. Geng and F. Jacob. A GPU-accelerated direct-sum boundary integral Poisson-Boltzmann
solver. Comput. Phys. Commun., 184:1490–1496, 2013.

[17] W. Geng and R. Krasny. A treecode-accelerated boundary integral Poisson-Boltzmann solver
for electrostatics of solvated biomolecules. J. Comput. Phys., 247:62–78, 2013.

[18] P. Ghysels, T. J. Ashby, K. Meerbergen, and W. Vanroose. Hiding global communication
latency in the GMRES algorithm on massively parallel machines. SIAM. J. Sci. Comput.,
35:C48–C71, 2013.

[19] J. A. Grant, B. T. Pickup, and A. Nicholls. A smooth permittivity function for Poisson-
Boltzmann solvation methods. J. Comput. Chem., 22:608–640, 2001.

[20] L. Greengard and V. Rokhlin. A new version of the fast multipole method for the Laplace
equation in three dimensions. Acta Numer., 6:229–269, 1997.

[21] S. Jo, M. Vargyas, J. Vasko-Szedlar, B. Roux, and V. Im. PBEQ-solver for online visualization
of electrostatic potential of biomolecules. Nucleic Acids Research, 36:270–275, 2008.

[22] A. H. Juffer, E. F. F. Botta, B. A. M. Vankeulen, A. Vanderploeg, and H. J. C. Berendsen. The
electric potential of a macromolecule in a solvent: a fundamental approach. J. Comput. Phys.,
97:144–171, 1991.

[23] Ezra Kissel and Martin Swany. Photon: Remote memory access middleware for high-
performance runtime systems. In In Proceedings of the 1st Emerging Parallel and Distributed
Runtime Systems and Middleware (IPDRM) Workshop, 2016.

[24] R. Kress and G.F. Roach. Transmission problems for the helmholtz equation. J. Math. Phys.,
19:1433–1437, 1978.

[25] Abhishek Kulkarni, Luke Dalessandro, Ezra Kissel, Andrew Lumsdaine, Thomas Sterling,
and Martin Swany. Network-managed virtual global address space for message-driven run-
times. In Proceedings of the 25th International Symposium on High Performance Parallel and Dis-
tributed Computing (HPDC 2016), 2016.

[26] S. S. Kuo, M. D. Altman, J. P. Bardhan, B. Tidor, and J. K. White. Fast methods for simulation
of biomolecule electrostatics. In Proceedings of the 2002 IEEE/ACM International Conference on
Computer-aided Design, pages 466–473, 2002.

[27] C. Li, L. Li, J. Zhang, and E. Alexov. Highly efficient and exact method for parallelization
of grid-based algorithms and its implementation in DelPhi. J. Comput. Chem., 33:1960–1966,

B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258 1257

2012.
[28] C. Li, M. Petukh, L. Li, and E. Alexov. Continuous development of schemes for parallel

computing of the electrostatics in biological systems: implementation in DelPhi. J. Comput.
Chem., 34:1949–1960, 2013.

[29] J. Liang and S. Subramaniam. Computation of molecular electrostatics with boundary ele-
ment methods. Biophys. J., 73:1830–1841, 1997.

[30] T. Liu, M. X. Chen, and B. Z. Lu. Efficient and qualified mesh generation for Gaussian
molecular surface using adaptive partition and piecewise polynomial approximation. SIAM
J. Sci. Comput., 40:B507–B527, 2018.

[31] B. Lu, X. Cheng, J. Huang, and J. A. McCammon. AFMPB: Adaptive Fast Multipole Poisson-
Boltzmann Solver. Comput. Phys. Commun., 181:1150–1160, 2010.

[32] B. Lu, X. Cheng, and J. A. McCammon. New-version-fast-multipole-method accelerated
electrostatic interactions in biomolecular systems. J. Comput. Phys., 226:1348–1366, 2007.

[33] B. Lu and J. A. McCammon. Improved boundary element methods for Poisson-Boltzmann
electrostatic potential and force calculations. J. Chem. Theory Comput., 3:1134–1142, 2007.

[34] B. Lu, D. Zhang, and J. A. McCammon. Computation of electrostatic forces between sol-
vated molecules determined by the Poisson-Boltzmann equation using a boundary element
method. J. Chem. Phys., 122:214102, 2005.

[35] B. Z. Lu, X. L. Cheng, T. J. Hou, and J. A. McCammon. Calculation of the Maxwell stress ten-
sor and the Poisson-Boltzmann force on a solvated molecular surface using hypersingular
boundary integrals. J. Chem. Phys., 123:084904, 2005.

[36] J. D. Madura, J. M. Briggs, R. C. Wade, M. E. Davis, B. A. Luty, A. Ilin, J. Antosiewicz,
M. K. Gilson, B. Bagheri, L. R. Scott, and J. A. McCammon. Electrostatics and diffusion
of molecules in solution-simulation with the University of Houston Brownian Dynamics
Program. Comput. Phys. Commun., 91:57–95, 1995.

[37] A. V. Marenich, C. J. Cramer, and D. G. Truhiar. Universal solvation model based on solute
electron density and on a continuum model of the solvent defined by the bulk dielectric
constant and atomic surface tensions. J. Phys. Chem. B, 113:6378–6396, 2009.

[38] I. Massova and P. A. Kollman. Combined molecular mechanical and continuum solvent
approach (nm-pbsa/gbsa) to predict ligand binding. Perspect. Drug Discovery Des., 18:113–
135, 2000.

[39] C. Müller. Foundations of the Mathematical Theory of Electromagnetic Waves. Springer-Verlag,
1969.

[40] R. A. Pierotti. A scaled particle theory of aqueous and nonaqueous solutions. Chem. Rev.,
76:717–726, 1976.

[41] V. Rokhlin. Solution of acoustic scattering problems by means of second kind integral equa-
tions. Wave Motion, 5:257–272, 1983.

[42] M. F. Scanner, A. J. Olson, and J. C. Spehner. Reduced surface: an efficient way to compute
molecular surfaces. Biopolymers, 38:305–320, 1996.

[43] K. A. Sharp, A. Nicholls, R. F. Fine, and B. Honig. Reconciling the magnitude of the micro-
scopic and macroscopic hydrophobic effects. Science, 252:106–109, 1991.

[44] A. M. Tabrizi, S. Goossens, A. M. Rahimi, C. D. Cooper, M. G. Knepley, and J. P. Bardhan.
Extending the Solvation-Layer Interface Condition Continum Electrostatic Model to a Lin-
earized Poisson-Boltzmann Solvent. J. Chem. Theory Comput., 13:2897–2914, 2017.

[45] J. A. Wagoner and N. A. Baker. Assessing implicit models for nonpolar mean solvation
forces: The importance of dispersion and volume terms. Proc. Natl. Acad. Sci., 103:8331–
8336, 2006.

1258 B. Zhang et al. / Commun. Comput. Phys., 25 (2019), pp. 1235-1258

[46] M. Warren and J. Salmon. Astrophysical n-body simulation using hierarchical tree data
structures. In SC 92’: Proceedings of the 1992 ACM/IEEE Conference on Supercomputing, 1992.

[47] L. Ying, G. Biros, D. Zorin, and H. Langston. A new parallel kernel-independent fast mul-
tipole method. In SC ’03: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing,
2003.

[48] R. Yokota, J. P. Bardhan, M. G. Knepley, L. A. Barba, and T. Hamada. Biomolecular electro-
statics using a fast multipole BEM on up to 512 GPUs and a billion unknowns. Comput. Phys.
Commun., 182:1272–1283, 2011.

[49] R. J. Zauhar and R. S. Morgan. A new method for computing the macromolecular electric
potential. J. Mol. Biol., 186:815–820, 1985.

[50] B. Zhang, B. Lu, X. Cheng, J. Huang, N. P. Pitsianis, X. Sun, and J. A. McCammon. Math-
ematical and numerical aspects of the adaptive fast multipole poisson-boltzmann solver.
Commun. Comput. Phys., 13:107–128, 2013.

[51] B. Zhang, B. Peng, J. Huang, N. P. Pitsianis, X. Sun, and B. Lu. Parallel AFMPB solver with
automatic surface meshing for calculation of molecular solvation free energy. Comput. Phys.
Commun., 190:173–181, 2015.

