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ANALYSIS OF THE MEAN FIELD FREE ENERGY FUNCTIONAL
OF ELECTROLYTE SOLUTION WITH NONHOMOGENOUS

BOUNDARY CONDITIONS AND THE GENERALIZED PB/PNP
EQUATIONS WITH INHOMOGENEOUS DIELECTRIC

PERMITTIVITY∗

XUEJIAO LIU† , YU QIAO† , AND BENZHUO LU‡

Abstract. The energy functional, the governing partial differential equation(s) (PDE), and the
boundary conditions need to be consistent with each other in a modeling system. In electrolyte
solution study, people usually use a free energy form of an infinite domain system (with vanishing
potential boundary condition) and the derived PDE(s) for analysis and computing. However, in many
real systems and/or numerical computing, the objective domain is bounded, and people still use the
similar energy form, PDE(s), but with different boundary conditions, which may cause inconsistency.
In this work, (1) we present a mean field free energy functional for the electrolyte solution within
a bounded domain with either physical or numerically required artificial boundary. Apart from
the conventional energy components (electrostatic potential energy, ideal gas entropy term, and
chemical potential term), new boundary interaction terms are added for both Neumann and Dirichlet
boundary conditions. These new terms count for physical interactions with the boundary (for a real
boundary) or the environment influence on the computational domain system (for a nonphysical but
numerically designed boundary). In addition, the boundary energy term also applies to any bounded
system described by the Poisson equation. (2) The traditional physical-based Poisson–Boltzmann
(PB) equation and Poisson–Nernst–Planck (PNP) equations are proved to be consistent with the
complete free energy form, and different boundary conditions can be applied. (3) In particular, for
the inhomogeneous electrolyte with ionic concentration-dependent dielectric permittivity, we derive
the generalized Boltzmann distribution (thereby the generalized PB equation) for the equilibrium
case, and the generalized PNP equations with variable dielectric (VDPNP) for the nonequilibrium
case, under different boundary conditions. (4) Furthermore, the energy laws are calculated and
compared to study the energy properties of different energy functionals and the resulting PNP
systems. Numerical tests are also performed to demonstrate the different consequences resulting
from different energy forms and their derived PDE(s).

Key words. free energy functional, electrolyte, boundary conditions, variable dielectric, gener-
alized Poisson–Nernst–Planck/Poisson–Boltzmann equations, energy law
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1. Introduction. As a requirement in both physics and mathematics, the sys-
tem energy functional, the governing partial differential equation(s) (PDE), and the
boundary condition(s) (BC) need to be consistent. People usually derive the PDE(s)
through minimization of a free energy functional F , in which the information of bound-
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1132 XUEJIAO LIU, YU QIAO, AND BENZHUO LU

ary condition(s) associated with the PDE is, in principle, included. However, a com-
mon case is that once a type of PDE is obtained (usually from an energy functional
on the whole space), people may study, either theoretically or numerically, the PDE
under different boundary conditions. But in this case the changed boundary condi-
tion may be inconsistent with the original energy form, and may cause unreasonable
results. An example is the electrolyte system, which is the focus of this work.

The electrolyte solution is a charged system mixed with polarizable solvent and
mobile ions, which exists in many areas such as chemistry, colloid, fuel cell, mate-
rial science, and biology systems. An enormous amount of literature can be found
in this area. In mean field theory, a Poisson–Boltzmann (PB) equation is a physi-
cally reasonable description of the equilibrium state of the electrolyte solution. In a
nonequilibrium state (i.e., nonbalanced ionic flow exists), the Poisson–Nernst–Planck
(PNP) equations are employed to model the coupling of ionic diffusion processes and
the generated electric field. The PB equation and PNP equations are two most com-
monly used PDE models in the electrolyte solution system. These equations can also
be derived from variation of the free energy. As an example in the chemical physics
area, Sharp and Honig have used the calculus of variations to provide a unique defini-
tion of the total energy and to obtain expressions for the total mean field electrostatic
free energy of the electrolyte solution (including fixed macromolecules) for both linear
and nonlinear PB equations [30], and later Gilson et al. derived the mean forces based
on mean field electrostatic free energies [11]:

(1) F =

∫ {
ρfφ− 1

2
ε|∇φ|2 − β−1

K∑
i=1

cbi (e
−βqiφ − 1)

}
dV.

And in turn, the PB equation can also be expected to be derived from these energy
functionals. Gilson et al. have shown that if the free energy F is considered as a
functional with respect to (w.r.t.) the potential function, the potential which extrem-
izes F is also the potential that satisfies the PB equation [11]. Fogolari and Briggs
have pointed out that the potential satisfying the PB equation in fact maximizes the
energy functional if it is considered as a functional w.r.t. potential [9]. When the
free energy functional is regarded as functional w.r.t. the concentration c rather than
the potential φ, they proved that the PB distribution is then the only distribution
which minimizes the free energy (the Poisson equation is considered as a constraint)
[9]. This conclusion was also restated in a more mathematical way later [19]. The
energy functional takes the form

(2) F =

∫
Ω

1

2
ρφdV + β−1

K∑
i=1

∫
Ω

ci[ln(Λ3ci)− 1]dV −
K∑
i=1

∫
Ω

µicidV,

with a Poisson equation as a constraint. Another advantage of this form is that
this form can be applied to study both the equilibrium and nonequilibrium states
of the electrolyte solution. It is worth noting that those free energy forms are for
the electrolyte solution on the whole space, where the potential (and the derivative)
goes to zero at infinity. However, a real physical system and/or a practically com-
putational domain (as appeared in finite element/finite difference methods) are often
bounded, and the boundary conditions are usually nontrivial and nonhomogenous. In
electrokinetics, most physically interesting properties arise from different nonhomoge-
nous boundary conditions [32, 37, 5, 17, 38]. In these nonhomogenous BC cases for
charged system, the system’s free energy also needs to include the physical interaction
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FREE ENERGY FUNCTIONAL AND PB/PNP EQUATIONS 1133

between the system and the boundary. In other words, the traditional PB equations
with general nonhomogenous Dirichlet or/and Neumann BCs cannot be derived from
the above free energy form (neither (1) nor (2)) because the boundary term(s) are
missed in the energy functional. The issue will be solved in this work. It is worth
noting here that even though a real system is infinite, in practical computation as
in the finite element approach, only a bounded domain is taken and certain nontriv-
ial BC(s) need to be adopted to simulate the behavior of the whole system. In this
case, if we need a, for instance, nonhomogenous Dirichlet BC, an energy term needs
to be included in the free energy and represents interaction between the system and
the boundary of Dirichlet type (see the detailed physical explanations in section 2).
Therefore, in the rest of this paper, we will not distinguish a boundary as a physical
(interfacial) boundary or as an artificial boundary, as they will be treated similarly
in the energy form.

The free energy functional for an infinite electrolyte solution system can be con-
sidered as a special case under the homogenous boundary condition at infinity. If
this energy functional is used to derive the PDE with nonhomogenous BC, it may re-
sult in “distorted” (nonphysical) equation(s) (see later analysis and discussion). The
following nonhomogenous Dirichlet boundary-value problem of Poisson equation (3)
is considered, which is a constraint of the potential φ in the traditional free energy
functional:

−∇ · (ε∇φ(c)) = ρ(c) in Ω,(3)

ε
∂φ

∂n
= σ on ΓN ,

φ = φ0 on ΓD,

where ∂φ
∂n denotes the normal derivative at the boundary with n the exterior unit

normal. In analysis, we generally need to introduce a corresponding nonhomogeneous
boundary-value problem of Poisson equation (4) which has the unique weak solution
φD:

∇ · (ε∇φD(c)) = 0 in Ω,(4)

ε
∂φD
∂n

= 0 on ΓN ,

φD = φ0 on ΓD.

Using the variational approach to the free energy functional with incomplete boundary
terms can lead to a “distorted” Boltzmann distribution and an unusual PB equation
as in [19, 20]. Similarly, for the nonequilibrium state and nonhomogeneous boundary-
value problem, we will show details in following sections that applying the variational
approach to the incomplete free energy functional will lead to a set of PNP equations
different from the traditionally established ones as in the following example:

(5) −∇ · (ε∇φ(c)) = ρf +

K∑
i=1

qici in Ω,

(6)
∂ci
∂t

= ∇ ·
(
Di

[
∇ci + βci∇

(
qi

[
φ(c)− 1

2
φD(c)

])])
in Ωs, i = 1, 2, . . . ,K.

In the physics of the electro-diffusion process and in the traditional PNP equations,
the drift term βqc∇φ is determined by the electric field, i.e., ∇φ, and should be
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1134 XUEJIAO LIU, YU QIAO, AND BENZHUO LU

irrelevant to φD. But in (5) and (6), an additional term − 1
2βqc∇φD appears in the

drift term and is unavoidable in the variational approach using the incomplete energy
functional (see section 2).

To derive the correct PB and PNP equations subject to different BCs (Neumann,
Dirichlet or their co-existing case), in this paper we will provide a complete energy
functional form by proposing a new energy term, which is consistent with the PDEs
and the corresponding BCs. Numerical examples demonstrate significant deviations
between the predictions from the inconsistent PB/PNP models (originated from the
incomplete energy functional) and those from the PB/PNP models.

Furthermore, to study the system energy property, the energy law is calculated
for the complete energy functional and other forms. Analysis and discussion also
indicate that the complete energy functional with a new energy term, instead of the
usual forms, leads to a physically reasonable energy law.

In addition, a particularly interesting case of this work is to consider the situation
when a dielectric coefficient is dependent on ionic concentration. The general free
energy functional includes this situation and a variational approach is applied to
derive the generalized PB and PNP equations under different boundary conditions.
Ionic solutions may be considered to consist of three constituents: the charged anions
and cations, “hydration” solvent molecules near the vicinity of the ions, and “free”
solvent molecules. The hydration shells will affect the dielectric coefficient in an ionic
solution [36, 35]. The effective polarizability is related to the presence of a hydration
shell around ions and causes the dielectric decrement characteristic [1, 27]. In the
electrolyte, as the solvent dipoles are highly oriented under large electric fields, there
are some studies to consider the field-dependent dielectric permittivity [3]. A lot
of experiments and theoretical analysis have indicated that the dielectric coefficient
decreased with the increase of local ionic concentrations [12, 15, 14, 28, 13, 33, 21],
and the phenomenon of depletion of ions near a charged wall can also be captured
[20]. In our previous paper [21], we present a variable dielectric PB (VDPB) model for
biological study, in which the dielectric coefficient is ionic concentration-dependent.
However, the equation is not mathematically consistent with the system’s free energy
functional. In this paper, we analyze and discuss a general dependence form of the
dielectric coefficient on local concentrations, and the governing equations in both
equilibrium and nonequilibrium are consistently given.

2. Theory and method.

2.1. The mean field free energy functional. We consider the general case
of an electrolyte solution that contains a solvent, arbitrary number of mobile ion
species, and perhaps membrane-molecule(s) or nanopore as well. The macro-object–
like biomolecule, if it exists, is treated as a fixed object and usually also carries charges
inside or on the surface. Figure 1 represents two typical biophysical models in com-
putational analysis. The domain Ωs (s for solvent) denotes the solvent region where
there is a mixed solution with diffusive ion species, such as mobile ions. The solute
region Ωm (m for molecule) is the domain occupied by (in (a)) the fixed biomolecule,
such as protein or DNA, or by (in (b)) the membrane, channel protein/nanopore
[25, 31, 32, 34]. In case (b), if necessary, Ωm can be further divided into different sub-
regions, but this does not affect our following analysis. The whole domain is denoted
by Ω = Ωm ∪ Ωs. Figure 1 illustrates a solvated biomolecular system in an open
domain Ω ∈ R3. The open subdomain Ωm ⊂ Ω represents the biomolecule(s), and the
remaining space Ωs = Ω \ Ω̄m is filled with ionic solution. Domains Ωm and Ωs are
separated by a molecular surface Γm (for simplicity, we call Γm the molecular surface
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FREE ENERGY FUNCTIONAL AND PB/PNP EQUATIONS 1135

(a) (b)

Fig. 1. A two-dimensional (2-D) schematic view of the ionic solution system: (a) with one
fixed biomolecule; (b) with an ion channel (or similar a nanopore) embedded in a membrane.

in the rest of the paper, but it also includes the membrane and nanopore surface if
they exist). The ionic flow cannot penetrate the nonreactive molecular surface. We
use ΓD and ΓN to represent boundaries with Dirichlet and Neumann boundary condi-
tions, respectively. According to the property of the physical system and model, both
ΓD and ΓN can be applied to Γs or part of Γs. For example, fixed potentials (Dirichlet
BC) are usually given on the out boundary Γs in PB calculations (Figure 1(a)) and on
the upper and lower boundaries of the whole box in PNP simulations (Figure 1(b)).
Surface charge density (Neumann BC) is usually applied to the molecular/nanopore
surface Γm [31, 6, 22], or a simplified molecular surface (do not consider the molecular
domain Ωm) [20] to model the charge amount carried by the molecule. The boundary
of the whole region is Γ = ΓD ∪ ΓN .

Free energy discussions in previous works are usually on the whole space with
vanishing at infinity and do not consider the nonhomogenous Neumann and Dirichlet
boundary effects. If we consider a bounded or a confined region, the variational
approach to the derivation of the free energy functional may face problems. For an
electrolyte solution system, the Gibbs free energy of the charged system is usually
written as [30, 11, 9]

F =
1

2

∫
Ω

(
ρf +

K∑
i=1

qici

)
φdV + kBT

∫
Ω

K∑
i=1

ci[ln(ci/c
b
i )− 1]dV

=

∫
Ω

1

2
ρφdV + β−1

K∑
i=1

∫
Ω

ci[ln(Λ3ci)− 1]dV −
K∑
i=1

∫
Ω

µicidV.(7)

Here, ρ is the total charge density, defined by

(8) ρ = ρf +

K∑
i=1

qici,

where qi = Zie, with Zi the valence of the ith ionic species and e the elementary
charge, K is the number of diffusive ion species in solution that are considered in the
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1136 XUEJIAO LIU, YU QIAO, AND BENZHUO LU

system, and ρf is the permanent (fixed) charge distribution

ρf (x) =
∑
j

qjδ(x− xj),

which is an ensemble of singular charges qj located at xj inside the biomolecule.
φ = φ(c) is the electrostatic potential with c = (c1, . . . , cK), ci is the concentration
for the ith ionic species, and cbi is the bulk concentration for the ith ionic species.
β−1 = kBT , where kB is the Boltzmann constant and T the temperature, Λ is the
thermal de Broglie wavelength, and µi is the chemical potential for the ith ionic
species. The standard PB and PNP equations can be derived by the variational
method from this energy form [24, 34].

However, as aforementioned, in many real systems and/or numerical computing,
the objective domain is bounded, and people used to adopt the same energy form
and study different boundary conditions. This may lead to inconsistency among the
energy form, PB/PNP equations, and the boundary conditions, and sometimes even
results in a nonphysical PDE model. A satisfactory way is that a PDE model and
the BCs can be derived through the energy variational approach (which is neces-
sary for further consistent mathematical analysis), and the energy form is physically
reasonable. To obtain the consistent PDE(s), we need include different boundary
interactions into the free energy functionals, and these new terms count for physical
interactions with the boundary (for real boundary) or the environmental influence
on the computational domain system (for an artificially modeled boundary for the
numerical goal). Generally, when there exists surface charges (denote the density as
σ) on the boundary or part of the boundary (where a Neumann boundary condition
can be applied), it is obvious to directly plug a surface energy term ( 1

2φσ) into the
free energy functional. This is physically reasonable because the surface charges cause
an additional interaction with the electric field. This “improved” free energy is also
often used and studied, as in [20]:

F [c] =

∫
Ω

1

2
ρ(c)φ(c)dV +

∫
ΓN

1

2
σφ(c)dS(9)

+ β−1
K∑
i=1

∫
Ω

ci[ln(Λ3ci)− 1]dV −
K∑
i=1

∫
Ω

µicidV.

But this free energy is still not complete, as it lacks the treatment of the Dirichlet
boundary condition, which is rarely discussed in previous mathematical and physical
work. When a potential is given on a boundary, which means: (1) If the boundary
is a physical boundary identified as a certain type of material interface, there must
be a mount of “effective” surface charges (denote the density as σeffD ) to maintain
the Dirichlet condition. In physics, the effective surface charge density needs to be
equal to −ε∂φ∂n (induced by exterior region), which thereby causes an additional sur-

face interaction energy − 1
2ε
∂φ
∂nφ. (2) If the boundary is an artificial boundary (still

consider the electrolyte solution system), we are using a boundary condition to model
the influence from the “cutoff” outside part which is a polarizable dielectric media
(environment). The influence can be approximated by an “effective” surface charge

σeffD induced by the exterior region as in the physical boundary case. This charge
density also should be consistent with the electric potential field and the given surface
potential. In other words, the effective charge density σeffD is equal to −ε∂φ∂n and leads
to a similar energy term. Therefore, in either of the above two cases, there also needs

D
ow

nl
oa

de
d 

04
/1

6/
18

 to
 1

28
.2

48
.1

56
.4

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FREE ENERGY FUNCTIONAL AND PB/PNP EQUATIONS 1137

to be an energy term in the free energy functional for Dirichlet BC. Here we present
a complete free energy functional form:

F [c] =

∫
Ω

1

2
ρ(c)φ(c)dV +

∫
ΓN

1

2
σφ(c)dS −

∫
ΓD

1

2
ε(c)

∂φ(c)

∂n
φ0dS(10)

+ β−1
K∑
i=1

∫
Ω

ci[ln(Λ3ci)− 1]dV −
K∑
i=1

∫
Ω

µicidV,

where φ = φ(c) is the electrostatic potential determined as the solution to the general
boundary-value problem of the Poisson equation

−∇ · (ε(c)∇φ(c)) = ρ(c) in Ω,(11)

ε(c)
∂φ

∂n
= σ on ΓN ,

φ = φ0 on ΓD.

The first three terms in (10) together represent the electrostatic potential energies, and
in particular, the second and third terms are the boundary interactions. The fourth
term represents the ideal-gas entropy, and the last term in (10) represents the chemical
potential of the system that results from the constraint of the total number of ions in
each species. It is worth noting that the boundary energy − 1

2

∫
ΓD

ε∂φ∂nφdS → 0 if the
domain tends toward infinity. It is also worth mentioning that the ideal-gas entropy
will be infinite if the domain tends toward infinity. In fact, the physically meaningful
calculation is to calculate the energy difference. The energy difference here is the so-
called solvation energy, which is the difference of the energies between the interacting
system (the ionic solution and the solvated molecule) and the noninteracting system
(separated pure ionic solution and the molecule in a vacuum). In this situation the
energy difference can be proved and numerically demonstrated to be always a finite
value. As either the original energy form or the energy difference form does not affect
the analysis and calculations in this work, we only used the complete energy form
as discussed above in the following analysis. In particular, in this work we treat ε
as a general inhomogeneous dielectric permittivity which can be dependent on ionic
concentration. This is another topic of concern in the paper.

Aside from the above physical reasoning for the new boundary energy term, we
will try to make an explanation in mathematical point of view. First, considering the
Poisson equation as a constraint, using integration by parts and the Gauss theorem in
the energy variational derivation will naturally lead to a boundary term with potential
for a bounded domain. Second, only considering a Poisson system with Dirichlet BC
and electrostatic energy as discussed below, the Euler–Lagrange form for the Poisson
equation is shown to lead to exactly the same energy form as proposed in this work,
which has a boundary energy term (see 12). Third, analysis on the calculated energy
law for different energy forms and corresponding PNP systems indicates again that
the additional boundary energy term is necessary to obtain a reasonable energy law
(see subsection 2.4.1).

It is also worth noting that there are different energy forms of electrolyte systems
appearing in the literature, and in most cases they adopt an underlying assumption of
infinite domain but with little discussion and analysis on general cases. We will make
some notes on those forms here. Before that, we list two prerequisites: (1) The Poisson
equation always holds (from electric field theory). This is why, in most parts of this
work, we use the Poisson equation as a constraint instead of a “derived” equation.
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1138 XUEJIAO LIU, YU QIAO, AND BENZHUO LU

(2) Physically, the electrostatic potential energy should naturally take a form like∫
Ω

1
2ρφdV (and as demonstrated in this work, we will show that there need to be

boundary term(s) in addition to the usual volume integral form). Similarly, we focus
our notes only on the Poisson system and electrostatic energy in this paragraph. A
familiar energy form is

∫
Ω
ε
2 |∇φ|

2dV , which can be directly interpreted as field energy
from electromagnetic field theory (e.g., see [16]). Through integration by parts and
supposing the Poisson equation holds, this form can be easily shown to be equivalent
to
∫

Ω
1
2ρφdV + 1

2

∫
Γ
ε∂φ∂nφdS, which is equal to

∫
Ω

1
2ρφdV only for the infinite domain

or vanishing bounded boundary. Similarly, another form is the Euler–Lagrange form
that also often appeared in literature such as used in [30, 11],

F (φ,∇φ) =

∫
Ω

(
− ε

2
|∇φ|2 + ρφ

)
dV.

From above note it is easy to see that this form is again equivalent to the form∫
Ω

1
2ρφdV when the boundary integral term vanishes. One advantage of this form is

that the Euler–Lagrange equation of this energy functional gives exactly the Poisson
equation. More specifically, we show in the following that in the case when ε is not
dependent on ionic concentration c, and under a Dirichlet BC, this form leads to the
Poisson equation. Hence the Euler–Lagrange form is a consistent energy form in these
situations. The variation is as follows:

δF =

∫
Ω

(
− ε∇φ · ∇(δφ)− 1

2
∇φ · ∇φδε+ φδρ+ ρδφ

)
dV

=

∫
Ω

(∇ · (ε∇φ) + ρ)δφdV −
∫

ΓD

ε
∂φ

∂n
δφdS − 1

2

∫
Ω

∇φ · ∇φδεdV +

∫
Ω

φδρdV.

For a given charge distribution and ε(r), δρ = δε = 0, and for a given Dirichlet BC
(in which case a unique solution exists), δφ = 0 on ΓD, then the solution function
φ of the Poisson equation, −∇ · (ε∇φ) = ρ, extremizes the energy F , i.e., δF = 0.
Now, given that the Poisson equation is satisfied in general, this in turn can reach
the observation through similar integration by parts that the Euler–Lagrange integral
form of the energy differs from the integral of 1

2ρφ exactly by the boundary integral

term −
∫

ΓD

1
2ε
∂φ
∂nφ0dS that we are proposing to add in (10):

∫
Ω

(
− 1

2
ε|∇φ|2 + ρφ

)
dV

=

∫
Ω

(
1

2
∇ · (ε∇φ)φ+ ρφ

)
dV − 1

2

∫
ΓD

ε
∂φ

∂n
φ0dS

=

∫
Ω

1

2
ρφdV − 1

2

∫
ΓD

ε
∂φ

∂n
φ0dS.(12)

However, as shown above, in general cases with nonhomogeneous boundary conditions
and with ionic concentration dependent dielectric permittivity, the energy form using∫

Ω
ε
2 |∇φ|

2dV could not be obtained physically. One objective of this work is to show
that the energy form given by (10) is a physically reasonable and consistent energy
form, which will be analyzed and discussed in the following sections.

Consequently, for an electrolyte system with a given dielectric coefficient ε(r)
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FREE ENERGY FUNCTIONAL AND PB/PNP EQUATIONS 1139

under a Dirichlet BC, the following different energy forms are, in fact, equivalent:

F [c] =

∫
Ω

[
− ε

2
|∇φ|2 + ρ(c)φ(c)

]
dV

+ kBT

K∑
i=1

∫
Ω

ci[ln(Λ3ci)− 1]dV −
K∑
i=1

∫
Ω

µicidV,(13)

F [c] =

∫
Ω

ε

2
|∇φ|2dV −

∫
ΓD

ε
∂φ(c)

∂n
φ0dS

+ kBT

K∑
i=1

∫
Ω

ci[ln(Λ3ci)− 1]dV −
K∑
i=1

∫
Ω

µicidV,(14)

and

(15) F [c] =

∫
Ω

(
1

2
ρ(c)φ(c) + kBT

K∑
i=1

ci

[
ln
( ci
cbi

)
− 1
])
dV − 1

2

∫
ΓD

ε
∂φ(c)

∂n
φ0dS.

In the next few subsections, we will use the energetic variational approach to il-
lustrate the appropriateness and consistency of the above-mentioned free energy form,
and to derive new equations when dielectric permittivity is dependent on ionic con-
centration. If the boundary interactions are missed in the free energy functionals, the
energetic variational approach will produce some extra terms of boundary integration,
and the Boltzmann distribution may or may not be obtained in a distorted form. Of
particular interest in the case of ionic concentration-dependent dielectric permittiv-
ity, the complete free energy form will consistently lead to two generalized equations
under different boundary conditions.

2.2. Energetic variational approach.

2.2.1. First variations. To derive the first variation of F w.r.t. c, we first need
the following basic assumptions:

• The dielectric coefficient function ε(c1, . . . , cK) ∈ C1([0,∞)). Moreover, there
are two positive numbers εmin and εmax such that

0 < εmin ≤ ε(c1, . . . , cK) ≤ εmax ∀ ci ≥ 0, i = 1, . . . ,K.

• Ω is bounded and open, Γ = ∂Ω = ΓN ∪ ΓD.

• We also assume a fixed charged density ρf : Ω → R, ρf ∈ L∞(Ω), a sur-
face charge density σ : ΓN → R, and a boundary value of the electrostatic
potential φ0 : ΓD → R, φ0 |ΓD

∈W 2,∞(Ω).
We use the standard notion for Sobolev spaces:

H1
s = {φ ∈ H1(Ω) : φ = φ0 on ΓD},

H1
s,0 = {φ ∈ H1(Ω) : φ = 0 on ΓD}.

The weak form of (11) is∫
Ω

∇ · (ε(c)∇φ(c))vdV = −
∫

Ω

ρ(c)vdV ∀v ∈ H1
s,0(Ω).
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1140 XUEJIAO LIU, YU QIAO, AND BENZHUO LU

By the Gauss theorem, we have

(16) a(φ, v) =

∫
Ω

ε(c)∇φ(c) · ∇vdV =

∫
Ω

ρ(c)vdV +

∫
ΓN

σvdS ∀v ∈ H1
s,0(Ω).

Since L∞(Ω)∩H1
s,0(Ω) is dense in H1

s,0(Ω), we can identify u as an element in H−1
s,0 (Ω).

We denote

X = {c = (c1, . . . , cK) ∈ L1(Ω, RK) : ci ≥ 0 a.e. Ω, i = 1, . . . ,K;

K∑
i=1

qici ∈ H−1
s,0 (Ω)}.

Let c ∈ X. It follows from the Lax–Milgram theorem and the Poincáre inequality for
functions in H1

s,0(Ω) that the boundary-value problem of Poisson equation (11) has a
unique weak solution φ = φ(c).

Let c = (c1, . . . , cK) ∈ X and d = (d1, . . . , dK) ∈ X. We define

(17) δF [c][d] = lim
t→0

F [c+ td]− F [c]

t
.

To get the expression of δF [c][d], we need the following theorem.

Theorem 2.1. Let c = (c1, . . . , cK) ∈ X. Assume there exist positive numbers δ1
and δ2 such that δ1 ≤ ci(x) ≤ δ2 for a.e. x ∈ Ω and i = 1, . . . ,K. Assume also that
d = (d1, . . . , dK) ∈ L∞(Ω, RK). Then

||φ(c+ td)− φ(c)||H1(Ω) → 0 as t→ 0.

A proof of this theorem can be found in [20], and we will not repeat it here.
Now, we decompose the free energy F as

F [c] = Fpot[c] + Fentropy[c],

where

(18) Fpot[c] =

∫
Ω

1

2
ρ(c)φ(c)dV +

∫
ΓN

1

2
σφ(c)dS −

∫
ΓD

1

2
ε(c)

∂φ(c)

∂n
φ0dS,

(19) Fentropy[c] =

K∑
i=1

∫
Ω

{β−1ci[ln(Λ3ci)− 1]− µici}dV.

Based on the definition of (17), we have

(20) δFentropy[c][d] =

K∑
i=1

∫
Ω

di[β
−1 ln(Λ3ci)− µi]dV.

We now deal with another term:

δFpot[c][d] = lim
t→0

Fpot[c+ td]− Fpot[c]
t

(21)

= lim
t→0

1

2

∫
Ω

[ρ(c+ td)− ρ(c)]φ(c+ td)

t
dV + lim

t→0

1

2

∫
Ω

ρ(c)
φ(c+ td)− φ(c)

t
dV

+ lim
t→0

{∫
ΓN

σ
φ(c+ td)− φ(c)

2t
dS − 1

2t

∫
ΓD

[
ε(c+ td)

∂φ(c+ td)

∂n
− ε(c)∂φ(c)

∂n

]
φ0dS

}
.
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By (8) and Theorem 2.1, we have

(22) lim
t→0

1

2

∫
Ω

[ρ(c+ td)− ρ(c)]φ(c+ td)

t
dV =

1

2

K∑
i=1

∫
Ω

diqiφ(c)dV.

Now we deal with the remaining three terms in (21). By the weak formulation (16)

for φ(c) with v = φ(c+td)−φ(c)
t ∈ H1

s,0,

lim
t→0

1

2

∫
Ω

ρ(c)
φ(c+ td)− φ(c)

t
dV + lim

t→0

1

2

∫
ΓN

σ
φ(c+ td)− φ(c)

t
dS

− lim
t→0

1

2t

∫
ΓD

[
ε(c+ td)

∂φ(c+ td)

∂n
− ε(c)∂φ(c)

∂n

]
φ0dS

= lim
t→0

1

2

∫
Ω

ε(c)∇φ(c) · ∇
[
φ(c+ td)− φ(c)

t

]
dV

− lim
t→0

∫
ΓD

1

2t

[
ε(c+ td)

∂φ(c+ td)

∂n
− ε(c)∂φ(c)

∂n

]
φ0dS.(23)

Based on the Poisson equation (11), the following equation holds:∫
Ω

−∇ · (ε(c)∇φ(c))φ(c)dV =

∫
Ω

ρ(c)φ(c)dV.

By integrating the left term by parts and using the divergence theorem

(24)

∫
Ω

ε(c)∇φ(c) · ∇φ(c)dV −
∫

Γ

ε(c)
∂φ(c)

∂n
φ(c)dS =

∫
Ω

ρ(c)φ(c)dV.

If we consider the Poisson equation (11) at c+ td, similarly, we have
(25)∫

Ω

ε(c+ td)∇φ(c+ td) ·∇φ(c)dV −
∫

Γ

ε(c+ td)
∂φ(c+ td)

∂n
φ(c)dS =

∫
Ω

ρ(c+ td)φ(c)dV.

If ε(c) is a function of c, we can deduce the equation below from (24) and (25):

K∑
i=1

∫
Ω

tdiqiφ(c)dV

=

∫
Ω

[(ε(c+ td)− ε(c))∇φ(c+ td) + ε(c)(∇φ(c+ td)−∇φ(c))] · ∇φ(c)dV

−
∫

ΓN ∪ ΓD

[
ε(c+ td)

∂φ(c+ td)

∂n
− ε(c)∂φ(c)

∂n

]
φ(c)dS

=

∫
Ω

{
K∑
i=1

[(tdiε
′

i(c) + o(t))∇φ(c+ td) · ∇φ(c)] + [ε(c)(∇φ(c+ td)−∇φ(c))] · ∇φ(c)

}
dV

−
∫

ΓD

[
ε(c+ td)

∂φ(c+ td)

∂n
− ε(c)∂φ(c)

∂n

]
φ0dS,
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where we denote ε
′

i(c) as ∂ε(c)
∂ci

, and take the above equation into (23),

lim
t→0

1

2

∫
Ω

ρ(c)
φ(c+ td)− φ(c)

t
dV + lim

t→0

1

2

∫
ΓN

σ
φ(c+ td)− φ(c)

t
dS

− lim
t→0

1

2t

∫
ΓD

[
ε(c+ td)

∂φ(c+ td)

∂n
− ε(c)∂φ(c)

∂n

]
φ0dS

=
1

2

K∑
i=1

∫
Ω

diqiφ(c)dV − 1

2

K∑
i=1

∫
Ω

diε
′

i(c)∇φ(c) · ∇φ(c)dV.(26)

By combining (20), (22), and (26), we finally have

δF [c][d] = δFentropy[c][d] + δFpot[c][d]

=

K∑
i=1

∫
Ω

di{qiφ(c) + β−1 ln(Λ3ci)− µi −
1

2
ε
′

i(c)∇φ(c) · ∇φ(c)}dV.

In the case of the inhomogeneous dielectric coefficient based on these discussions, we
can prove the following theorem.

Theorem 2.2. Let c = (c1, . . . , cK) ∈ X. Assume there exist positive numbers δ1
and δ2 such that δ1 ≤ ci(x) ≤ δ2 for a.e. x ∈ Ω and i = 1, . . . ,K. Assume also that
d = (d1, . . . , dK) ∈ L∞(Ω, RK). If we consider the complete free energy functional as
given in (10), then

(27) δF [c][d] =

K∑
i=1

∫
Ω

di

{
qiφ(c)− 1

2
ε
′

i(c)∇φ(c) · ∇φ(c) + β−1 ln(Λ3ci)− µi
}
dV.

Particularly, if ε doesn’t depend on c, then

(28) δF [c][d] =

K∑
i=1

∫
Ω

di{qiφ(c) + β−1 ln(Λ3ci)− µi}dV.

2.2.2. Comparison with the result from the incomplete energy form.
To compare with the result from the incomplete energy form, we use the energetic
variational approach to the incomplete free energy functional (9) rather than (10) in a
bounded domain (or semibounded domain as well), and theoretical analysis will give
essentially different results. An extra surface integral occurs in the first variations
δF [c][d] despite the dependency of the dielectric coefficient on ionic concentrations:

δF [c][d] =
K∑
i=1

∫
Ω

di

{
qiφ(c) + β−1 ln(Λ3ci)− µi −

1

2
ε
′

i(c)∇φ(c) · ∇φ(c)

}
dV

+ lim
t→0

1

2t

∫
ΓD

[
ε(c+ td)

∂φ(c+ td)

∂n
− ε(c)∂φ(c)

∂n

]
φ0dS.(29)

The boundary integration term is introduced by the nonhomogenous Dirichlet bound-
ary condition. A general method to eliminate this effect is to introduce a correspond-
ing boundary-value problem of the Poisson equation as shown in Li, Wen, and Zhou’s
work [20]:

∇ · (ε(c)∇φD(c)) = 0 in Ω,(30)

ε(c)
∂φD
∂n

= 0 on ΓN ,

φD = φ0 on ΓD.
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Similarly, the weak form of (30) is

(31)

∫
Ω

ε(c)∇φD(c) · ∇vdV = 0 ∀v ∈ H1
s,0(Ω).

The boundary-value problem of Poisson equation (30) has a unique weak solution
φD = φD(c) and only in the special case of homogenous boundary condition φ0 = 0,
the introduced φD vanishes φD = 0.

Theorem 2.3. (See [19, 18, 20].) Let c = (c1, . . . , cK) ∈ X. Assume there exists
positive numbers δ1 and δ2 such that δ1 ≤ ci(x) ≤ δ2 for a.e. x ∈ Ω and i = 1, . . . ,K.
Assume also that d = (d1, . . . , dK) ∈ L∞(Ω, RK). If we consider the incomplete free
energy functional as (9), then

δF [c][d] =

K∑
i=1

∫
Ω

diδiF [c]dV,

where for each i(1 ≤ i ≤ K) the function δiF [c] : Ω→ R is given by

(32) δiF [c] = qi

[
φ(c)− 1

2
φD(c)

]
− 1

2
ε
′

i(c)∇φ(c) ·∇[φ(c)−φD(c)]+β−1 ln(Λ3ci)−µi.

Proof. Based on (23) and by the weak formulation in (16) for φ(c+ td) and φ(c),

and by the weak formulation in (31) for φD with v = φ(c+td)−φ(c)
t ∈ H1

s,0 and
v = φ(c)− φD(c) ∈ H1

s,0, we have the following:

lim
t→0

1

2

∫
Ω

ε(c)∇φ(c) · ∇
[
φ(c+ td)− φ(c)

t

]
dV

(33)

= lim
t→0

1

2

∫
Ω

ε(c)∇[φ(c)− φD(c)] · ∇
[
φ(c+ td)− φ(c)

t

]
dV

= lim
t→0

[
1

2t

∫
Ω

(ε(c)− ε(c+ td))∇[φ(c)− φD(c)] · ∇φ(c+ td)dV

]
+ lim
t→0

[
1

2t

{
ρ(c+ td)[φ(c)− φD(c)]dV +

∫
ΓD

ε(c+ td)
∂φ(c+ td)

∂n
[φ(c)− φD(c)]dS

}]
− lim
t→0

[
1

2t

{
ρ(c)[φ(c)− φD(c)]dV +

∫
ΓD

ε(c)
∂φ

∂n
[φ(c)− φD(c)]dS

}]
= −1

2

K∑
i=1

∫
Ω

diε
′

i(c)∇[φ(c)− φD(c)] · ∇φ(c)dV +
1

2

K∑
i=1

∫
Ω

diqi[φ(c)− φD(c)]dV.

Combining (20), (22), and (33), we have

δF [c][d] = δFentropy[c][d] + δFpot[c][d]

=

K∑
i=1

∫
Ω

di

{
qi

[
φ(c)− 1

2
φD(c)

]
+ β−1 ln(Λ3ci)− µi

}
dV

−
K∑
i=1

∫
Ω

di
1

2
ε
′

i(c)∇φ(c) · ∇[φ(c)− φD(c)]dV.

This will lead to “distorted” PB and PNP models and obtain incorrect results in
physics (see the following subsection). In the next two subsections, we will derive the
generalized PB/PNP equations and give detailed discussion.
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2.3. Generalized Boltzmann distributions with different boundary con-
ditions. Based on the complete free energy functional (10) and Theorem 2.2, the
electrostatic free energy F = F (c) is minimized when c = (c1, . . . , cK) ∈ X satisfies
δF [c][d] = 0 ∀ d = (d1, . . . , dK) ∈ X, which means

qiφ(c)− 1

2
ε
′

i(c)∇φ(c) · ∇φ(c) + β−1 ln(Λ3ci)− µi = 0,

and we have

ci = Λ−3eβµi exp

{
− βqiφ(c) +

β

2
ε
′

i(c)∇φ(c) · ∇φ(c)

}
= cbi exp

{
− βqiφ(c) +

β

2
ε
′

i(c)∇φ(c) · ∇φ(c)

}
,(34)

where ci → cbi as r → ∞ and φ → 0. We call these the generalized Boltzmann dis-
tributions, as they generalize the classical Boltzmann distributions ci = cbie

−βqiφ(i =
1, . . . ,K) of the situation ε does not depend on c (no matter what the boundary con-
ditions are). Plugging the generalized Boltzmann distributions (34) into the Poisson
equation, we then obtain a generalized PB model under arbitrary Neumann/Dirichlet
BCs (this is the self-consistent VDPB model in contrast to our previous one [21]):

(35) −∇·(ε(c)∇φ(c)) = ρf +

K∑
i=1

qic
b
i exp

{
−βqiφ(c)+

β

2
ε
′

i(c)∇φ(c) ·∇φ(c)

}
on Ω.

However, if we start from the incomplete free energy functional (7) in a bounded
domain (or similarly for semibounded domain) with nonhomogenous Neumann/Dirichlet
boundary conditions, δF [c][d] takes the form

δF [c][d] =

K∑
i=1

∫
Ω

di{qiφ(c) + β−1 ln(Λ3ci)− µi}dV

− lim
t→0

[ ∫
ΓN

1

2
σ
φ(c+ td)− φ(c)

t
dS

]
+ lim
t→0

[ ∫
ΓD

1

2t

[
ε
∂φ(c+ td)

∂n
− ε∂φ(c)

∂n

]
φ0dS

]
.

Then we cannot obtain a generalized Boltzmann distribution. Based on Theorem 2.3
and the minimized incomplete energy functional (9), a distorted Boltzmann distribu-
tion can be derived (an example can be seen in (37)).

Here we give an example to quantify the difference of these two distributions. If
ε does not depend on c, the generalized Boltzmann distributions (34) are exactly the
same as the classical Boltzmann distributions

(36) ci = cbie
−βqiφ,

and the “distorted” (nonphysical) Boltzmann distributions take the form [19, 20]

(37) ci = cbi exp

{
− βqi

(
φ(c)− 1

2
φD(c)

)}
.

In this example, we design a virtual (ideal) numerical experiment. Considering a
charged sphere in an infinite ionic solution, the bulk concentration (r → ∞) is
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The Boltzmann distribution

The "distorted" Boltzmann distribution

Fig. 2. The traditional (solid line) and “distorted” (dashed line) Boltzmann distributions (sup-
posing qi = −1e) at the Dirichlet boundary as a function of the boundary value φD. The bulk
concentration is set to 0.1M.

cbi = 0.1M , and when r → ∞, φ → 0. In numerical calculation, the computa-
tional domain is bounded, and we set φ = φD as the Dirichlet boundary condition on
an imaginary spherical boundary at distance r = R. Supposing φD is the real value
(depending on the charged sphere and ionic strength) of the real system, the numeri-
cal solution should match the realistic potential and concentration distributions. But
apparently at r = R (at the boundary) the above two Boltzmann distributions lead

to a discrepancy in concentration predictions; one is cbie
−βqiφD , one is cbie

− 1
2βqiφD .

Figure 2 draws the difference as a function of φD (supposing qi = −1e). It is notable
that the gap between the two concentration predictions at the boundary becomes
larger with the increase of applied potentials. When the fixed potential is positive,
the “distorted” Boltzmann distributions lead to lower concentrations for anions, and
higher concentration for cations. For negative boundary potential φD, the opposite
phenomenon occurs. When the fixed potential is zero, the distributions reduce to
the same Boltzmann distribution. An alternative example can also be designed as
a “semiopen” electrolyte solution system which has a Dirichlet BC (φ = φD) at a
“bounded” part of the boundary, and has a homogenous boundary condition at in-
finity (φ → 0, ci → cbi as r → ∞). Similarly as the above example, on the bounded
boundary (φ = φD), the generalized Boltzmann distribution is exactly the classical
Boltzmann distributions ci = cbie

−βqiφD , while the distorted Boltzmann distributions

ci = cbie
− 1

2βqiφD lead to wrong results.

2.4. Generalized PNP equations with concentration-dependent ε(c)
and different boundary conditions. Ionic diffusion in electrolyte solution is an
electro-diffusion process that is influenced by the electric field generated by the ion
distribution itself, biomolecule(s) (if existing), and the environment. The PNP equa-
tions coupling the electric potential and ion concentration distributions provide an
ideal model for describing this process [8, 22]. The PNP equations have been widely
used to study the ion channels, nanopores, fuel cells, and other research areas [8, 7, 4,
2, 23, 6, 34]. The continuum PNP equations can be derived via different routes. They
can be obtained from the microscopic model of Langevin trajectories in the limit of
large damping and the absence of correlations of different ionic trajectories [29, 26],
or from the variations of the free energy functional that includes the electrostatic free
energy and the ideal component of the chemical potential [10]. As aforementioned,
the previous variational method can only ensure consistency between the energy form
and the PNP equations for vanishing boundary conditions for electric potential φ such
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as on the whole space because they did not include the boundary interaction terms.
In addition, an inhomogeneously concentration-dependent dielectric property has re-
cently caused wide research interest [12, 14, 28, 13, 21, 20]. But little previous study
is found to give a consistent dynamic model (such as PNP) for electrolyte solution
when the dielectric coefficient is ionic concentration-dependent. This is also to be
studied in the current subsection.

We start from the free energy functional given by (10) with generic Dirichlet
and Neumann BCs. According to the constitutive relations, the flux Ji and the
electrochemical potential µi of the ith species satisfy

Ji = −mici∇µi.

Here mi is the ion mobility that relates to its diffusivity Di through Einstein’s relation
Di = β−1mi, and µi is the variation of F with respect to ci:

(38) µi =
δF

δci
= qiφ(c)− 1

2
ε
′

i(c)∇φ(c) · ∇φ(c) + β−1 ln(ci/c
b
i ).

Then the following transport equations are obtained from the mass and current con-
servation law:

∂ci
∂t

= −∇ · Ji

= ∇ ·
(
βDici∇

{
qiφ(c)− 1

2
ε
′

i(c)∇φ(c) · ∇φ(c) + β−1 ln(ci/c
b
i )

})
= ∇ ·

(
βDici

(
∇ci
βci

+∇
(
qiφ(c)− 1

2
ε
′

i(c)∇φ(c) · ∇φ(c)

)))
= ∇ ·

(
Di

[
∇ci + βci∇

(
qiφ(c)− 1

2
ε
′

i(c)∇φ(c) · ∇φ(c)

)])
.

Now we get a set of generalized self-consistent PNP equations with concentration-
dependent variable dielectric (VDPNP):

(39) −∇ · (ε(c)∇φ(c)) = ρf +

K∑
i=1

qici in Ω,

(40)
∂ci
∂t

= ∇ ·
(
Di

[
∇ci + βci∇

(
qiφ(c)− 1

2
ε
′

i(c)∇φ(c) · ∇φ(c)

)])
in Ωs, i = 1, 2, . . . ,K.

ε(c)
∂φ

∂n
= σ on ΓN ,

φ = φ0 on ΓD,

ci = cbi on ΓD,

Ji · n = 0 on Γm.

If the dielectric coefficient does not depend on local ionic concentrations, (39) and (40)
will reduce to the traditional PNP equations with the same boundary conditions:

(41) −∇ · (ε∇φ(c)) = ρf +

K∑
i=1

qici in Ω,
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(42)
∂ci
∂t

= ∇ · (Di[∇ci + βci∇(qiφ(c))]) in Ωs, i = 1, 2, . . . ,K.

However, for simplicity, if ε does not depend on c, and based on the same bound-
ary conditions but φ0 6= 0, according to Theorem 2.3, the PNP equations from the
incomplete energy form (9) take the form of

(43) −∇ · (ε∇φ(c)) = ρf +

K∑
i=1

qici in Ω,

(44)
∂ci
∂t

= ∇ ·
(
Di

[
∇ci + βci∇

(
qi

[
φ(c)− 1

2
φD(c)

])])
in Ωs, i = 1, 2, . . . ,K.

Obviously, this is inconsistent with the established physics in this area. The drift term
in the right-hand side of (44) originates from the electric field driving (∇φ) and should
be irrelevant to φD, which is introduced only for mathematical analysis of the incom-
plete free energy form and shouldn’t change the physical phenomenon. Therefore, this
is actually another main reason to question the previous energy functionals. It also
suggests that adding the boundary interactions into the free energy is necessary to
make it consistent with PDEs. In subsection 2.4.2, we will give numerical simulations
for a cylinder nanopore to further study the different current-voltage predictions from
these two derived new PNP models. In the next subsection we will calculate the forms
of energy law for different PNP systems and energy forms.

2.4.1. Energy dissipation law. The electro-diffusion process in electrolyte so-
lution is an energy dissipation process (when no external forces or fields are applied).
This requires that the evolutionary equation system, such as the PNP equations,
need to satisfy the energy dissipation law. This subsection calculates and discusses
the forms of energy law for different PNP systems and energy forms. First, consider a
constant ε, and the total energy of the traditional PNP system (41)–(42) took a form
as shown in [37] (please note here a slight difference from the form in [37] is that the
entropy term takes ci ln(ci/c

b
i ), which is unimportant),

(45) F =

∫
Ω

(
kBT

K∑
i=1

ci

[
ln

(
ci
cbi

)
− 1

]
+
ε

2
|∇φ|2

)
dV.

Consider the change of free energy w.r.t. time t,

d

dt
F =

∫
Ω

K∑
i=1

kBT
dci
dt

ln

(
ci
cbi

)
dV +

∫
Ω

ε∇φ · ∇ d

dt
φdV.

By integrating the second term by parts and using the divergence theorem, we can
get

d

dt
F =

∫
Ω

K∑
i=1

kBT
dci
dt

ln

(
ci
cbi

)
dV −

∫
Ω

φ∇ ·
(
ε∇ d

dt
φ

)
dV +

∫
Γ

φε
∂

∂n

(
d

dt
φ

)
dS

=

∫
Ω

K∑
i=1

[
kBT ln

(
ci
cbi

)
+ qiφ

]
dci
dt
dV +

∫
Γ

φ
d

dt

(
ε
∂φ

∂n

)
dS.
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Then the free energy (45) and the PNP system have been shown to satisfy the following
energy law:

d

dt
F = −

∫
Ω

K∑
i=1

Di

kBT
ci|∇[kBT ln

(
ci
cbi

)
+qiφ]|2dV +

∫
ΓN

φ
d

dt
σdS +

∫
ΓD

φ0
d

dt

(
ε
∂φ

∂n

)
dS

(46)

+

∫
Γ

K∑
i=1

Di

kBT
ci

(
kBT ln

(
ci
cbi

)
+ qiφ

)
∂

∂n

[
kBT ln

(
ci
cbi

)
+ qiφ

]
dS

= −
∫

Ω

K∑
i=1

(
Di

kBT
ci|∇µi|2

)
dV +

∫
Γ

K∑
i=1

µi
Di

kBT
ci
∂µi
∂n

dS

+

∫
ΓN

φ
d

dt
σdS +

∫
ΓD

φ0
d

dt

(
ε
∂φ

∂n

)
dS,

where µi := δF
δci

= kBT ln(ci/c
b
i ) + qiφ, which is just the chemical potential. The first

two terms have direct physical meanings: energy dissipation and input flux of energy
(chemical potential). The third term is a surface energy change due to the surface
charge density variation. However, considering −ε∂φ∂n corresponds to the effective

surface charge density σeffD induced by the exterior region, the last term (with a
minus sign of an energy change rate) has an incorrect sign of energy variation of
the system. Whereas in the case when the PNP system has vanishing and nonflux
boundary conditions, the system also leads to a correct energy dissipation law:

d

dt
F =

d

dt

[ ∫
Ω

(
kBT

K∑
i=1

ci

[
ln

(
ci
cbi

)
− 1

]
+
ε

2
|∇φ|2

)
dV

]

= −
∫

Ω

K∑
i=1

Di

kBT
ci|∇µi|2dV ≤ 0.(47)

Now we consider the complete free energy form (10) with ionic concentration-
dependent dielectric coefficient and consider the VDPNP system (39)–(40),
(48)

F =

∫
Ω

(
1

2
ρφ+ kBT

K∑
i=1

ci

[
ln

(
ci
cbi

)
− 1

])
dV +

1

2

∫
ΓN

σφdS − 1

2

∫
ΓD

ε(c)
∂φ

∂n
φ0dS.

We calculate the energy law for the free energy (48) and the VDPNP system (39)–(40),

d

dt
F =

∫
Ω

( K∑
i=1

kBT
dci
dt

ln

(
ci
cbi

)
+

1

2

dρ

dt
φ+

1

2

dφ

dt
ρ

)
dV

+
1

2

∫
ΓN

d

dt
(σφ)dS − 1

2

∫
ΓD

d

dt
(ε(c)

∂φ

∂n
φ0)dS.(49)

By using the Poisson equation and Gauss theorem with nonhomogenous BC,∫
Ω

1

2

dφ

dt
ρdV = −

∫
Ω

1

2
∇ · (ε(c)∇φ)

dφ

dt
dV

=

∫
Ω

1

2
ε(c)∇φ · ∇dφ

dt
dV − 1

2

∫
Γ

ε(c)
∂φ

∂n

dφ

dt
dS

= −1

2

∫
Ω

[
∇ ·
(
ε(c)∇dφ

dt

)]
φdV +

1

2

∫
Γ

ε(c)φ
∂

∂n

dφ

dt
dS − 1

2

∫
Γ

ε(c)
∂φ

∂n

dφ

dt
dS.(50)
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As the dielectric coefficient is concentration-dependent, then∫
Ω

1

2

dφ

dt
ρdV = −1

2

∫
Ω

[
d

dt
(∇ · (ε(c)∇φ))−∇ ·

(
∂ε(c)

∂ci

dci
dt
∇φ
)]
φdV

+
1

2

∫
Γ

ε(c)φ
∂

∂n

dφ

dt
dS − 1

2

∫
Γ

ε(c)
∂φ

∂n

dφ

dt
dS

=
1

2

∫
Ω

dρ

dt
φdV − 1

2

∫
Ω

K∑
i=1

∂ε(c)

∂ci

dci
dt
|∇φ|2dV

+
1

2

∫
Γ

K∑
i=1

∂ε(c)

∂ci

dci
dt

∂φ

∂n
φdS +

1

2

∫
Γ

ε(c)φ
∂

∂n

dφ

dt
dS − 1

2

∫
Γ

ε(c)
∂φ

∂n

dφ

dt
dS.(51)

Take this equation into (49). Then

d

dt
F =

∫
Ω

( K∑
i=1

kBT
dci
dt

ln

(
ci
cbi

)
+
dρ

dt
φ− 1

2

K∑
i=1

∂ε(c)

∂ci

dci
dt
|∇φ|2

)
dV

+
1

2

∫
Γ

K∑
i=1

∂ε(c)

∂ci

dci
dt

∂φ

∂n
φdS +

1

2

∫
Γ

ε(c)φ
d

dt

∂φ

∂n
dS − 1

2

∫
Γ

ε(c)
∂φ

∂n

dφ

dt
dS

+
1

2

∫
ΓN

d

dt
(σφ)dS − 1

2

∫
ΓD

d

dt

(
ε(c)

∂φ

∂n
φ0

)
dS

=

∫
Ω

( K∑
i=1

dci
dt

[
kBT ln

(
ci
cbi

)
+ qiφ−

1

2

∂ε(c)

∂ci
|∇φ|2

])
dV

+

∫
ΓN

φ
d

dt
σdS −

∫
ΓD

ε(c)
∂φ

∂n

d

dt
φ0dS.

By using the transport equations,

dci
dt

= ∇ ·
(
Di

kBT
ci∇

[
kBT ln

(
ci
cbi

)
+ qiφ−

1

2

∂ε(c)

∂ci
|∇φ|2

])
.

We then obtain the energy law of form (48) for the generalized PNP system

d

dt
F =−

∫
Ω

K∑
i=1

(
Di

kBT
ci|∇µnewi |2

)
dV +

∫
Γ

K∑
i=1

µnewi

Di

kBT
ci
∂µnewi

∂n
dS

+

∫
ΓN

φ
d

dt
σdS −

∫
ΓD

ε(c)
∂φ

∂n

d

dt
φ0dS,(52)

where µnewi = kBT ln(ci/c
b
i ) + qiφ− 1

2
∂ε(c)
∂ci
|∇φ|2, which is just the chemical potential

of the generalized system with ε(c) (see (38)). Now, we can see that the chemical
potential in the first two terms is replaced by the corresponding modified form µnew in
the case of ionic concentration-dependent dielectric permittivity, which is consistent
with the generalized PNP equations. At the same time, the four terms also have
obvious physical meanings, respectively: energy dissipation, input flux of energy, a
surface energy change term due to the surface charge density variation, and a surface
energy change term due to the boundary potential variation (with a correct sign here).
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If the PNP system has vanishing and nonflux boundary conditions, (52) also leads to
an energy dissipation law similar to (47).

As a comparison, we also similarly calculate the energy law for the PNP free
energy form without boundary terms as in (7):

d

dt
F =

d

dt

[ ∫
Ω

(
1

2
ρφ+ kBT

K∑
i=1

ci

[
ln

(
ci
cbi

)
− 1

])
dV

]

= −
∫

Ω

K∑
i=1

(
Di

kBT
ci|∇µi|2

)
dV +

∫
Γ

K∑
i=1

µi
Di

kBT
ci
∂µi
∂n

dS

+
1

2

∫
ΓN

[
φ
d

dt
σ − σ d

dt
φ

]
dS +

1

2

∫
ΓD

[
φ0

d

dt

(
ε
∂φ

∂n

)
− ε∂φ

∂n

d

dt
φ0

]
dS,(53)

where µi = kBT ln(ci/c
b
i ) + qiφ. Again, as discussed above, we find that in each of

the last two surface energy terms there is an incorrect sign of energy changing rate
on the boundary, which is inconsistent with the energy law.

The above analysis of energy law is another indication that the addition of the
boundary interaction term to the proposed free energy functional in this work is
reasonable and necessary.

2.4.2. Numerical simulation in a cylinder nanopore system. In this sub-
section, we present an example with a cylinder nanopore to further investigate the
difference between the standard traditional PNP and the “distorted” PNP models.
A cylinder nanopore with a height of 50Å and a pore radius of 2Å is placed in the
middle of a cubic box of 100Å× 100Å× 100Å. A charge density of −0.02C/m2 is set
on the inner surface of the nanopore and the potential on the lower boundary of the
cubic box is fixed to be zero, while the upper boundary values (taken as membrane
potentials) change from −200mV to 200mV with a step length of 50mV. In this ex-
ample, we use a finite element method to solve these three-dimensional (3-D) PNP
equations in the solvent region Ωs and do not consider the molecular domain Ωm.
The geometry and a mesh of the cylinder nanopore is illustrated in Figure 3.

Fig. 3. The geometry and mesh of the cylinder nanopore.D
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The "distorted" PNP model

The standard PNP model

Fig. 4. The current voltage characteristics obtained with the traditional (solid line) and “dis-
torted” (dashed line) PNP models at bulk concentration 0.1M and membrane potential from −0.2V
to 0.2V.

The electrical current of the traditional PNP model across the pore can be cal-
culated as

Iz = −
∑
i

qi

∫
S

Di

(
∂ci
∂z

+
qi
kBT

ci
∂φ

∂z

)
dxdy,

where S is a cut plane at any cross section inside the pore. For the distorted PNP
model, (43) and (44) from incomplete energy form (9), the electrical current across
the pore is calculated as

Iz = −
∑
i

qi

∫
S

Di

(
∂ci
∂z

+
qi
kBT

ci
∂(φ− 1

2φD)

∂z

)
dxdy.

In the PNP model, the current can be split into two parts: the concentration diffusion
part

Idiff = −
∑
i

qi

∫
S

Di
∂ci
∂z

dxdy

and the potential drift part

Idrift = −
∑
i

qi

∫
S

Di

(
qi
kBT

ci
∂φ

∂z

)
dxdy.

The “distorted” PNP from incomplete energy form has a similar concentration diffu-
sion part but a different potential drift part

Idrift = −
∑
i

qi

∫
S

Di

(
qi
kBT

ci
∂(φ− 1

2φD)

∂z

)
dxdy.

Through comparison between the currents calculated by the PNP model and the
“distorted” PNP model, it is observed that with such a system setup the magnitude
of current in the “distorted” PNP model derived from incomplete energy tends to be
smaller than that in the traditional PNP model (see Figure 4). The current resulting
from the potential drift part is dominant compared to that from the concentration
diffusion part (compare the order of magnitude in Figures 5(a) and 5(b)). It is also
observed that in the “distorted” PNP model the potential drift part significantly
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Fig. 5. Contribution of (a) the diffusion and (b) the drift parts of current in the traditional
(solid line) and “distorted” (dashed line) PNP models.

underestimates the magnitude of the current, whereas the diffusion part exposes the
opposite property.

3. Conclusions. In this paper, we present a mean field free energy functional of
a dielectrically inhomogeneous electrolyte solution in a bounded domain with genetic
Neumann/Dirichlet boundary conditions for potential. In this complete energy func-
tional with a new boundary energy term, the boundary interaction terms are physi-
cally reasonable, and are also crucial in mathematical analysis in order to consistently
derive the correct PB, PNP, and other possibly relevant equations. The appropriate-
ness is supported from different aspects: physical interpretation, variational analysis
of the functionals and the resulted PDE models, comparison with the Euler–Lagrange
form of the Poisson equation, analysis of the energy laws of the corresponding sys-
tems, and numerical examples. We also show that in the presence of nonhomogenous
Dirichlet boundary conditions for electric potential, the traditional energy form is not
consistent with the traditional PB and PNP equations. Using the variational method
of the previous energy functional (usually by introducing a corresponding homoge-
neous problem) may result in “distorted” (nonphysical) Boltzmann distributions and
PB/PNP models. Our numerical examples demonstrate the significant deviations of
the results originating from the “distorted” models. Furthermore, in a particularly
interesting case when the dielectric coefficient of the electrolyte solution depends on
the local ionic concentrations, we derive the VDPB and VDPNP equations from our
complete free energy functional. In fact, as can be seen in this paper, for any Poisson
system (not limited to electrolyte), there should be a similar boundary energy term
or other equivalent form in the energy functional when the system is bounded. As for
more complicate boundary conditions, it may be still an open question for free energy
functional analysis.
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