
Introducing Membrane Transport Energy into the Design of
Sustainable Chemicals against Cytotoxicity
Longzhu Q. Shen,§,† Ji Nan,§,‡,¶ and Benzhuo Lu*,‡,¶

†Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
‡LSEC, National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, Beijing 100190, China
¶University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China

*S Supporting Information

ABSTRACT: Adverse outcomes associated with chemical use
and spill have raised concerns over its sustainability. The
traditional toxicity testing, using laboratory animals as the
downstream safety check, is becoming less viable due to the
economical and ethical liabilities. Green chemistry proposed an
alternative strategy to attain chemical sustainability: designing
chemicals to maximize their intrinsic sustainability and thus
minimize their hazardous risk. Following decades of progress,
there is still a need to develop new metrics to quantify the level
of chemical sustainability. In this report, we developed a new
double functional tool capable of estimating the sustainability
probability of a chemical and designing new chemicals to meet
a desired sustainability probability. This tool was built upon the
Naive Bayesian algorithm with the design variables stemming from three sources. Molecular softness and polarizability were
derived from density functional theory (DFT), and membrane transport free energy was computed using our in-house developed
finite element algorithm. Model validation against the cytotoxicity measured in the U.S. EPA Toxicity ForeCaster (ToxCast)
database (tested up to 100 μM) yielded a score of 0.82 for the area under the curve (AUC) of the receiver operating
characteristic (ROC). On the basis of this model, we constructed the assessment tool with the dual capabilities of prediction and
design.
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■ INTRODUCTION

Chemicals and chemical products have a broad impact on the
global economy and aspects of human health. It has been
realized that unintended biological and environmental con-
sequences can be associated with certain chemical use and
disposal. The conventional approach to checking chemical
safety is to test the toxic effects using laboratory animals such as
rats, mice or dogs. These studies are expensive (millions of
dollars per chemical) and require the use of large numbers of
animals. As a result, many chemicals are put on the market with
little or no toxicity testing.1 It has been estimated that
approximately 83% of chemicals in commerce lack safety data.2

Green chemistry3 presented an alternative proposal toward
chemical sustainability. It introduced the idea of assessing safety
at the initial stage of molecular design so that the redesigned
materials that make up the basis of our society and economy
can be intrinsically sustainable.4 After 25 years of development
of green chemistry, progress has been made toward achieving
chemical sustainability. However, a strong need is still being
recognized5 to develop new sustainable metrics to quantify
sustainability for chemicals in both assessment6−8 and

design.9−12 In this report, we have developed a new
sustainability assessment tool that can estimate the likelihood
of a chemical of incurring cytotoxicity and that can guide safer
chemicals design to reduce their probabilities of causing
cytotoxicity.
There are multiple reasons behind the choice of cytotoxicity

as a meaningful toxicity end point. We present three rationales
for this. First, cytotoxicity usually stands at the front line of the
safety tests in the early stage of drug development.13 Second,
cytotoxicity can provide information for inferring in vivo
toxicity.14−16 Third, cytotoxic effects have been recognized for
their value in discovering/developing chemotherapeutic
agents.17−19 Therefore, it is meaningful to assess sustainability
for commercial chemicals in terms of cytotoxicity. To evaluate
the likelihood of a chemical to incur cytotoxicity, we applied a
dichotomous method to split this study’s chemical data set into
two classes (“active” vs “inactive” with regards to the
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experimental testing concentration range, up to 100 μM). The
binary classification decision was based on the outcomes of in
vitro high throughput screening (HTS) cellular assays. HTS was
described by the U.S. National Research Council (NRC) in
their report on “Toxicity Testing in the 21st Century”20

(“Tox21”) as a paradigm-shift toxicity testing strategy. The U.S.
National Toxicological Program (NTP), the U.S. Environ-
mental Protection Agency (EPA) and the NIH National Center
for Advancing Translational Sciences (NCATS) collaboratively
forged a research partnership to implement the “Tox21” vision.
This “Tox21” partnership uses HTS methods to test thousands
of chemicals in a wide variety of cells, pathways and
technologies, relevant to many aspects of chemical toxicity.21−26

In developing our sustainability assessment tool, we paid
special attention to the choice of the design variables that went
into the statistical model. A novel aspect of this research was
the introduction of the membrane transport energy as a new
effective metric in the predictive model and we developed an
in-house algorithm to compute this quantity. We deliberately
used this energy to capture the physical cost of transporting a
chemical into the cellular membrane. This physical action is
particularly important because the ability of chemicals
permeating through cell membranes has long been linked to
molecular bioavailability and toxicity.14,27−30 Minimizing the
ability of chemicals to cross biological interfaces has been a
fundamental challenge for chemists in designing chemicals for
reduced hazardousness.31 In combination with two other
variables, molecular softness and polarizability, we established
a model with clear physical descriptions of chemicals perturbing
the biological system at the electronic and thermodynamic
levels. We foresee that the meaningfullness and usefulness of
this new assessment tool will make it a valuable addition to the
sustainabiility metrics.

■ METHODS
Data Source and Selection. We applied three criteria to select a

subset of chemicals in the U.S. EPA Toxicity ForeCaster (ToxCast)
program Phase I and II chemical library.32

1. Molecular weight <1000. The bioavailability for chemicals with
molecular weight greater than 1000 is negligible.33

2. Single compound with a definite structure, excluding geo-
metrical and optical isomers and mixtures. Isomeric or
compositional mixtures incur toxicity via complex interactions.
Our model was not designed to treat this group of chemicals
and thus we excluded them from consideration.

3. Containing no metal elements. The mechanisms by which
metal-containing chemicals cause toxicity are far more complex
than organic molecules. We thus defer the treatment of metal
complexes to a later stage.

After the three-layer filter, we obtained about 1000 chemicals and
subsequently categorized them into two classes, “active” and “inactive”
(with respect to the experimental concentration range, up to 100 μM)
based on a combinatorial score derived from the 37 cytotoxicity related
assays available in the ToxCast database.34 Detailed assay descriptions
have been published in our previous work.11 Cytotoxicity at
concentrations above 100 μM would not be observed from the
current laboratory results. Therefore, we are strictly modeling
“cytotoxicity below 100 μM”. The resultant two classes of chemicals
were in balance with a membership ratio of 0.96. All chemical data
were then evenly split into a training and a testing set in order to
perform the cross-validation and external evaluation. The members in
the training and testing sets were equally likely drawn from each class.
The selected chemicals were first desalted using the open source
chemistry toolbox OpenBabel.35 Afterward, 3D structures with the

lowest energy of them chemicals were generated using ChemAxon
Marvin calculator plugins.36

Generation of Design Variables. We employed molecular
softness (SOF), polarizability (PLRZ) and membrane transport free
energy (ΔΔG) to quantitatively infer the perturbation brought by a
chemical to the exposing cells. SOF and PLRZ37 were derived from
quantum mechanical computations at the DFT level. Boese and
Martin’s τ-dependent hybrid functional38 and basis set 6-31+G(d),
implemented in Gaussian 09 rev. D.01,39 were used to fully optimize
the molecular geometries. Vertical (ionization potential) IP and
electron affinity (EA) were calculated in the absence of any solvent.
SOF was then calculated using the following formula.40

= −IP EASOF 1/( ) (1)

ΔΔG was computed using an in-house developed finite element
algorithm41 that included biological membranes in the implicit
solvation model.42 A schematic representation of the system is
shown in Figure 1. The solvated biomolecular system occupies a

domain Ω enclosed by a smooth boundary Γs. The solute (chemical)
region is represented by Ωm, the solvent region by Ωs and the
membrane region by Ωe. Γm is the dielectric interface between the
chemical and the solvent, and Γe is the dielectric interface between the
chemical and the cellular membrane. It is worth noting that almost all
the chemicals in this study were immersed in the membrane (bilayer
thickness 30 Å). ϵs, ϵm and ϵe are the relative permittivities in Ωm, Ωs
and Ωe, respectively. Given the above setting, the nonlinear Poisson−
Boltzmann equation43 in Ω takes the form of eq 2
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where the characteristic function λ = 0 in Ωm or Ωe, and λ = 1 in Ωs,

β =
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1

B
is the reciprocal of the Boltzmann energy, kB is the Boltzmann

constant, T is the absolute temperature. ϵ is a the spatial-dependent
dielectric coefficient, ϕ is the electric potential, a fixed charge
distribution ρf = ∑jqjδ(x − xj) is the cumulation of point charge in the
solute region, and qj is the singular charge located at xj. Solving eq 244

yields the ΔGele, which accounts for the electrostatic contribution to
the solvation free energy as shown in eq 3.

Δ = Δ + ΔG G Gsol ele np (3)

The remaining term, the nonpolar part ΔGnp in eq 2 was calculated by
the solvent accessibility (SA) model45−47 with a surface tension
parameter γ expanded over the atomic coordinates:48

∑γΔ =
=

G S z( )SA
i

N

i inp
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where SAi is the solvent-accessible surface area of the ith atom, γ is an
empirical surface tension parameter, and S(z) introduces the variation
of the surface tension along the z direction in the membrane

Figure 1. Implicit solvation model including biological membranes.
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environment. The detailed solution procedure plus the ionic strength
influence are given in the Supporting Information (S.I.).
We take ΔΔGsol as the solvation energy difference when

transferring a chemical from the solvent to the membrane environ-
ment.

ΔΔ = Δ − ΔG G Gsol sol
membrane

sol
solvent (5)

where ΔGsol
membrane and ΔGsol

solvent denote the solvation energy of a
chemical in the solvent and in the membrane, respectively.
The lengths of the semiprincipal axes were calculated by

approximating the shape of a chemical with an ellipsoid as shown in
Figure 2.
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where the semiprincipal axes a, b and c obey the relation a > b > c.

We used the eigenvalues of the covariance matrix of a set of
uniformly sampled surface coordinates of a chemical to estimate the
lengths of the semiprincipal axes. Derivations are available in the S.I.
Model Construction. The Naive Bayesian classifier49 is an

effective probabilistic classifier based on Bayes’ theorem (eq 7) with
independence assumptions between the covariates.

∫
π θ π θ π θ

π θ π θ θ
| = |

|
X

X
X d

( )
( ) ( )
( ) ( ) (7)

where θ denotes the parameters, X denotes the random variables, π(θ|
X) denotes the posterior probability, π(θ) denotes the prior
probability (π(θ) ≈ 0.5 in this study), π(X|θ) denotes the likelihood
function, and the denominator integral denotes the marginal
likelihood. In this study, the parameter θ represents the class identifier
and X represents the design variables obtained from the previous

section. Our interest was to calculate the posterior probability to
represent chemical sustainability.

To select the variables with high predictive power and less
dependence between each other, we examined the ROC AUC50,51

(Figure 3) and mutual information (MI) (eq 8) matrix (Figure 4).
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where p(x, y) is the joint probability density function of X and Y, and
p(x) and p(y) are the marginal probabilities.

From the ROC AUC plot (Figure 3), we noticed that the predictive
power of the variables follow the descendant sequence, PLRZ > ΔΔG
> SOF > l-axis > m/l ≈ s/l. The ROC AUCs for three variables PLRZ,
SOF and ΔΔG are above 0.7. The same three variables (Figure 4) also
illustrate relatively low dependence between each other. (The
categorized histograms for each variable is provided in the Figure
S1.) Therefore, we selected them as the independent variables for the
predictive model.

The model construction, data analysis and the graphical visual-
ization in this study were coded with the Python programming
language,52,53 libraries and packages.54−61

Figure 2. Illustration of the ellipsoid (yellow) enclosing a molecule
(ball-and-stick model in the center). The meshed light blue profile
represents the molecular surface. Three semiprincipal axes X, Y and Z
have their origin (0,0,0) coinciding with the center of the ellipsoid.

Figure 3. ROC AUC plots for design variables.

Figure 4. Mutual information matrix for design variables.
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■ RESULTS AND DISCUSSION

Model Evaluation and Mechanistic Rationale. The
performance of the Naive Bayesian model was evaluated using
the ROC AUC. It statistically measures the probability of a
randomly selected positive case being ranked higher than a
randomly selected control case.62 It has been widely used to
quantify the overall discriminative ability of statistical classifiers.
It has the excellent property of being applicable to scenarios
with skewed class distributions and unequal classification error
costs.63 A value of 0.5 for ROC AUC indicates a random
classification. Values above 0.5 and up to 1 rank the increasing
discriminative power of a classifier.
In our study, we applied internal cross-validation and external

validation to evaluate the model performance. To this end, we
first split the total data into two groups (training and testing)
with each group containing approximately 500 members. Then,
we further partitioned the training group into 10 subgroups
evenly. Next, we used the chemicals from 9 combined
subgroups to train the model and the remaining one subgroup
to test the model. We did so in a rotatory fashion among all the
10 subgroups so that every possible combination was
considered. The ROC AUC for the cross-validation is 0.77 ±
0.06. After completing the internal cross validation, we
subjected the model to the other ∼500 chemicals in the
testing group (not seen by the model yet). The ROC AUC for
this external validation is 0.82. The consistent performance
between the training and testing sets indicates that the model
has been properly fitted. This validates the use of this statistical
model to construct the sustainability assessement diagram.

We attributed the satisfactory model performance primarily
to the careful choice of the design variables that allowed for a
meaningful mapping between the chemical and toxicological
space. The mechanisms by which chemicals to incur
cytotoxicity can be rather complex. Broadly speaking, three
levels of interactions need to be taken into account.
First, in many instances, chemicals need to go across the

cellular membrane to disrupt biological pathways or interfere
with the functions of critical biological molecules. To transport
chemicals inside the cellular membrane, there exist at least three
known physical scenarios: passive diffusion, facilitated diffusion
and active transportation. In our model, we focused on the case
of passive diffusion and treated it at the thermodynamic level.
The resultant ΔΔG term is the free energy difference between a
chemical within and outside the membrane. The negative sign
of this term indicates that transporting a chemical into the
cellular membrane is energetically favored whereas the positive
sign indicates that chemicals gain energy rewards if staying
outside the membrane. In a sense, ΔΔG can be viewed as the
theoretical ground of lipophilicity. Lipophilicity has long been
recognized in medicinal chemistry as a proved parameter to
infer bioavailability and drug toxicity.64 To estimate lip-
ophilicity, Log P (water/octanol partition coefficient) has
been used as a surrogate in computer-aided drug design and
predictive toxicology fields. Various computational methods
have been developed to calculate the log P values. The
consistency and discrepancy among the predicted log P values
using different methods are being actively researched in
literature.65 Our approach differs by starting from the
fundamental thermodynamic principle instead of identifying

Figure 5. Assessment diagram to predict the likelihood of chemicals inducing cytotoxicity and to design chemicals to meet desired probabilities not
incurring cytotoxicity. The probability axis is shown in purple. The design variables axes are printed black. R1 is an auxiliary axis. The physical units
for the variables on the diagrams are kcal/mol for ΔΔG, 1/eV for SOF and cm3/mol for PLRZ.
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an analogue. ΔΔG physically reflects the energy change during
the membrane transport process. Parameters in eq 2 can be
modulated to adjust the model behavior to better mimic a
specific membrane environment provided with better biological
knowledge. The current success of the ΔΔG corroborates that
thermodynamic parameters are effective at depicting the
propensity of a chemical being transported inside the
membrane and related to the likelihood of incurring
cytotoxicity. In the future, we plan to further expand the
model to explore the toxicokinetic aspect of the membrane
transport process and events occurring at the interface between
the cellular membrane and the solvent. These physical
processes are anticipated to be directly influencing the
membrane transport and cellular toxicity. We have not yet
foreseen any surrogates for them. We therefore argue that the
proposed new parameter ΔΔG is a superior metric to measure
the energy drive for chemicals transpassing the cell membrane.
Second, in order to incur an adverse outcome, chemicals

need to interact with certain biological molecules. A molecular
recognition step is necessary before an effective coupling
between a disrupting chemical and a biomolecule. The physical
forces responsible for this interaction are often induced electric
dipole moments and dispersion forces.66 Polarizability (eq 9) is
a physical quantity that describes the relative tendency of
electron cloud distortion under the influence of an external
electric field. It characterizes the energy change during the
course of molecular recognition.67 We thus included polar-
izability as a parameter in the cytotoxicity model.

α = p E/ (9)

where p is the dipole moment and E is the electric field.
Third, chemicals can cause cell malfunction or death through

undesired chemical reactions with critical biological mole-
cules.68 For instance, the covalent modification of proteins,
especially with the thiol groups, has been shown to trigger
cellular toxicity.69,70 To address this phenomenon, we applied
the hard−soft acid−base (HSAB) theory to estimate the
tendency for chemicals to form covalent bonds, which is linked
to the tendency for some chemicals to be toxic.71 Molecular
softness based upon DFT provides a means to quantify this
propensity.72

Assessment Diagram. From the Naive Bayesian model
(eq 7), we arrived at the sustainability assessment diagram
(Figure 5) by following a procedure described in our earlier
publication11 (log odds ratio between the nontoxic vs toxic
chemicals are shown in S.I. Figure S2). The application of this
diagram to predict cytotoxicity or to guide safer chemicals
design is fairly straightforward. The only needed action is to
connect dots between the lines as shown in Figure 5. For
example, if we have the prior knowledge (either from
experiments or computations) about the values of all the
three design variables, we can pinpoint them (−4.18 for ΔΔG,
0.112 for SOF and 122 for PLRZ for instance) on the black
axes and then link them sequentially to land at a specific
estimated sustainability probability (0.89 in the example) on
the purple axis. Alternatively, if we want to design a chemical
with a predefined sustainability probability of not incurring
cytotoxicity, we can reverse the process by connecting the dots
from the purple axis to the black axes. Suppose we use the same
dotted line in the figure as an illustration and start from the
probability 0.89 on the purple axis. We have the free choice to
go for any point on the immediate next black axis ΔΔG before
proceeding further. We may have some knowledge about the

acceptable value range for ΔΔG based on our experience or
certain functional needs. If that is the case, we can simply
bridge the value on the probability axis (0.89) with all the
acceptable values on the ΔΔG axis. Each of these lines can
further be extended to the auxiliary axis R1 and the other two
remaining black axes (SOF and PLRZ). The collection of all
the possible lines represents the complete solution set that can
exist for the chemicals with the desired sustainability probability
score 0.89. If we do not have any knowledge about ΔΔG, we
can leave it for a moment and move on the SOF axis. We may
have already obtained SOF from quantum calculations. As
illustrated in the example, we fix 0.112 on the SOF axis. Then
we draw a line backward between 0.112 on the SOF axis and a
point on the auxiliary axis R1. This dot on R1 can help us
determine the point on the previously suspended ΔΔG axis.
We join this point on R1 and the probability point 0.89 on the
purple axis by a line, and this line intersects with the ΔΔG axis
at −4.18, which is the only possible value for ΔΔG in this
example. Similarly, we can solve the value on the PLRZ axis by
extending the line between the point on R1 and 0.112 on the
SOF axis. As shown, we arrive exclusively at the point 122 for
PLRZ. The dotted line shown in Figure 5 illustrates only one of
many possible solutions in the solution space. By varying the
standpoints on the black axes, we can obtain the complete set
of possible solutions in the chemical space that can meet the
predefined probability 0.89. The same procedure works for
designing chemicals for any target probabilities on the purple
axis.

■ CONCLUSIONS

In this work, we introduced ΔΔG as an effective metric to
model the potency of chemicals to induce cytotoxicity
measured by the “Tox21” assays which were tested up to 100
μM. The prediction and design diagram constructed based on
ΔΔG, SOF and PLRZ enriches the toolbox of green chemistry
and sustainable assessment.
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(40) Parr, R. G.; Szentpaĺy, L. V.; Liu, S. Electrophilicity index. J. Am.
Chem. Soc. 1999, 121, 1922−1924.
(41) Ji, N.; Liu, T.; Xu, J.; Shen, L. Q.; Lu, B. A Finite Element
Solution of Laterally Periodic Poisson-Boltzmann Model for
Membrane Channel Proteins. [Submitted to Int. J. Mol. Sci.]
(42) Cramer, C. J.; Truhlar, D. G. Implicit Solvation Models:
Equilibria, Structure, Spectra, and Dynamics. Chem. Rev. 1999, 99,
2161−2200.
(43) Baker, N. A. Improving implicit solvent simulations: a Poisson-
centric view. Curr. Opin. Struct. Biol. 2005, 15, 137−143.
(44) Lu, B. Z.; Zhou, Y. C.; Holst, M. J.; Mccammon, J. A. Recent
progress in numerical methods for the Poisson-Boltzmann equation in
biophysical applications. Commun. Comput. Phys. 2008, 3, 973−1009.
(45) Eisenberg, D.; Mclachlan, A. D. Solvation energy in protein
folding and binding. Nature 1986, 319, 199−203.
(46) Sharp, K. A.; Nicholls, A.; Fine, R.; Honig, B. Reconciling the
magnitude of the microscopic and macroscopic hydrophobic effects.
Science 1991, 252, 106−109.
(47) Cramer, C. J.; Truhlar, D. G. An SCF Solvation Model for the
Hydrophobic Effect and Absolute Free Energies of Aqueous Solvation.
Science 1992, 256, 213−217.
(48) Tanizaki, S.; Feig, M. A generalized Born formalism for
heterogeneous dielectric environments: Application to the implicit
modeling of biological membranes. J. Chem. Phys. 2005, 122, 124706.
(49) John, G. H.; Langley, P. Estimating Continuous Distributions in
Bayesian Classifiers. In Proceedings of the Eleventh Conference on
Uncertainty in Artifical Intelligence, San Mateo, 1995; pp 338−345.
(50) Bradley, A. P. The Use of the Area Under the ROC Curve in the
Evaluation of Machine Learning Algorithms. Pattern Recogn. 1997, 30,
1145−1159.
(51) Lasko, T. A.; Bhagwat, J. G.; Zou, K. H.; Ohno-Machado, L. The
use of receiver operating characteristic curves in biomedical
informatics. J. Biomed. Inf. 2005, 38, 404−415.
(52) Oliphant, T. E. Python for Scientific Computing. Comput. Sci.
Eng. 2007, 9, 10−20.
(53) Millman, K. J.; Aivazis, M. Python for Scientists and Engineers.
Comput. Sci. Eng. 2011, 13, 9−12.
(54) Jones, E., Oliphant, T., Peterson, P. SciPy: Open source
scientific tools for Python, 2001; http://www.scipy.org/.
(55) van der Walt, S.; Colbert, S.; Varoquaux, G. The NumPy Array:
A Structure for Efficient Numerical Computation. Comput. Sci. Eng.
2011, 13, 22−30.
(56) pandas: Python Data Analysis Library, 2012; http://pandas.
pydata.org/.
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