Math 231 Work Sheet 5

NAME:

Summary: This worksheet corresponds to sections 7.2, 7.3, and 7.4 in the textbook.

Table of Laplace transform

Function	Example
$\mathcal{L}\left[0\right] = 0$	n/a
$\mathcal{L}\left[c ight]=rac{c}{s}$	$\mathcal{L}\left[42\right] = \frac{42}{s}$
$\mathcal{L}\left[t^{n}\right] = \frac{n!}{s^{n+1}}$	$\mathcal{L}\left[t^{3} ight]=rac{3!}{s^{4}}$
$\mathcal{L}\left[e^{at}\right] = \frac{1}{s-a}$	$\mathcal{L}\left[e^{5t}\right] = \frac{1}{s-5}$
$\mathcal{L}\left[\cos(bt)\right] = \frac{s}{s^2 + b^2}$	$\mathcal{L}\left[\cos(7t)\right] = \frac{s}{s^2 + 49}$
$\mathcal{L}\left[\sin(bt)\right] = \frac{\dot{b}}{s^2 + b^2}$	$\mathcal{L}\left[\sin(7t)\right] = \frac{7}{s^2 + 49}$
$\mathcal{L}\left[e^{at}t^n\right] = \frac{n!}{(s-a)^{n+1}}$	$\mathcal{L}\left[e^{2t}t^4\right] = rac{4!}{(s-2)^5}$
$\mathcal{L}\left[e^{at}\cos(bt)\right] = \frac{s-a}{(s-a)^2 + b^2}$	$\mathcal{L}\left[e^{5t}\cos(3t)\right] = \frac{s-5}{(s-5)^2+9}$
$\mathcal{L}\left[e^{at}\sin(bt)\right] = \frac{b}{(s-a)^2 + b^2}$	$\mathcal{L}\left[e^{5t}\sin(3t)\right] = \frac{3}{(s-5)^2+9}$
$\mathcal{L}\left[af(t) + bg(t)\right] = a\mathcal{L}\left[f(t)\right] + b\mathcal{L}\left[g(t)\right]$	$\mathcal{L}\left[2+5t\right] = \mathcal{L}\left[2\right] + 5\mathcal{L}\left[t\right] = \frac{2}{s} + 5\left(\frac{1}{s^2}\right)$

- 1. Find Laplace transforms by using the table above.
- (a) $\mathcal{L}[3t]$

(b)
$$\mathcal{L}[3 + t^2 + e^{-4t}\cos(t)]$$

(c)
$$\mathcal{L}[(1+e^{-t})^2]$$

(d)
$$\mathcal{L}[e^{2t}t^3 - \sin(t)]$$

2. Find the inverse Laplace transforms by reversing the procedure. Sometimes we need to manipulate the function first.

need to manipulate the function first. (a) Find
$$\mathcal{L}^{-1}[F(s)]$$
 for $F(s)=\frac{3}{s-7}$, i.e. find y with $\mathcal{L}[y]=\frac{3}{s-7}$.

(b) Find
$$\mathcal{L}^{-1}[F(s)]$$
 for $F(s) = \frac{9}{(s+1)^3}$, i.e. find y with $\mathcal{L}[y] = \frac{9}{(s+1)^3}$.

(c) Find
$$\mathcal{L}^{-1}[F(s)]$$
 for $F(s) = \frac{3s-1}{s^2 - 2s - 3}$.

(d) Find
$$\mathcal{L}^{-1}[F(s)]$$
 for $F(s) = \frac{3s-1}{s^2-2s+5}$.