Math 231 Work Sheet 3

NAME:

Summary: This worksheet corresponds to sections 4.4, 4.5 in the textbook.

1. Find the solution to the initial value problem

$$y'' - y' = 2 - 2t$$
 with $y(1) = 2$ and $y'(1) = -3$

by following the steps:

(a) Eyeball a single solution $Y_P(t)$ to the differential equation. **Hint**: It's a simple polynomial with one term.

(b) Find a fundamental pair for the associated homogeneous differential equation.

- (c) Write down the general solution for the given differential equation.
- (d) Find the specific solution to the initial value problem.

2. (Method of Undetermined Coefficients). Using the Method of Undetermined Coefficients, write down the undetermined form of Y_P(t) for each of the following. The first is done for you so you know how little you need to do!
(a) y" - 5y' + 6y = t + 1.
Solution: Y_P(t) = A₁t + A₀
(b) y" - 5y' + 6y = t²
(c) y" - 5y' + 6y = te^{2t}
(d) y" - 5y' + 6y = e^{3t}
(e) y" - 5y' + 6y = (3t² + 1)e^{3t}
(f) y" - 4y' + 13y = e^{3t} cos(t)
(g) y" - 4y' + 13y = te^{2t} sin(3t)

- (h) y'' 4y' = t 2
- (i) $y'' 4y' = \cos(t) 2\sin(t)$

3. Find a particular solution to $y'' - 5y' + 6y = te^{2t}$ using the Method of Undetermined Coefficients. Note that you did part of this in 2(c).

4. (Method of Undetermined Coefficients, Superposition Principle). Follow the steps to find a solution to the IVP

$$y'' - y' - 2y = 10\sin(2t) + 10\sin(t) - 10\cos(2t), \qquad y(0) = 0, \quad y'(0) = -1.$$

(a) Find a fundamental pair for the associated **homogeneous** differential equation.

(b) Split the right hand side as: $f(t) = f_1(t) + f_2(t)$, where

$$f_1(t) = 10\sin(2t) - 10\cos(2t), \quad f_2(t) = 10\sin(t).$$

(c) Write down the undetermined form of $Y_{P1}(t)$ associated with $f_1(t)$, plug it into the ODE

$$y'' - y' - 2y = f_1(t)$$

and solve the coefficients to find $Y_{P1}(t)$.

(d) Redo part (c) to find $Y_{P2}(t)$. Notice that you need to use $f_2(t)$ instead of $f_1(t)$ here.

(e) The particular solution for the ODE with right hand f(t) is given by $Y_P(t) = Y_{P1}(t) + Y_{P2}(t)$. Write down the general solution for the given differential equation using $Y_P(t)$ and the fundamental pair in (a).

(f) Find the specific solution to the initial value problem.