	Aug 29, 2019
	2. Introduction: Motion of a Falling Body Falling body with air resistance (we have seen this in section 1.1) 1-bv
	1-bv
	velocity=v Instead of what we did in section 1.
	mg to write an ODE for height h, here
	we what to write as ODE for volacity is
	· ·
	Newton's second law ma = F
	\mathcal{I}
	dv mg-bv
	So: $m\frac{dv}{dt} = mq - bv \Rightarrow \frac{dv}{dt} = \frac{mq - bv}{m}$
	We are interested in solving the following IVP (vo is given) $\frac{dv}{dt} = \frac{mq - bv}{m}$ (1) $V(0) = V_0$ equivalent to
	de mg-bu
	m (1)
	$(V(0) = V_0)$
	Not required to read Just a justification of (1), is the same as
	Remark: In section ! I of the note, we obtain an ODE
	$\frac{d^2h}{dt^2} = -q - \frac{K}{m} \frac{dh}{dt}.$
There	K is the coefficient the same as b in (1), so replacing it by b,
	what we got is $\frac{d^2h}{dt^2} = -9 - \frac{b}{m} \frac{dh}{dt}$ (2)
	However, you may still wonder the sign on the RHS of (2), which seems to be different compared to (1). This is because
,	which seems to be different compared to (1). This is because
	$\frac{dh}{dt} = -V$ (3), where the negative sign is because that we
	assume a velocity downward is possitive in this section and equ).

In fact, using (3) we know
$$\frac{d^2h}{dt^2} = -\frac{dV}{dt}$$
 (4), and plugging (3) and (4) into (2) we get:

 $-\frac{dV}{dt} = -\frac{1}{2} - \frac{1}{2} - \frac{1}{2} = -\frac{1}{2} - \frac{1}{2} = -\frac{1}{2} = -\frac{1}{$

_	
A	Methodu: Solvery for Non-Constant Solutions
	We first look at one example before discussing the general procedure Example: solve the following IVP
	$\frac{dy}{dx} = \frac{x-5}{y^2}$, $4(0) = 2$ (3)
	Solution: Recall that in order to solve IVP we need to find the general solution of the ODE first.
	$\frac{dy}{dx} = \frac{x-s}{y^2}$
	$4^2 d4 = (X-5) dx$
-	$4^2 dy = \int (x-5) dx$
	$\pm 4^3 \pm (1 = \pm (x-5)^2 \pm ($
	a constant can be chosen, therefore
	$4 = \left(\frac{3}{2}(x-5)^2 + 3c\right)^{\frac{1}{3}}$ We only have one constant
	You may also write the solution as $4 = (\frac{3}{2}(x-5)^2 + C)^3$
	You may also write the solution as $4 = (\frac{3}{2}(x-5)^2 + C)^{\frac{3}{2}}$ by replacing 3C with C , or $4 = (\frac{3}{2}x^2 - 15x + C)^{\frac{1}{3}}$
	$blc = \frac{3}{2}(x-5)^2 + 3C = \frac{3}{2}(x^2 - 10x + 25) + 3C$
	$= \frac{3}{2}x^2 - 15x + \frac{75}{2} + 3C$
	this can be any number, so we use E

Say, you like wroting the general solution as

$$y = \left(\frac{2}{2}(x-5)^2 + E\right)^{\frac{1}{3}}$$
(4)

Once you have found the general solution, you still need to find the constant in order to solve the IVP.

Since IV is $y(0) = 2$, we plug $y(0) = 2$ and get $y(0) = 2$, we plug $y(0) = 2$ and get $y(0) = 2$.

So the particular solution of IVP is

 $y(0) = \left(\frac{3}{2}(x-5)^2 + \frac{59}{2}\right)^{\frac{1}{3}}$

If you want to expand $(x-5)^2 = x^2-10x+25$, you will get $y(0) = \frac{3}{2}(x^2-15x+8)^{\frac{1}{3}}$

General Procedure:

 $y(0) = y(0)$ dx

 $y(0) = y(0)$ dx

integrals into a single symbol C. Example Solve dy = x with 4(1) = -3 Solution: dy = x 4 dy = x dx JHdy = Jxdx 去华= 去光+ C · 42 = x2 + 2C H = ± 1 X+2C Plug X=1, 4=-3 (b/c IV & 4(1)=-3) shoto the general Solution above, we see that the sign must be "-" to make y=-3. $-3 = -\sqrt{1^2 + 2C} = -\sqrt{1+2C}$ €> 3 = √1+2C Notice that we choose the Solution with "-" sign 9 = 1+2C when we plug sh x=+1, y=-3 C= 4 Therefore the solution of IVP 23 4= - 1 x2+8. 7 (for separable ODE) The above example shows sometimes the proceduce seems to give more than one solution in general for ODE, and when this happens you need to choose one of you need to solve the IVP.

600	start	Cal.	Lance
61	Stant	Sou	etions

In your algebra days. You may have seen the following equation X(X-2) = 4(X-2) (5)

If you just divide both sides by (x-2), you get X = 4.

You may think that you have successfully solved equation (5), but eq (5) actually has two solutions: X = 2 and X = 4. What's wrong? Because of X = 2, you are dividing both sides by X - 2 = 0 which is not valid.

Somilar things can also happen when solvery an ODE

Example: $4' = e^{t} \sqrt{1-y^{2}}$ (Here t is the independent variable) Solution: $\frac{dy}{dt} = e^{t} \sqrt{1-y^{2}}$

 $\frac{dt}{\sqrt{1-y^2}} = e^t dt$

J dt - J et dt

522-14 = et + C

y = son(et+c)

Everything is good sprovided $\sqrt{1-y^2} \neq 0$ (notice that you divide both sides by $\sqrt{1-y^2}$ to get $\frac{dy}{\sqrt{1-y^2}} = e^{+} dt$)

50 What of VI-42=0 ?

4	
,	This would grose if y= 1 and these two are indeed valded solutions
	to the ODE (4= and 4= - are two constant functions of)
	to the ODE (4= and 4=- are two constant functions of) show the ODE (4= and 4=- are two constant functions of)
	Therefore the solutions of the ODE are:
	185 -1, 4(t) = 1, 4(t) = sh(et+ c).
	Overlap:
	Just to clear things up, when we classify ODE into different types one ODE could fall into more than one category.
	One ODE could fall tho more than one category:
-	
	Example: dx = x4 is both separable and fixst-order linear.
-	
	· Justification (Not required to read!)
	Suppose dy = g(x) p(y) Note we assume
	h(y(x))y'(x) = g(x) $(h(y) = y(y))$
	f(y(x)) y(x) dx = (g(x) dx (b))
	9
	On the left hand side, we may use substitution u= y(x) in
	integration and get
	$\int h(y\alpha)y'\alpha)dx = \int h(u)du = H(u) + C_1$
	And thus (6) gives us u=4(x)
	$G + H(y(x)) = G(x) + C_2$
	Of course this simplies If (yex) = G(x) + C just as our method
	before.
-1	

	2.3 Linear Equations
	• Linear first-order ODEs can always be written as the form $a_1(x) \frac{dx}{dx} + a_0(x) \frac{dx}{dx} = b(x) \qquad (1)$
	$a_1(x) = dx + a_0(x) + a_0(x) = b(x)$ (1)
	Examples: $4 \frac{dy}{dx} + 5y = 0$ $4 \times \frac{dy}{dx} + e^{x}y = Seh(x)$
	4 x dy + ex + = Sh(x)
	Divode by a(x) on (1) we can get
	$\frac{dy}{dx} + \frac{a_0(x)}{a_1(x)} + \frac{b(x)}{a_1(x)} $ Standard form
	· Methods of solvering standard Form (2)
	Franks dy
	Mutoply by e
	Solution: $e^{5x} + 5y = 2$ Mutophy by e^{5}
	$\frac{d}{dx}(e^{5x}y) = 2e^{5x}$
-	de Co di
	$\int \frac{d}{dx} \left(e^{5x} y \right) dx = \int \frac{5x}{2e} dx$
	Jean Je ax
	$e^{5X} + = \frac{2}{5}e^{5X} + C$
	5 - 5 - 1 -
	$\frac{4}{3} + \frac{2}{3} + \frac{-5x}{2}$
	The key steep above 23 to multiply the ODE in standard form by e ^{5X} which is e ^{A(X)} where A(X) 23 an antiderivative of a(X).
	whoch is eACX) where ACX) is an antiderivative of aCX).

[ay constant C can be chosen for Au), It doesn't matter)

General Procedure and Formula: $\frac{dy}{dx} + a(x) + = b(x)$ $e^{A(x)} \frac{dy}{dx} + e^{A(x)}y = b(x)e^{A(x)}y$ (as be justified of you take derivative $\frac{d}{dx}(e^{A(x)}y) = b(x)e^{A(x)}y$ explanation $\frac{d}{dx}(e^{A(x)}y) = b(x)e^{A(x)}y$ product rule and chain rule. $e^{A(x)}y = \int b(x) e^{A(x)} dx$ $4 = e^{-A(x)} \int b(x) e^{A(x)} dx$ So the general solution of standard from (2) is given by $H = e^{-A(x)} \int b(x) e^{A(x)} dx$ Notice the constant C 23 hidding in (bix) e Aix) Example: X dx + 24 = X4 Golution: First write as standard form (divide by X) $\frac{dq}{dx} + \left(\frac{2}{x}\right) + = \left(\frac{3}{x}\right) + \frac{3}{x} + \frac{$ $4 = e^{-2h|x|} \left(x^3 e^{2h|x|} dx \right)$ Compute $\int x^3 e^{2\ln|x|} dx = \int x^3 |x|^2 dx = \int x^5 dx$ Don't forget the parentheses = $\frac{1}{5}x^6 + C$ $(\frac{1}{5}x^6 + C) = x^{-2}(\frac{1}{5}x^6 + C) = \frac{1}{5}x^4 + \frac{C}{x^2}$

Example:
$$\int_{y=0}^{y=0} \frac{dy}{dy} = e^{t}$$
 $\int_{y=0}^{y=0} \frac{dy}{dy} = 2$

Solution: $\int_{y=0}^{y=0} \frac{e^{-A(t)}}{e^{-A(t)}} \int_{y=0}^{y=0} e^{A(t)} e^{t} dt + according to (3)$
 $\int_{y=0}^{y=0} \frac{dy}{dy} = \int_{y=0}^{y=0} \frac{dy}{dy} = \int_{y=0}^{y=0} \frac{dy}{dy} = \int_{y=0}^{y=0} \frac{e^{t}}{dy} + C$

We obtain $\int_{y=0}^{y=0} \frac{e^{t}}{e^{t}} + C = \int_{y=0}^{y=0} \frac{e$

50:
$$A = e^{-A(x)} \int e^{A(x)} b(x) dx$$

$$= e^{-h(x^2)} \left(Sh(x) + C \right) \leftarrow \frac{\text{port forget the parentheses!}}{\text{parentheses!}}$$

$$= e^{h(x^2)} \left(Sh(x) + C \right)$$

$$= \chi^2 \left(Sh(x) + C \right)$$

Remark: As we have seen in the examples, calculation of $\int e^{Aox}b(x)dx$ might be complicated. One needs to first do some samplication before finding the antiderivative, the most common samplification is $\ln(f(x)) = f(x)$ (we use $\int e^{h(f(x))} dx$ in the example above

Remark: The constant (on A(x) doesn't affect the schal solution. In the example above, we could choose $A(x) = lr(x^2) + 7$

then
$$\int e^{A\omega}b(x) dx = \int e^{A(x)}b(x) dx = \int$$

	2.4 Exact Equations
	2.4 Exact Equations Sometimes the solution of first-order ODE is usually in a form
	F(x, y) = C
	Taking derovative with respect to X:
d	
dx	$F(x,y) = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial x} = 0$. (1)
	Example: $f(x,y) = x^3 y^2 = C$
	d 1 3 112 2 2 2 3 du
	$\frac{d}{dx}(x^3 + y^2) = 3x^2 + y^2 + x^3 \cdot 2y + \frac{dy}{dx} = 0.$
	If one can reverse the process before, we can somehow solve
	OPE (1) and find solution in the form Fix, y) = C.
*	Remark: As In our textbook, (1) may also be written as the
	form $\frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial 4} dy = 0 \left(3\dot{x}^2 \dot{y}^2 dx + \chi^3 \cdot 2 \dot{y} dy = 0 \right)$
	sh example
	this does mean the same thing as (1).
Theorem	· Detecting Exactness:
and :	
	or $M(x,y) dx + N(x,y) dy = 0$ (2),
	the equation is exact if $\Xi F(x,y)$ s.t. $M(x,y) = \frac{\partial F}{\partial x}(x,y)$
	$N(x, y) = \frac{\partial F}{\partial y}(x, y)$. Definition
	This can be detected by checking $\frac{\partial M}{\partial y}(x, y) = \frac{\partial N}{\partial x}(x, y)$ or not.
	If this holds, then there must exist an Flord the equation or exact
	If this holds, then there must exist an Flord the equation is exact Way to detect exactness

```
MIX.A) MX.A)
Example: 4 + (x + 2y) \frac{dy}{dx} = 0
 \frac{\partial M}{\partial H} = \frac{\partial N}{\partial X} = \frac{\partial N}{\partial X} = \frac{\partial N}{\partial X}
therefore the equation is exact.
· How to find F(x, y)?
Still use the example above, y + (x+2y) \frac{dy}{dx} = 0
We want to find F(x, y) satisfying
    \frac{\partial F}{\partial x} = \frac{4(31)}{3}, \frac{\partial F}{\partial 4} = x + 24(3.2)
From (3.1), view "4" as a coefficient and perform indefinite integral
for "x", we get
  F(x, y) = X4 + g(4)
Why? \ \ dx = x + c?
        we have the term 9(4) blc any function only depending on 4
        has zero yarteal derevative with respect to X.
Now according to (3.2)
   34 = 34 (X4+ 9(4)) = X + 9(4) = X+24
\Rightarrow 9'(8) = 24
So g(4) = (24 dy = 42+ C
Therefore F(x, y) = Xy + y2+ C
We can choose any constant C, so choose C= O and get
 F(x, y) = X H + 42
Once we have solved Fix, 4), we know the general solution of the exact
```

equation is fex, y) = C. (xy+y2= C in the example above)

	Example: Solve X+1+ 4 - X dy = 0.
	Solution, $(X+1+\frac{1}{4})dx + (-\frac{X}{y^2})dy = 0$
	y2)04 -0
	M(X, y) M(X, y) Check whether the equation is exact.
	theck whether the equality is exact.
	$\frac{\partial \mathcal{M}}{\partial \mathcal{Y}} = -\frac{1}{4^2}$, $\frac{\partial \mathcal{N}}{\partial \mathcal{X}} = -\frac{1}{4^2}$
	Since IM = 3N it is exact. Now by to find Fix, y)
	$\frac{\partial F}{\partial X} = X + 1 + \frac{1}{4} (4.1) \frac{\partial F}{\partial 4} = -\frac{X}{4^2} (4.2)$
	From equation (4.1), by doing indefinite integral with
	From equation (4.1), by down and establisher shegral with respect to X and view of as a coefficient, we get
A	F(x,4)= \(\frac{1}{2}\cdot \cdot \cd
	So $\frac{\partial E}{\partial y} = -\frac{x}{y^2} + 9'(y)$ and from (4.2) :
	$=\frac{x}{x}+\alpha'(x)$
	$-\frac{x}{4^2} + g'(4) = -\frac{x}{4^2}$
	\Rightarrow $g(y) = 0 \Rightarrow g(y) = 0$, where 0 can be
-	Just choose 1)=0, 50 gey)=0 and
	Just choose $1)=0$, so $g(y)=0$ and $f(x,y)=\frac{1}{2}x^2+x+\frac{x}{4}$
	The solution of the ODE $\sqrt{3}$ $\pm x^2 + x + \frac{x}{4} = C$.
4	This step can be written as
	$F(x,y) = \int (x+1+\frac{1}{4}) dx + g(y) = \frac{1}{2}x^2 + x+\frac{1}{4} + g(y)$
	We dod't but + c" for this external We + c" can be
	We dod't gut + C" for this extegral b/c "+ C" can be shoulded in gry).

Example: Solve
$$\frac{dy}{dx} = -\frac{2xy^2+1}{2x^2y^4}$$

Solution: $\frac{dy}{dx} = -\frac{2xy^2+1}{2x^2y^4} dx$
 $\frac{2xy^2+1}{2x^2y^4} dx + 1 dy = 0$

(5)

(2xy^2+1) $\frac{dx}{dx} + \frac{2x^2y}{dy} dy = 0$

(6)

In this example, both (5) and (6) are in the form we want:

M(x, y) $\frac{dx}{dx} + \frac{N(x, y)}{dy} dy = 0$.

However, if we try to use (5), then

 $\frac{dy}{dy} = \frac{2xy^2+1}{2x^2y^4} - \frac{dy}{dx} = 0$.

We find out it is not an exact equation. We doit know low to solve.

If we try to solve from (6),

 $\frac{dy}{dy} = \frac{dy}{dy} = 0$

Pow using (7.3), $\frac{dy}{dy} = \frac{dy}{dy} = \frac{dy}{dy} = 0$

P(y) = 0 \Rightarrow We can choose $\frac{dy}{dy} = 0$

Therefore $f(x, y) = \chi^2 y^2 + \chi$, and solution of the ODE is $x^2y^2 + x = C$. Not required, totally irrelevant to the exam! to check $\frac{\partial M}{\partial Y} = \frac{\partial N}{\partial X}$ sh order to know there exists a function F(x, y) Sit.) 3x (x, y) = M(x, y), (X) JE (x, y) = N(x, y) The proof is on page 60 " Proof of Theorem 2", it is exactly wroting the procedure of computing Fix. y) in an abstract way. The shtuether is that of F(x, y) is smooth, and (x) holds, then from calentus II you know $\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x}$, and thus we must have $\frac{\partial N}{\partial y} = \frac{\partial N}{\partial x}$. This argument shows that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ is always a necessary condition for the existence of F(x. 4) satisfying (X) For the suffociency, it actually fails when the domain of functions and not so good. Consider for example, $\frac{-4}{x^2+4^2}dx + \frac{x}{x^2+4^2}d4 = 0$ $\frac{-4}{x^2+4^2}dx + \frac{x}{x^2+4^2}d4 = 0$ Although = = = x, there is not such a Fix. y) satisfying (*) in the domain { (x, y) & IR2 | (x, y) \$ (0,0) } You may think Fix. y) = arctar () 2) a choice, but it cannot even be defined continuously in the domain-

3	2xy2+1 dx + 1 dy=0
2.5 Special Integrating Factors	J
2.5 Special Integrating Factors In the last example of section 2.4	(ex 42+1)dx+2x24d4=0"
we see that sometimes even of the equation	ba
M(x,y) dx + N(x,y) dy =	
is not exact, we can make it to be	exact by multiplying
M(x, y) 5,1.	
M(x,y) M(x,y) dx + M(x,y) N(x,	y) dy = 0 (2)
is exact. Then this lux.y) is called	on rhtegrafter factor
Of the equation (1).	4 1 1
() Family	all De not over
> Def of shtegrather factor: (ii) Equation	(2) 23 exact.
Example: Show that MIX, 41 = X42 25	an integration factor
Example: Show that $u(x, y) = xy^2 25$ for $(2y - 6x) dx + (3x - 4x^2y^{-1})$) dy = 0 (3)
and use this sitegrating factor to solve the	equation.
Solution: First check (3) 23 not exact.	V
34 (2A- ex) - 3x (3x - 4x2A)	
$= 2 - (3 - 8x4^{-1}) \neq 0$	=) (3) 25 not exact.
Now multiply (3) by Mex, y) = xy2 +	o get
$(2x4^3 - 6x^24^2)dx + (3x^24^2 -$	4x34) dy=0 (4)

NIX. y)

Mix, y)

$$\frac{\partial M}{\partial y} = 2x \cdot 3y^{2} - 6x^{2} \cdot 2y = 6xy^{2} - |2x^{2}y|$$

$$\frac{\partial N}{\partial x} = 3y^{2} \cdot 2x - 4 \cdot 3x^{2}y = 6xy^{2} - |2x^{2}y|$$

$$\frac{\partial N}{\partial x} = 3x^{2} \Rightarrow (4) \quad \text{is exact}.$$
Therefore Mix.y) is an integrating factor.

Now solve the ODE. Use the exact equation to solve!

What to find Fix.y) s.l.
$$\frac{\partial F}{\partial x} = 2xy^{3} - 6x^{2}y^{2}, \quad \frac{\partial F}{\partial y} = 3x^{2}y^{2} - 4x^{3}y .$$

$$F(x, y) = \int (2xy^{3} - 6x^{2}y^{2}) dx + g(y)$$

$$= x^{2}y^{3} - 2x^{3}y^{2} + g(y)$$
Now we want
$$\frac{\partial F}{\partial y} = \frac{\partial}{\partial y} \left(x^{2}y^{3} - 2x^{3}y^{2} + g(y)\right)$$

$$= x^{2} \cdot 3y^{2} - 2x^{3} \cdot 2y + g'(y)$$

$$= 3x^{2}y^{2} - 4x^{3}y + g'(y) = 3x^{2}y^{2} + 4x^{3}y + g'(y) = 3x^{2}y^{2} - 4x^{3}y + g'(y) = 0$$
Therefore
$$F(x, y) = x^{2}y^{3} - 2x^{3}y^{2} + g(y) = 0$$
Therefore
$$F(x, y) = x^{2}y^{3} - 2x^{3}y^{2} + g(y) = 0$$
Therefore
$$F(x, y) = x^{2}y^{3} - 2x^{3}y^{2} = C$$

In general, shtegrating factors are hard to find. But the
In general, shegrating factors are hard to find. But the following theorem gives us the integrating factor under
certain situations:
No need to memorize, will be given if needed in the exam
Theorem: If $\left(\frac{\partial M}{\partial X} - \frac{\partial N}{\partial X}\right)/N$ only depends on X.
 then $M(x) = \exp \left[\int \left(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial x} \right) dx \right]$
23 an entegrating factor for equation (1).
If (3M - 3M)/M only despends on y, then
$M(y) = \exp \left[\int \left(\frac{\partial x}{\partial x} - \frac{\partial M}{\partial y} \right) dy \right]$
23 an entegrating factor for equation (1)
Example: Solve $(2x^2+y)dx + (x^2y-x)dy = 0$ (5) Solution: $N(x,y)$ $N(x,y)$
Solution: $M(x,y)$ $N(x,y)$ $2 - 2x + 4 = 0$ $3N$ $3N$ $3N$ $3N$
$\frac{\partial M}{\partial t} - \frac{\partial N}{\partial x} = 1 - (2xyy) = \frac{2 - 2xy}{40}$
50 (5) 23 not exact.
$\left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)/M = \frac{2xy-2}{2x^2+y}$ not only depends on y
$=-\left(\frac{\partial x}{\partial W}-\frac{\partial x}{\partial W}\right)$
But $\left(\frac{\partial M}{\partial Y} - \frac{\partial X}{\partial X}\right)N = \frac{2-2x+}{X^2Y-X} = \frac{2(1-x+)}{X(x+-1)}$
$=\frac{-3}{x}$ only depends on x .

So consider shegrathy factor

$$M(x) = \exp \left[\int \frac{1}{x} dx \right]$$
 $= \exp \left[-2 \ln |x| + C \right]$
 $= \exp \left[-2 \ln |x| + C \right]$
 $= \exp \left[-2 \ln |x| + C \right]$
 $= \exp \left[-2 \ln |x| + C \right]$

We can choose

 $C = 0$. It won't affect anything in the end.

Multiply (5) by $\frac{1}{x^2}$ we get

 $\left(2 + \frac{1}{x^2} \right) dx + \left(4 - \frac{1}{x} \right) dy = 0$

Thus is exact by the theorem (one can also check).

Try to find $F(x, y) \le t$. $\frac{2F}{8x} = 2 + \frac{1}{x^2}$, $\frac{2F}{8y} = y - \frac{1}{x}$.

 $F(x, y) = \left(2 + \frac{1}{x^2} \right) dx + g(y)$
 $= 2x - \frac{1}{x} + g(y)$

Now we want

 $\frac{2F}{3y} = \frac{3}{3y} \left(2x - \frac{1}{x} + g(y) \right) = -\frac{1}{x} + \frac{1}{y} \left(x + \frac{1}{y} \right) = \frac{1}{y} + \frac{1}{x} \left(x + \frac{1}{y} \right) = \frac{1}{x} + \frac{1}{y} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} + \frac{1}{x} \left(x + \frac{1}{x} \right) = \frac{1}{x} \left(x + \frac{1}{x$

	Not required
	Remark, some we are dividing by x2 we may lose
	constant solution $X = 0$ (of $x^2 = 0$ then $x = 0$).
	If we say y is dependent variouble and x is independent
	variable, then X=0 33 only true at one youth so of
	doesn't affect anything.
	But 24'3 hard to tell from (5) which variable is independent. If we write
	independent. If we write
	$(2x^2+4)+(x^24-x)\frac{dy}{dx}=0$
	then X=0 33 not a solution; but if we write
	$(2x^2+4)\frac{dx}{d4}+(x^24-x)=0$
	then X=0 is a constant solution.
· sa	Example: Find an integrating factor for the equation $2y + x \frac{dy}{dx} = 0$.
	Λ
	425: $(24) dx + x d4 = 0$
	MIX, 4) N(X, 4)
<u>9</u> ,	$\frac{1}{4} - \frac{\partial N}{\partial x} = 2 - \frac{1}{4} = 1 \neq 0$
	So the original equation is not exact.
	But $\left(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial x}\right)/N = \frac{1}{x}$ only depends on x ,
	So the theorem gives an integrating factor
	$P[\int \pm dx] = \exp(hw) = x$

Let's use this integrating factor to solve the OK	E.
Multiply the original ODE by the factor M(x) = >	:
$2xy dx + x^2 dy = 0$	-
We want to find F(x, y) s.t. DF = 2xy	0
JE = X2	3
From (1), F(x,y) = J2xy dx + g(y)	*
= X24 + 918).	
Substitute this into equation 2:	
34 (XX + B(A)) = X2	<u>.</u>
$A + A(A) = X^2 => A(A) =$	0
So let g(x) = ∫ 0 dy = 0 Hence P(x,y) = x² y.	
Therefore the solution is $X^2Y = C$	201
	- W :
Remark: Sonce	
$\frac{\partial N}{\partial x} - \frac{\partial M}{\partial 4}$ $ -2$	
$\frac{1}{1}$	
only depends on 4, we may also apply the s	0.000
	Hor
$M(4) = \exp \left[\int \frac{1}{24} d4 \right] = \exp \left[-\frac{1}{2} \right]$	en(4)
= eh (y)-\frac{1}{2} = \frac{1}{2} = \frac{1}{2}	

By No.

	2.6 Substitutions and Transformations
	Like you have learned in calculus class, substitutions can
	be used to transform the integral into a simpler form,
	they can also be used in solving ODES.
	We will learn two substitutions here, each is used to deal
	with one certain type of ODE. There are other substitutions
	in the textbook, which are not required in this class, but
	you can learn them by yourself for interests.
	1. Homogeneous Equations this word comes from the fact
	1/ / //
	bhat the right hand side of us a function only depending on -
4	Examples: Wrote ODE 2hto form (1).
	(i) dt = + (ht-hx)
	$\Rightarrow \frac{dy}{dx} = \frac{1}{x} \ln(\frac{x}{x}) = G(\frac{x}{x}) \text{ where } G(w) = v \ln v$
	dx dx dx
	(ii) (x-4)dx + x d4 = 0
_	$\Rightarrow (X-H) + \times \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{Y-X}{X}$
	→ dy 美一关 → dy = 共一!
	$\frac{dx}{dx}$ $\frac{dx}{dx}$
	key step: dovoded both numerator and denominator by

Xh. Here we choose k=1.

	50lvshq
	General Procedure for $\frac{dy}{dx} = G(\frac{y}{x})$
	After substitution V = \$, this becomes
	$\times \frac{dv}{dx} + V = G(v)$
	x dv = G(v) - V
	$\frac{dv}{G(v)-v} = \frac{1}{x} dx \qquad (2)$
	Solve the separable ODE for G(U) given in the problem.
	problem. A separable ODE
	Steeps: (i) Write ODE shots the form (1)
e e	(ii) Use substitution to transform (11 stato (2)
	(iii) Solve (2) (But after this, the solution is in terms of x,v)
	(iv) Express the answer in terms of organal variables × and y.
	Example: Solve $\int (XY + Y^2 + X^2) dx - X^2 dy = 0$ $(Y(1) = 0)$
	(4(1) = 0
	Solution: Write the ODE into the form in (1)
	$\frac{dy}{dx} = \frac{xy + y^2 + x^2}{x^2} = \frac{y}{x} + \left(\frac{y}{x}\right)^2 + 1$
	Substitution $V = \frac{4}{2}$:
	$\frac{dv}{dx} + V = V + U^2 + I$

	Not required in this class
	Well-defined at $X=0$. It is defined continuously on $(-\infty,0)$ or $(0,+\infty)$. In a more regarous way, we
	$(-\infty,0)$ or $(0,+\infty)$. In a more regarous way, we
	should choose the interval containing X=1, s.e (0, tox,
	and wrote the solution as
	H = X tan(h(x)), X > 0. (4)
2	Bernoulli Equations No time to cover in this class, no need to know.
	(5) $\frac{dy}{dx} + P(x)y = Q(x)y^n$, $n\neq 0, n\neq 1$.
	If n=0 or 1. equation (5) 23 a linear ODE, so we have already learned how to solve it.
	have already learned how to solve st.
	Writing ODE into the form in (5) is usually easy:
	example: dx + tx3 + x = 0
	OH TVX 1 t CO
	$\frac{dx}{dt} + \frac{1}{4}x = -t \times \frac{3}{3}, \text{ so } n = 3.$
	(Notice here X is the dependent variable and t is the
	sholependent variable)
	How to solve ODE by using substitution V = 41-1
2	Example: Solve $\frac{dt}{dx} - 5y = -\frac{5}{2}xy^3$
Devode	My by 4" (here n = 3) to get

 $4^{-3} \frac{d4}{dx} - 54^{-2} = -\frac{5}{2} \times (6)$

Use substitution
$$V = H^{-2}$$
, then
$$\frac{dV}{dx} = -2H^{-3} \frac{dH}{dx}$$
50 (6) becomes
$$\frac{1}{-2} \frac{dV}{dx} - 5V = -\frac{5}{2} \times 008$$
Now we get a linear ODE and we can solve it:
$$\frac{dV}{dx} + 10V = 5 \times 008$$

$$\frac{dV}{dx} \times 10e^{10x} = 5 \times 008$$

$$\frac{dV}{dx} \times 10e^{10x} = 5 \times 008$$

$$V = 10x = 10x = 10x$$

$$V = 10x =$$

General Procedure for solving dy + P(x) 4 = Q(x) 41 doubdong by 4": 4-1 dx + P(x) 41-1 = Q(x) (7) Use substitution V = 41-n $\frac{dv}{dx} = (1-n) 4^{-n} \frac{d4}{dx}$ So (7) becomes $\frac{dv}{dx} + P(x) V = Q(x) < \frac{l dear}{005}$ Solve it and express the final answer in terms of x and 4. Example: dy 4 = e2x y3 Solution: Bernoullè equation, n=3 Dovedong by 4^3 : $4^{-3} + (-4^{-2}) = e^{2x}$ (8) Substatution $V = 4^{1-3} = 4^{-2}$ $\frac{dv}{dx} = -2 4^{-3} \frac{dy}{dx}$ So (8) becomes $-\frac{1}{2}\frac{dy}{dx}-y=e^{2x}$ $\frac{dv}{dx} + 2v = -2e^{2x}$ $e^{2x} \frac{dv}{dx} + 2e^{2x}v = -2e^{2x+2x}$ d (e2xv) = -2e4x

$$e^{2X}v = -\frac{1}{2}e^{4X} + C$$
 $v = -\frac{1}{2}e^{2X} + Ce^{-2X} \Rightarrow y^{-2} - \frac{1}{2}e^{2X}$

She we are downly by y^3 , we $+ce^{-2X}$.

Also need to check $y^3 = 0$ i. e. $y = 0$.

It can be verified that $y = 0$ is a solution of the 005.

50 in conclusion; we have solutions

 $y = 0 - y^{-2} = -\frac{1}{2}e^{-2X}$.

Do not forget constant solution $y = 0$ for Bernoulli equation.