Math 241 Section 13.1 Vector Functions and Space Curves

1. Definition of vector-valued function.

A vector-valued function, or vector function, is a function where a number (a parameter, typically t) goes in and a vector comes out. Typical notation in 3D:

$$
\boldsymbol{r}(t)=f(t) \boldsymbol{i}+g(t) \boldsymbol{j}+h(t) \boldsymbol{k}=\langle f(t), g(t), h(t)\rangle
$$

often with a range of t given. f, g and h are real-valued functions called the component functions of \boldsymbol{r}. In 2 D , we do not have the third component, and the notation looks like

$$
\boldsymbol{r}(t)=f(t) \boldsymbol{i}+g(t) \boldsymbol{j}=\langle f(t), g(t)\rangle .
$$

We can also think $\boldsymbol{r}(t)$ as a point in 3 D or 2 D , with components the same as the vector $\boldsymbol{r}(t)$ (anchor the other side of the vector at the origin).
Example. Consider the following vector function in $2 D$

$$
\boldsymbol{r}(t)=\langle 1-t, 2 t+3\rangle
$$

This is a line! It can also be represented by the equation $y=5-2 x$.
Text-Example 1. Consider the vector function

$$
\boldsymbol{r}(t)=\left\langle t^{3}, \ln (3-t), \sqrt{t}\right\rangle .
$$

Although the domain of \boldsymbol{r} is not given explicitly, by convention it consists of all values of t such that $t^{3}, \ln (3-t), \sqrt{t}$ are all defined. Therefore the domain of \boldsymbol{r} is $[0,3)$.

2. Graph of vector-valued functions, more examples.

To graph \boldsymbol{r}, we anchor the vector at the origin and plot the endpoint (treat \boldsymbol{r} as a point). We don't ask students to draw some nontrivial vector functions below, but having an idea of what the graphs look like will be helpful.
Example. Draw the vector function in Text-Example 1:

$$
\boldsymbol{r}(t)=\left\langle t^{3}, \ln (3-t), \sqrt{t}\right\rangle .
$$

for $0 \leq t \leq 1$. See the graph below. The arrows on the curve indicate how the point $\boldsymbol{r}(t)$ moves as t increases.
When $t=0$, we have $\boldsymbol{r}(0)=\langle 0, \ln (3), 0\rangle$; and when $t=1$, we have $\boldsymbol{r}(1)=\langle 1, \ln (2), 1\rangle$. So the endpoints of the curve are $(0, \ln (3), 0)$ and $(1, \ln (2), 1)$.

Example. $r(t)=\cos (t) \boldsymbol{i}+\sin (t) \boldsymbol{j}$ with $0 \leq t \leq \pi$ in 2D. Its graph is a semicircle in 2D.

Example. $r(t)=t^{2} \boldsymbol{i}+e^{t} \sin (t) \boldsymbol{j}+t \cos (t) \boldsymbol{k}$ with $-1 \leq t \leq 1$. See the graph below, not a curve we are familiar with.

3. Limits and continuity.

The limit of a vector function \boldsymbol{r} is fond by taking the limit of the component functions. A vector function \boldsymbol{r} is continuous at $t=a$ if all the component functions are continuous at $t=a$. These won't be used much but still good to keep in mind.

Text-Ex 2. Find $\lim _{t \rightarrow 0} \boldsymbol{r}(t)$ where

$$
\boldsymbol{r}(t)=\left(1+t^{3}\right) \boldsymbol{i}+t e^{-t} \boldsymbol{j}+\frac{\sin (t)}{t} \boldsymbol{k}
$$

Solution:

$\lim _{t \rightarrow 0} \boldsymbol{r}(t)=\left(\lim _{t \rightarrow 0}\left(1+t^{3}\right)\right) \boldsymbol{i}+\left(\lim _{t \rightarrow 0} t e^{-t}\right) \boldsymbol{i}+\left(\lim _{t \rightarrow 0} \frac{\sin (t)}{t}\right) \boldsymbol{k}=(1) \boldsymbol{i}+(0) \boldsymbol{j}+(1) \boldsymbol{k}=\boldsymbol{i}+\boldsymbol{k}$.

4. Space curves.

Space curves are closely related to continuous vector functions. We have seen that the graph of vector function \boldsymbol{r} is usually a curve.
More specifically, for $\boldsymbol{r}(t)=\langle f(t), g(t), h(t)\rangle$, the set C of all points (x, y, z) where

$$
\begin{equation*}
x=f(t), \quad y=g(t), \quad z=h(t) \tag{1}
\end{equation*}
$$

and t varies throughout an interval I, is called a space curve. And the equation (1) is called parametric equations of curve C and t is called a parameter.

5. Parameterization of the curve is not unique.

Consider the curve in 2D with the following parameterization

$$
\boldsymbol{r}(t)=\left\langle 1-t^{3}, 2 t^{3}+3\right\rangle
$$

This is a line $y=5-2 x$, and we can also parameterize it as

$$
\boldsymbol{r}(t)=\langle 1-t, 2 t+3\rangle .
$$

6. Finding the parametric equations of a curve.

A useful proposition: The line segment from \boldsymbol{r}_{0} to \boldsymbol{r}_{1} is given by (note that the textbook states this proposition in section 12.5)

$$
\boldsymbol{r}(t)=(1-t) \boldsymbol{r}_{0}+t \boldsymbol{r}_{1}, \quad 0 \leq t \leq 1 .
$$

Text-Ex 5. Find a vector equation and parametric equations for the line segment that joins the point $P(1,3,-2)$ to the point $Q(2,-1,3)$.
Solution: Using the formula above, the vector equation is

$$
\begin{aligned}
\boldsymbol{r}(t) & =(1-t) \boldsymbol{r}_{0}+t \boldsymbol{r}_{1}=(1-t)\langle 1,3,-2\rangle+t\langle 2,-1,3\rangle \\
& =\langle 1+t, 3-4 t, 5 t-2\rangle
\end{aligned}
$$

with $0 \leq t \leq 1$. The corresponding parametric equations are

$$
x=1+t, \quad y=3-4 t, \quad z=5 t-2 \quad 0 \leq t \leq 1 .
$$

Text-Ex 6. Find a vector function that represents the curve of intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $y+z=2$.

Solution: Since the equation of the cylinder does not involve z, we can proceed the problem as below. First, write down the parametrization of $x^{2}+y^{2}=1$:

$$
x=\cos (t), \quad y=\sin (t) \quad 0 \leq t \leq 2 \pi .
$$

Now represent z as a function of t using the other equation $y+z=2$:

$$
z=2-y=2-\sin (t)
$$

Combine the above together to get the parametrization equations

$$
x=\cos (t), \quad y=\sin (t), \quad z=2-\sin (t) \quad 0 \leq t \leq 2 \pi .
$$

The corresponding vector equation is:

$$
\boldsymbol{r}(t)=\langle\cos (t), \sin (t), 2-\sin (t)\rangle \quad 0 \leq t \leq 2 \pi .
$$

