1. Sketching 3D surfaces with an equation not involving one of the x, y, z.

Plot a 2D curve in one coordinate plane (xy-plane, xz-plane or yz-plane), and then move the curve along one direction.

Text-Example 1. Sketch the graph of the surface $z = x^2$.

Solution: 1. Equation doesn't involve $y \implies$ The surface contains point (x, y, z) for any y if $z = x^2$.

2. Draw the intersection of the surface with the xz-plane (also called traces within the xz-plane).

3. Move the graph obtained in the xz-plane along the y-axis to form the graph in 3D. See the figure below from the textbook.

Related concepts: This is a **cylinder**, i.e. a surface that consists of all lines (called **rulings**). In this example, the rulings are parallel to the y-axis.

Text-Example 2. Sketch the graph of the surfaces (a) $x^2 + y^2 = 1$ (b) $y^2 + z^2 = 1$.

Solution: (a) 1. Equation doesn't involve $z \implies$ The surface contains point (x, y, z) for any z if $x^2 + y^2 = 1$.

2. Draw the intersection of the surface with the xy-plane (also called traces within the xy-plane), which is the unit circle.

3. Move the graph obtained in the xy-plane along the z-axis to form the graph in 3D. See the figure below from the textbook. The rulings are parallel to the z-axis.

(b) 1. Equation doesn't involve $x \implies$ The surface contains point (x, y, z) for any z if $y^2 + z^2 = 1$.

2. Draw the intersection of the surface with the yz-plane (also called traces within the yz-plane), which is the unit circle.

3. Move the graph obtained in the xy-plane along the x-axis to form the graph in 3D. See the figure below from the textbook. The rulings are parallel to the x-axis.

Example. Sketch the graph of the 3D surface $y = z^2 + z - 1$.

Solution: 1. Equation doesn't involve x but in $3D \implies$ The surface contains point (x, y, z) for any x if $y = z^2 + z - 1$.

2. Draw the intersection of the surface with the yz-plane, which is a graph of a quadratic function.

3. Move the graph obtained in the xy-plan along the x-axis to form the graph in 3D. See the figure below drawn by MATLAB.

2. Quadric surfaces (not required, brief introduction).

Text-Example 3. Sketch of an ellipsoid given by the equation

$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1.$$

See the figure below from the textbook. Notice that the trace in any coordinate plane (xy-plane, xz-plane, yz-plane) is an ellipse. The surface intersects the x,y,z-axes at points (1,0,0), (-1,0,0), (0,3,0), (0,-3,0), (0,0,2) and (0,0,-2).

Text-Example 4. Sketch of an elliptic paraboloid given by the equation

$$z = 4x^2 + y^2.$$

See the figure below from the textbook.

Text-Example 5. Sketch of a hyperboloid paraboloid given by the equation

$$z = y^2 - x^2.$$

See the figure below from the textbook.

Text-Table 1. Summary of graph of quadric surfaces.

Surface	Equation Surface E		Equation
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ All traces are ellipses. If $a = b = c$, the ellipsoid is a sphere.	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces in the planes $x = k$ and y = k are hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.
Elliptic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid of One Sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Horizontal traces are ellipses. Vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.
Hyperbolic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where $c < 0$ is illustrated.	Hyperboloid of Two Sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Horizontal traces in z = k are ellipses if k > c or $k < -c$. Vertical traces are hyperbolas. The two minus signs indicate two sheets.

Graphs	of	Quadric	Surfaces
--------	----	---------	----------