1. Sketching $3 D$ surfaces with an equation not involving one of the x, y, z. Plot a $2 D$ curve in one coordinate plane (xy-plane, xz-plane or yz-plane), and then move the curve along one direction.

Text-Example 1. Sketch the graph of the surface $z=x^{2}$.
Solution: 1. Equation doesn't involve $y \Longrightarrow$ The surface contains point (x, y, z) for any y if $z=x^{2}$.
2. Draw the intersection of the surface with the xz-plane (also called traces within the xz-plane).
3. Move the graph obtained in the xz-plane along the y-axis to form the graph in $3 D$. See the figure below from the textbook.

Related concepts: This is a cylinder, i.e. a surface that consists of all lines (called rulings). In this example, the rulings are parallel to the y-axis.

Text-Example 2. Sketch the graph of the surfaces
(a) $x^{2}+y^{2}=1$
(b) $y^{2}+z^{2}=1$.

Solution: (a) 1. Equation doesn't involve $z \Longrightarrow$ The surface contains point (x, y, z) for any z if $x^{2}+y^{2}=1$.
2. Draw the intersection of the surface with the xy-plane (also called traces within the xy-plane), which is the unit circle.
3. Move the graph obtained in the xy-plane along the z-axis to form the graph in $3 D$. See the figure below from the textbook. The rulings are parallel to the z-axis.

(b) 1. Equation doesn't involve $x \Longrightarrow$ The surface contains point (x, y, z) for any z if $y^{2}+z^{2}=1$.
2. Draw the intersection of the surface with the yz-plane (also called traces within the yz-plane), which is the unit circle.
3. Move the graph obtained in the xy-plane along the x-axis to form the graph in $3 D$. See the figure below from the textbook. The rulings are parallel to the x -axis.

Example. Sketch the graph of the $3 D$ surface $y=z^{2}+z-1$.
Solution: 1. Equation doesn't involve x but in $3 D \Longrightarrow$ The surface contains point (x, y, z) for any x if $y=z^{2}+z-1$.
2. Draw the intersection of the surface with the yz-plane, which is a graph of a quadratic function.
3. Move the graph obtained in the xy-plan along the x-axis to form the graph in $3 D$. See the figure below drawn by MATLAB.

2. Quadric surfaces (not required, brief introduction).

Text-Example 3. Sketch of an ellipsoid given by the equation

$$
x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1
$$

See the figure below from the textbook. Notice that the trace in any coordinate plane (xy-plane, xz-plane, yz-plane) is an ellipse. The surface intersects the x,y,z-axes at points $(1,0,0),(-1,0,0),(0,3,0),(0,-3,0),(0,0,2)$ and $(0,0,-2)$.

Text-Example 4. Sketch of an elliptic paraboloid given by the equation

$$
z=4 x^{2}+y^{2} .
$$

See the figure below from the textbook.

Text-Example 5. Sketch of a hyperboloid paraboloid given by the equation

$$
z=y^{2}-x^{2}
$$

See the figure below from the textbook.

Text-Table 1. Summary of graph of quadric surfaces.

Graphs of Quadric Surfaces

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ All traces are ellipses. If $a=b=c$, the ellipsoid is a sphere.		$\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ Horizontal traces are ellipses. Vertical traces in the planes $x=k$ and $y=k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k=0$.
Elliptic Paraboloid	$\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid of One Sheet	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$ Horizontal traces are ellipses. Vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.
Hyperbolic Paraboloid	$\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$ Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where $c<0$ is illustrated.	Hyperboloid of Two Sheets	$-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ Horizontal traces in $z=k$ are ellipses if $k>c$ or $k<-c$. Vertical traces are hyperbolas. The two minus signs indicate two sheets.

