Math 241 Exam 1 9:15 AM - 10:05 AM

1. (a) (10 Points) Find the center and radius of the sphere with equation

$$
x^{2}+2 x+y^{2}+z^{2}-2 z=0 .
$$

(b) (10 Points) Find the angle between vectors $\boldsymbol{a}=\langle 1,-2,2\rangle$ and $\boldsymbol{b}=\langle 1,-1,0\rangle$.
2. (15 Points) Compute the distance from point $P(3,0,-4)$ to the plane $2 x-2 y+z-5=0$.
3. (20 Points) Consider line L_{1} with equation $\boldsymbol{r}(t)=(-2+t) \boldsymbol{i}+(3-t) \boldsymbol{j}+4 \boldsymbol{k}$ and line L_{2} with equation $\boldsymbol{r}(t)=(-2-t) \boldsymbol{i}+(3+3 t) \boldsymbol{j}+(4-t) \boldsymbol{k}$. Find the equation of the plane containing both line L_{1} and line L_{2}. Write this into the form $a x+b y+c z=d$.
4. (20 Points) Find the symmetric equations for the tangent line to the curve $\boldsymbol{r}(t)=$ $2 t^{2} \boldsymbol{i}-t \boldsymbol{j}+t^{3} \boldsymbol{k}$ at the point when $t=1$.
5. Consider the curve $\boldsymbol{r}(t)=\left\langle\sin (t), 2 e^{t}, 1-2 t\right\rangle$.
(a) (10 Points) Find the unit tangent vector \boldsymbol{T} at $t=0$.
(b) (15 Points) Compute the curvature at $t=0$.

Some Formulas from the Textbook

$$
\begin{gathered}
\boldsymbol{T}(t)=\frac{\boldsymbol{r}^{\prime}(t)}{\left|\boldsymbol{r}^{\prime}(t)\right|}, \quad \boldsymbol{N}(t)=\frac{\boldsymbol{T}^{\prime}(t)}{\left|\boldsymbol{T}^{\prime}(t)\right|}, \quad \boldsymbol{B}(t)=\boldsymbol{T} \times \boldsymbol{N}, \quad \kappa(t)=\frac{\left|\boldsymbol{T}^{\prime}(t)\right|}{\left|\boldsymbol{r}^{\prime}(t)\right|}=\frac{\left|\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)\right|}{\left|\boldsymbol{r}^{\prime}(t)\right|^{3}} \\
a_{\boldsymbol{T}}(t)=\frac{\boldsymbol{r}^{\prime}(t) \cdot \boldsymbol{r}^{\prime \prime}(t)}{\left|\boldsymbol{r}^{\prime}(t)\right|}, \quad a_{\boldsymbol{N}}(t)=\frac{\left|\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)\right|}{\left|\boldsymbol{r}^{\prime}(t)\right|}
\end{gathered}
$$

