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RZENL 1. (a) Firstly, X = int(X) Ubd(X), hence

w(X) = / ldx < / ldx +/ ldx < / ldx —|—/ ldz = p(X) 4+ p(bd(X)). (1)
X int(x) bd(x) X bd(x)

On the other hand, bd(X) is compact, and hence it is Jordan measurable and p(bd(X)) = 0. Combining
with (m), we immediately obtain that u(X) = 0.
(b) Let X ={y |y € Q}nNJ0,1]. Then X = [0,1].

RZAENL 2. Not necessarily exists, for instance, f(z) =1, X = {y | y € Q} N [0,1].
RZAENL 3. Not necessarily integrable, for instance, f(z) =1, X = {y |y € Q} N [0,1].

FEZAEA 4. For any n € N, we have [, |f(z)|"dz < [ M"dx = M™u(I). Hence, it holds that

3=

([ 1r@ra) o

Taking limit » — oo in both sides of the above inequality, we obtain

lim sup ( / If(w)lndxy < (2)

n—oo
On the other side, denote y € X satisfying f(y) = M. For any € > 0, there exists ¢ > 0 satisfying
|f(.’L’)| ZM—G, V%EU(y,(S) - [avb]'

Hence

3=

3=

([ 1r@rae)” > @ - 9ruwim)
Taking limit » — oo in both sides of the above inequality, we obtain
lim inf </ |f(x)|”dx> ' > VM —e
n—oo X

Due to the arbitrariness of €, we obtain

lim inf (/X |f(x)|"d:r> ’ > VM. (3)

Combining (E) with (H), and using the Squeeze Theorem, we finish the proof.

fREZEN 5. First, we prove the Young’s inequality first. For any a, b, p, q satisfying % + % =1, we have

1 Pyl a 1 P 1 q a® b4
ab = elogaelogb — eploga +5 logb < 7610ga + 7610gb _ e

p q p q

)

where the inequality results from the convexity of e®.
If [\ |fIP(z)dz =0, then f is zero almost everywhere, and the product fg is zero almost every-

where, hence the left-hand side of Holder’s inequality is zero. The same is true if [ [g]?(z)dz = 0.



Therefore, we may assume [, [f[?(z)dz > 0 and [ |g|?(x)dz > 0 in the following.
Dividing f and g by ([ |f|p(x)d:v)% and ([, |g|?(z)dx) %, respectively, we can assume that ( [ ]f|p(x)dm)% =
(fx lgl*(2)dz) " =

We now use Young’s inequality,

)| < @) Ig(ﬂ«“)l"j Vre X

|f(x)g(z ) .

Integrating both sides gives
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p q
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[ 17 dl@a

which implies the claim.

RZAEN 6. First, for any 6 > 0, U%(a) is compact, which implies U (a) is Jordan measurable, and

hence,

w(Uk(a)) = wU(a));
z)dr = x)dx.
/UW f(x) /UW f(x)

On the other hand, combining the compactness of U% (a) with the continuity of f, we know that f is

Lipschitz continuous on U% (a). Let L, be the Lipschitz constant with respect to a fixed §’. Namely, it
always holds that

[f(@) = fWI < Laslz —yl,  Va,y € UK(a),

which implies

fa) = Ls)0 < fla) + Lwglz —a| < f(x) < f(a) + Lwslz —al < f(a) + L,s)d

holds for any = € U%(a), where § € (0,d’]. Then, for any § € (0,8’], we have

1 1 1
m /U(S “ f(x)dz = m /Ug(m)f(x)dx < m /wf(a) + La,5)0dx = f(a) + La,s)0.

X

Taking limit § — 0T in both sides of the above inequality, we obtain

f(z)dz < f(a).

lim sup

@ .
50+ M(Ug((a)) U? (a)

The other direction can be obtained in the same manner. We finish the proof.



