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ML 2. % ECR", &

d(z, E) := inf d(z,y)
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BREMEN 1. Let d(z,y) := > |z; — yi|. It is easy to show that (R",d) is a metric space. Hence,
i=1

||z||; = d(x,0) is a norm.
fRZAENL 2. Suppose y € B,.(x), let | = ||y—=x||. Then it holds that Bs(y) C B,(x), where § := (r—1)/2.

RZYEN 3. First, we have
0 < (=X y,z = Ay) = (z,2)* = 2X\(z,y) + \*(y,y)*. (1)

Let A := (x,y)/(y,y) and substitute it into relationship (E), we complete the proof.
FREAEN 4. The relationship ||z + y||* < (||z|| + ||y||)? is a direct corollary of Homework 3.

fRZEA 5. We just prove the first equality. The second one can be proved in the same manner. For
any z € R"\ < N Xa>, we have x € R", x ¢ ()| X,. Hence, there exists a, € A such that x ¢ X, .

acA acA
Then, we have x € R" \ X,_, which implies z = |J (R™\ X,). Therefore,
acA
Rn\(ﬂxa>gu(w\x,). (2)
acA acA

On the other hand, for any x € |J (R™\ X,), there exists o, € A such that x € R" \ X, . Hence,
acA

x € R" and z ¢ X,,, which implies z € R\ ( N X,l>. Namely,
acA

U(R”\X@gR"\(ﬂ Xa>. (3)

acA acA
Combining the relationship (E) and (E) together, we complete the prove.

fRZAEM 6. a) For arbitrary 2 € R™\ E. Suppose for any 6, there exists y € Bs(x) such that y ¢ R™\ E,
then y € E. Since B;s(x) is an open set, no matter y € OF or y € E, Bs(x) N E is of infinite elements.
Thus, x is also a limit point of E, which is contradictory to z € R™ \ E. Hence, R™ \ E is an open set
and consequently, E is a close set.

b) and ¢) can be proved in the same manner.

FRZAE 7. Suppose X is not the smallest close set containing X, and Y is. Then there exists z € X
but ¢ Y. Since Y is close, R™ \ Y is open. Therefore, there exists Bs(z) N'Y = () which implies

Bs(x) N X = (). Thus,  is not a limit point which is contradictory to the fact that X is the closure of
X.

fRZ{EA 8. First, G can be represented as the union of a bunch of open intervals. Secondly, the

number of intervals is countable.
RZAEL 9. int(X) =0, ext(X) =R\ (X U{0}), and bd(X) = X U {0}.

fRZAEM 10. First we know that “the union of arbitrary number of open sets is an open set” and “the

intersection of finite number of open sets is an open set”, which implies “the intersection of arbitrary



number of close sets is a close set” and “the union of finite number of close sets is a close set”. Secondly,
“the intersection of arbitrary number of bounded sets is a bounded set” and “the union of finite number

of bounded sets is a bounded set”. Combining the above statements, we complete the proof.
ﬁﬁ%‘f{’ﬁﬂk 11. E1 = {.’L’ | To S 0}, E2 = {QJ | i) Z 1/.’E1}
fRZAENL 12. Tt does not necessarily hold. A simple counter example: Fj := {2 |k =1,2,---}.

fRZ{EA 13. The convergence of the series Y. ||x;.1 — ;|| implies the convergence of the Cauchy
=1

sequence which is equivalent to the convergencg of {z;}. This completes the proof.



