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ABSTRACT

Indirect image registration is a promising technique to improve image reconstruction quality by providing
a shape prior for the reconstruction task. In this paper, we propose a novel hybrid method that seeks to
reconstruct high quality images from few measurements whilst requiring low computational cost. With
this purpose, our framework intertwines indirect registration and reconstruction tasks is a single func-
tional. It is based on two major novelties. Firstly, we introduce a model based on deep nets to solve the
indirect registration problem, in which the inversion and registration mappings are recurrently connected
through a fixed-point interaction based sparse optimisation. Secondly, we introduce specific inversion
blocks, that use the explicit physical forward operator, to map the acquired measurements to the image
reconstruction. We also introduce registration blocks based deep nets to predict the registration param-
eters and warp transformation accurately and efficiently. We demonstrate, through extensive numerical
and visual experiments, that our framework outperforms significantly classic reconstruction schemes and
other bi-task method; this in terms of both image quality and computational time. Finally, we show gen-
eralisation capabilities of our approach by demonstrating their performance on fast Magnetic Resonance
Imaging (MRI), sparse view computed tomography (CT) and low dose CT with measurements much below
the Nyquist limit.

© 2020 Published by Elsevier B.V.

1. Introduction

There have been different attempts to perform image re-
construction and registration in the community, which these

Image reconstruction and registration are two fundamental
tasks in medical imaging. They are necessary to gain better
insights in different applications - including diagnostic, surgery
planning and radiotherapy (e.g. Alp et al., 1998; Wein et al., 2008;
Crum et al., 2004; Smit et al., 2016) just to mention few. For sev-
eral medical imaging modalities, for example Magnetic Resonance
Imaging (MRI), it is highly desirable to reduce the number of the
acquired measurements to avoid image degradation (Sachs et al.,
1995; Zaitsev et al., 2015) (for example - geometric distortions
and blurring effects). This with the purpose to deal with the
central problem in MRI - the long acquisition time. However, to
perform these tasks from undersampled and highly corrupted
measurements become even a more challenging problem yet of
great interest from the theoretical and practical points of view.
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two tasks are performed either separately and most recently
jointly. For image reconstruction the majority of algorithmic
approaches follow the notion of Compressed Sensing (CS)-
e.g. Lustig et al. (2007); Liang (2007); Lingala et al. (2011);
Otazo et al. (2015); Zhang et al. (2015). Most recently, there has
been a growing interest in exploring similarity of image struc-
tures of to-be-registrated images as shape prior e.g. Liu et al.
(2015_, and deep learning based reconstruction approaches
e.g. Sun et al. (2016); Hyun et al. (2018); Hammernik et al. (2018).
For a detailed survey in image reconstruction, we refer the reader
to Ravishankar et al. (2019). Whilst for image registration, that
seeks to find a mapping that aligns two or more images, the
body of literature has reported promising results. These can be
roughly divided in rigid and deformable algorithmic approaches.
Whilst rigid registration, e.g. Adluru et al. (2006); Wong et al.
(2008); Johansson et al. (2018), has shown promising results, it
is not enough robust to describe complex physiological motions.
Deformable registration offers greater opportunities to describe
complex motion - for example (Beg et al., 2005; Cao et al., 2005;
Vercauteren et al., 2009). We refer the reader to Sotiras et al.
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(2013) for an extensive revision on deformable registration.
More recently, deformable image registration has also bene-
fited of the potentials of deep learning- e.g. Yang et al. (2017);
Shen et al. (2019); Balakrishnan et al. (2019); Haskins et al. (2019).
However, these approaches assume that the given images are
already reconstructed.

A commonality of the aforementioned approaches is that
they perform the reconstruction and registration tasks sepa-
rately. In very recent developments in the area, e.g. Aviles-
Rivero et al. (2018); Corona et al. (2019), have shown that per-
forming those tasks jointly can reduce error propagation result-
ing in improving accuracy whilst achieving better generalisation
capabilities (Caruana, 1997). However, a major bottleneck of such
joint models is the computational complexity as they often seek
to solve highly non-convex optimisation problems. Motivated by
the current drawbacks in the literature, we address the problem
of - how to get higher quality reconstructed and registered images
from noisy and undersampled MRI measurements whilst demand-
ing low computational cost.

In this work, we address the previous question by proposing
a new framework for simultaneous reconstruction and registra-
tion from corrupted and undersampled MRI data. Our approach is
framed as a deep joint model, in which these two task are inter-
twined in a single optimisation model. It benefits from the theoreti-
cal guarantees of large deformation diffeomorphic metric mapping
(LDDMM) and the powerful performance of deep learning. Our
modelling hypothesis is that by providing a shape prior (i.e. reg-
istration task) to the reconstruction task, one can boost the overall
performance of the final reconstruction. Most precisely, our frame-
work seeks to learn a network parametrised mapping (u, g) — f,
where u is the image to be reconstructed and g, f are the template
and target images to-be-register.

We remark to the reader that unlike the works of
that (Balakrishnan et al., 2019; Shen et al, 2019; Yang et al,
2017; Haskins et al, 2019), our approach follows a different
philosophy which is based on three major differences. Firstly, we
address the problem of indirect registration, in which the target
image is unknown but encoded in the indirect corrupted measure-
ments (i.e. raw data). Secondly, our ultimate goal is to improve the
final image reconstruction through shape prior (i.e. registration task)
instead of evaluate the tasks separately. Thirdly, unlike the work
of that (Lang et al.,, 2018) we gain further computational efficiency
and reconstruction quality through our registration blocks based
deep nets.

We highlight that computing image reconstruction and indirect
registration simultaneously is even more challenging than perform-
ing the reconstruction and registration separately. This is because
u is not explicitly given and is encoded in a corrupted measure-
ment, and the general physical forward operators (e.g. Fourier and
Radon transforms) are not trivial to be learnt (Zhu et al, 2018).
Therefore, to build an end-to-end parameterised mapping for inverse
problems is not straightforward via standard deep nets. Motivated by
the existing shortcomings in the body of literature, in this work
we propose a novel framework, that to the best of our knowledge,
it is the first hybrid method (i.e. a combination of a model-based
and deep-learning based approaches) that intertwines reconstruc-
tion and indirect registration. Although we emphasise the appli-
cation of fast MRI, we also show generalisation capabilities using
Computerised Tomography (CT) data. Whilst this is an relevant part
of our approach, our contributions are:

* We propose a novel mathematically well-motivated and com-
putationally tractable framework for simultaneous reconstruc-
tion and indirect registration, in which we highlight:

- A framework based on deep nets for solving indirect registra-
tion efficiently, in which the inversion and registration map-
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pings are recurrently connected through a fixed-point itera-
tion based sparse optimisation.

- We introduce two types of blocks for efficient numerical so-
lution of our bi-task framework. The first ones are specific
inversion blocks that use the explicit physical forward op-
erator, to map the acquired measurements to the image re-
construction. Whilst the second ones are registration blocks
based deep nets to predict the registration parameters and
warping transformation.

o We exhaustively evaluate our framework with a range of nu-
merical results and for several applications including fast MRI,
sparse view computerised tomography (CT) and low dose CT.

* We show that the carefully selected components in our frame-
work mitigate major drawbacks of the traditional reconstruc-
tion algorithms resulting in significant increase in image quality
whilst decreasing substantially the computational cost.

2. When reconstruction meets LDDMM: a joint model

In this section, we first introduce the tasks of image reconstruc-
tion and registration separately, and then, we describe how these
two tasks can be cast in a unified framework.

Mathematically, the task of reconstructing a medical image
modality, u, from a set of measurements y reads:

y=Au+n, (1)

where A is the forward operator associated with the acquired mea-
surement y; and 7 is the inherent noise. To deal with the ill-
posedness of (1), one can be casted it as a variational approach as:
argmin,D(Au,y) + a7 (u), where D is the data fidelity term, d J
is a regularisation term to restrict the space of solutions, and « is
a positve parameter balancing the influence of both terms. Whilst
the task of registering a template image, g, to a target one, f, can
be cast as an optimisation problem, which functional can be ex-
pressed as:

E(®) =R@) + g0 ¢~ —ul} @)

where ¢ denotes a deformation map and R(¢) regularises the de-
formation map. In general, the registration problem is ill-posed,
and a regulariser, R(¢), is necessary to obtain a reliable solu-
tion. There are several methods proposed in the literature to reg-
ularise the deformation mapping (Sotiras et al., 2013). One well-
established algorithmic approach, due to its desirable mathemati-
cal properties, is Large Deformation Diffeomorphic Metric Mapping
(LDDMM) (Beg et al., 2005; Bruveris and Holm, 2015; Cao et al.,
2005; Christensen et al., 1996; Dupuis et al., 1998; Younes, 2010).

In the LDDMM setting, the deformation map ¢ is assumed to
be invertible (to make the deformation meaningful), and both ¢
and ¢! should be sufficiently smooth, i.e. ¢ e Diff’ (R"), which is
defined as:

Diff? (R™) 3
.= {¢ < CP(R" R") : § is bijective with ¢-1 « o™, R")} )

The Diff’ (R") forms a group with the identity mapping Z as
the neutral element. When small perturbations €v of the identity
mapping are applied to ¢;_;, at a particular time point i — 1, the
deformation at the next time point i becomes ¢; = (Z + €v) o ¢;_1,
which can be described by the following difference equation:

i —Pia

e =Vo i, (4)

and leads to a continuous-time flow equation, which reads:

G(x.t) =v(p(x.0).1). (3)
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LDDMM is a PDE constrained optimisation problem, which can
be formulated as:

miny o [VI? +3lgo ¢~ (x 1) —u()|3
st. or(x, t) =v(p(x,t),t),(x,0) =Z,for t € [0, 1]

where ||v||2 =<Lv,v>,L is a self-adjoint differential operator,
whose numerical solution can be given via Euler-Lagrange equa-
tions (Beg et al., 2005). Let the momentum m be the dual of veloc-
ity, i.e. m :=Lv, and K the inverse of L then (6) can be expressed
as a function of the momentum m as:

mm) L(m(x, t),Km(x,t)) + 3llgo =1 (x, 1) — u(x)||?

(6)

m(x,t

¢ (x.0) = v(P(x. 1), 1) (7)
s.t ¢(x,0)=1T

m(x,t) — Lv(x,t) =0

From an optimisation point of view, instead of solving (6) over
all possible velocities v, one can apply the shooting formula-
tion (Vialard et al.,, 2012) and account only for those with least
norm for a given ¢. Now when computing Euler-Lagrange equa-
tion to the regularisation term (m(x,t), Km(x,t)), one can get the
Euler-Poincaré equation (Holm et al., 1998):

me(x,t) +ad;m(x,t) =0, (8)
where the adjoint action adyu = dv-u —du - v and the conjoint ac-
tions ad;; is defined via (ad;;m, u) = (m, adyu). Therefore, (7) can be

efficiently optimised over m(x, t) via Geodesic shooting. It can now
be expressed as:

n(lm) L{m(x,0), Km(x,0)) +
¢f (xs t) = U(¢(X’ t)s t)
$p(x,0)=1 9
mx,t) —Lv(x,t) =0

me(x,t) + adim(x,t) =0

sllged™ (1) —u®)|3

s.t.

As we are interested in performing simultaneously reconstruc-
tion and registration. We now turn to describe how these two task
can be intertwined in an unified framework. Consider the target
image u to be encoded in a set of measurements y, then one can
join these two tasks, i.e. (1) and (2), as a single optimisation prob-
lem, which reads:

E(®) =R(®) + - IIAU Y||z+*||g ¢! —ull3 (10)

One can naturally rewrite (10) using LDDMM via geodesic
shooting (9). This results in the following expression:

min L (m(x, 0), Km(x, 0))

m(x,0),u
+31Aux) —yl3 + 4ligo o1 (x. 1) —u(x) |2
s.t. ¢(x.0) =1

m(x,t) — Lv(x,t) =0
me(x,t) +adim(x,t) =0

where K is the inverse of L. However, a potential shortcoming of
(11) is that the solution, via Euler-Lagrange method, is computa-
tionally expensive. In the next section, we describe how (11) can
be efficiently solved by using Deep Learning. In particular, us-
ing deep nets parametrised Douglas-Rachford iteration (Lions and
Mercier, 1979).

3. Deep nets paramatrised Douglas-Rachford fixed-point
iteration of sparsity optimisation (SOFPI-DR-net) for
simultaneous reconstruction and registration

In this section, we describe in details our novel framework that
joins two tasks in a unified optimisation problem. We then demon-
strate that it can be solved efficiently by splitting our optimisation
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model into more tractable sub-problems. We also define our inver-
sion and registration blocks based on deep nets. Fig. 1 displays the
overview of our proposed frameworks.

We remind to the reader that we seek to solve (11) in a com-
putational tractable manner. An efficient option to solve this prob-
lem is via Alternating Direction Method of Multipliers (ADMM)/
Douglas-Rachford splitting. However, to be able to apply this op-
tion, one needs to redefine the model from (11). With this purpose
in mind, we derive an equivalent model for (11), which reads:

min ¥ (m(x,0), Km(x,0)) + 1 | Au — y||3

m(x,0),u
+5llgod™ ' (x, 1) - f®)I3
¢t (X’ t) = U(¢(X, t)’ t)
$(x.0)=1T (12)
st. {mx,t) —Lv(x,t) =0
me(x,t) + ad;m(x,t) =0
f = Uu.

We can now break (12) into more computational tractable sub-
problems. Therefore, we solve (12) via alternating minimisation,
which yields to the following sub-problems:

= arg min [J4u = 13 + §llu - f* + b3
(m(x 0), Km(x, 0))

St = f + b1

[.] Mk+1

(o] (f**1,

+Ellgo o (x, 1) - fII%
¢t(x’ t) = V(¢(x, t)a t)
#(x,0) =T (13)
m(x,t) — Lv(x,t) =0
my(x, 1) + ad;m(x,t) =0

k”) = arg m1n

bk+1 — bk + (uk+l

— fley
We now turn to give more details on the solution of each sub-
problem. The first sub-problem [®] can be solved by a general in-
version method such as conjugate method as:
=W (- by) (14)
However, solving the second sub-problem [®] is similar to LD-

DMM, and therefore, solving it is still computationally expensive.
The solution is denoted as:

fkﬂ = q)(ukﬂ + b",g). (15)

The b is the dual variable or Lagrange multiplier, and the update
for b in (13) is obtained from the dual problem using gradient as-
cent. The problem (13) can be also rewritten as a fixed-point iter-
ation as:

tk+1 _ bk + uk+] (16)
and then one can obtain:

fr=a(t* g). (17)
and

bk — bk—l + (uk _ fk)
— bk—l +tk _ bk—l _ fk
— tk _ fk
k _ k
th— ok g). (18)

Based on the update of uk*! along with (16)-(18
iteration for (13) reads:

tk+1 — bk + uk+l
— bk + \I’(fk _ b",y)
= tk_q)(tksgs 9’()+\Ij(2q>(tkﬂg) _tksy)) (19)

), a fixed-point
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| th
|
k
‘ Momentum Net A(t%,g,601 1)
mk+1 l
‘ Shooting-Warping NetI'(m**!,g,60s )
fk+1 l
4>‘ Inversion (2 —tk y pi))
uk+1 l
— Compute: tF — frtl 4 o f+1

|

tk+1
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Fig. 1. Workflow of our proposed framework, in which the simultaneous reconstruction and registration is achieved using deep nets parametrised Douglas-Rachford iteration
with k stages (k=0,1,..., N — 1) where the t° is initialised by u® which can be reconstructed by a conventional method such as total variation regularised reconstruction.

The fixed-point iteration is also called Douglas-Rachford iter-
ation (Lions and Mercier, 1979). We consider parameterise the
inversion mapping W and registration mapping & for the Douglas-
Rachford iteration (19). For W, a learnable inversion ¥ (v,y, p) -
with the parameter p in optimisation model (13) considered to be
either learnable or manually tunable - is used in the fixed-point
iteration of (19). Whilst for the registration mapping, ¢, a pa-
rameterised ®(t, g, 6) is replaced in the the fixed-point iteration
(19). To use LDDMM framework to regularise the registration pa-
rameters, we use ®(u, g, 0) consisting of a momentum prediction
neural net m = A(t, g, 01) instead of searching momentum by (11).
Moreover, a shooting-warping neural net f=1I(m,g 6,), which
mimics the shooting and warping in (11), is used. Finally, our
framework for parameterising the algorithm (11) with N stages is
obtained by computing:

1 = tF — T (A(t%, 8. 614). 8 021
+WQRI(AER g 014).8 020) — t*, ¥, p)), (20)

for k=0,1,...,N—1. We now give more details on the Deep Nets
used for W, A and I' in each stage.

3.1. The inversion operator V and its backward gradients

We remark that we continue using the physical forward oper-
ator for inversion (instead of a neural net parameterised forward
operator), and therefore, the analytic inversion can be obtained by
solving the first sub-problem of (13), which reads:

Y.y, p) = (ATA+pI) " ATy + pv). 21)

One can numerically solve (21) by conjugate gradient. With this
purpose, the derivatives for W can be obtained by differentiating
the following expression:

(ATA+ pT)W =ATy + pv, (22)
we then get:
(ATA+ pZ)dW +Wdp =ATdy + pdv+vdp (23)

Then the derivatives of W are given by:
0w = p(ATA+ pZ) ' du+ (ATA+ pI) ATy
+(ATA+ pT) " (v —W)dp. (24)

To give the backward gradients for the backpropagation algo-
rithm, let f:R" — R - then the derivatives of f(¥(v,y, p)) with

respect to v, y and p can be correspondingly computed by:
. -1

df(wz(’lﬁy,p)) _ [p(ATA + 1(31)7l ]T%

| =p(ATA+ pz)_1 s

af(\ll(l(;;y,p)) _ [(ATA + ,OI) AT]Ta%fj

-1 (25)
=A(ATA+p1) 2
1
Bf(\lla(l;,y.p)) — [(ATA + ,OI) - qj)]]T%
=W-W)(ATA+p1) 2
For the inversion (ATA + pI)fl 9f  one can compute the

3
derivatives of f(W) with respect to v, y and p by applying con-
jugate gradient.

3.2. A deep registration Net ® for image shape prior

In this subsection, we establish a neural-network-parameterised
registration mapping, which serves as image shape prior for in-
version block. Our motivation comes from recent developments on
vector momentum-parameterised deep networks proposed, for ex-
ample, in Yang et al. (2017); Shen et al. (2019), in which authors
showed promising accuracy and significant speedup in obtaining
the initial momentum prediction. With this motivation in mind, in
this work, we split the deep registration net ®(t, g, 6) into two-
Nets: a momentum prediction net m = A(t, g, 6;) and shooting-
warping net I"(m, g, 0). These nets are applied to each stage k. The
momentum net is expressed as:

m = A(t*, g 61 (26)

whilst the warp Net reads:

fT =T (M 8.6, ). (27)
That is- it can be expressed as:

= d(t*, g 6) = T(A(t", & 614). 8 624) (28)

In this work, for the momentum prediction we use the vector
momentum-parameterised stationary velocity field (vSVF) model of
that (Shen et al., 2019). Our motivation to use this formulation is
that the deep net can predict directly a smooth momentum. This
has the advantage to avoid predicting the velocity field and then
predict a smooth version. We remark that the momentum predic-
tion is only used to model the LDDMM solution. This is displayed
in Fig. 2. For the Shooting-warping Net I", we propose an extension
of the momentum Net to a symmetrical-like Net, whose detailed
structure can be seen in Fig. 3.
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=conv =>conv + ReLu = conv + leakyReLu +residual link

¥ conv (stride=2)+ReLu 4 geconv (stride=2)+ReLu

Fig. 2. Detailed architecture for the momentum prediction net A (t¥, g, 011) — mk+,

Fig. 3. Detailed architecture used for the shooting-warping net I'(mk, g, 0, ) — f¥*1.

3.3. Loss function with momentum regularised via LDDMM

We denote the input template images and acquired measure-
ments as {g,, J'l}fz:l with corresponding ground truth target im-
ages denoted as { f@}i,ﬂ. Moreover, let ® be the collection of the
weights of all registration Nets {Hk}ﬁzr We then use the following
loss function:

L(B®) =£(0) +R(O), (29)
where
£(0) = ay|uV(©) - fII3. (30)

Whilst R(®), which seeks to regularise the registration param-
eters and guarantees physical meaning of all blocks, is denoted as:

N N
R(O) =) ailu' — fI3+_ Billm' —m|3. (31)

i=1 i=1

We remark that the ¢, norm is used as a metric to measure
the discrepancy between LDDMM solution fi1 and momentum pre-
diction mi. We set the parameters L =K1 = -aV2 - bV (V.) +c
with [a, b, c] =[0.01,0.01,0.001], and y = 0.04 for LDDMM (9) to
obtain the solution #i1. We set 10 time steps and 50 iterations gra-
dient descent and fixed step size 4 x 10-6. In our training phase,
{i,},_, are obtained from target-template pairs {(f,.g,)}\_, by
(9). Therefore, all momentum and reconstructed (warped) images
can be obtained simultaneously, in which we seek that they
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approximate the ground-truth gradually stage by stage. That is,

lu' = FlI5 = w? = flI5 > ... > |[u¥ - fII3 (32)
and
[m' — |5 > |[m? —dn||5 > ... > |m" —if|]3. (33)

After we obtain the learned network parameter set ©*, the
learned network

t = tF — (A%, 8,67 )).8.65))
+\I"(2F(A(tk, g, 91*,[()1 g, ;_k) _tkvy’ pk))7 (34)

for k=0,1,..., N —1, is ready to be used for mapping a given
measurement-template data pair (y,g) to a predicted momentum
m* by the output of the last momentum net, that is:

m* = AN, g 65y). (35)

For estimating u*, one can have two options. As first option, u* can
be obtained from the output of the last shooting-warping net as:

u = oV, g 65). (36)

Alternatively, the predicted momentum m;(x,0) = m* can be
used to obtain ¢ (x, 1) via the shooting equations:

¢t (X! t) = U(d’(X? t), t)

¢x,0)=1T

m(x,t) — Lv(x,t) =0 (37)
me(x,t) +adim(x,t) =0

me(x,0) = m*

and finally, as a second option, we can get the estimated ground
truth image by:

ur=gopl(x,1). (38)

In the experimental results, we include an ablation study to
show the benefits of computing u* using (36) and (38).

4. Experimental results

In this section, we describe in details the experiments con-
ducted to validate our proposed framework.

4.1. Data description

We remark that whilst our approach can be applied to different
medical modalities. In this work, we showcase our approach for
MR, sparse-view CT and low dose CT.

o Dataset A [MRI Dataset]: Cardiac cine MRI data coming from
realistic simulations generated using the MRXCAT phantom
framework (Wissmann et al., 2014). The heart beat and respira-
tion parameters were set to 1 s and 5 s respectively. Moreover,
the Matrix size is 409 x 409, heart phases = 24 and coils = 12.
Dataset B [Sparse-view CT Dataset]: We use the Thoracic 4D
Computed Tomography (4DCT) dataset (Castillo et al., 2009).!
The measurements are generated by: y = Au with 18 views over
360°, where A is X-ray transform and u is normalised to [0,1].
Dataset C [Low Dose CT Dataset]: As in Dataset B we use Tho-
racic 4D Computed Tomography (4DCT) dataset (Castillo et al.,
2009). However, the measurements are generated by: y = A(u +
o &) with 181 views over 360° and & obey i.i.d normal distribu-
tion, o = 0.10.

https://www.dir-lab.com/Downloads.html.
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We remark that the MRI measurements are generated by par-
tial Fourier transform as: y = KF(u+ o (& + &, *1i)). Where o is
the noise level, &1, &, obey i.i.d normal distribution, u is the ground
truth image, and K is the undersampled operator, and F is Fourier
Transform. In this work, we retrospectively undersampled the mea-
surements using: radial sampling, 2D random variable-density with
fully sampled center radius and 1D variable-density with fully
sampled center. To show generalisation capabilities of our pro-
posed approach, we ran our approach using different sampling
rates = {1/5,1/4,1/3}

4.2. Parameter selection and setting details

In this part, we give further details on the choice of the param-
eters along with further specifics of how we ran our experimental
results.

For the W and & Nets, we set the number of stages N = 3 for
all our applications: for fast MRI, sparse-view CT, and low-dose CT.
Our approach is a GPU-based implementation in Pytorch. The p in
W are set to be learnable, and we also restrict p € [0, c] by adding
a layer as: p = co (0.4w), where o = fex is a Sigmoid function, w
is learnable, and ¢ = 0.8 to prevent p to become too big.

We use the PyCA toolbox? for the LDDMM registration. More-
over, we use Adam algorithm for training with the follow-
ing parameters: learning rate: le-4, epochs= 500. Moreover, for
the learned p: MRI p =[0.16,0.26,0.33]; sparse-view CT p =
[0.55,0.34,0.41] and low-dose CT p =[0.64,0.42,0.38]. Our end-
to-end method took ~50 hours to train using a single Nvidia GTX
1080 Ti.

Setting for the MRI case The temporal cine cardiac data (Dataset
A) is used to generate 376 2D image pairs as target-template
image pairs, and then the momentums dataset associated with
target-template image pairs is obtained via LDDMM (9) for regu-
larising the momentum prediction Nets in our approach (20). In
this work, u is normalised to [0, 1] and set noise level o = 0.05.
We use undersampling rate of {1/5, 1/4,1/3}. In each experiment,
360 measurement-template pairs with 360 target images and 360
momentums are used to train our proposed approach (20), and
16 measurement-template pairs are used for testing by (34). For
speedup the training, we pretrain the model stage by stage for 500
epoch, and finally train the whole network for 500 epochs.

Setting for the sparse-view and low-dose CT case We gener-
ate 528 2D image pairs as target-template, and then the mo-
mentum is obtained via LDDMM (9) for regularising the mo-
mentum prediction Net. We use for the Radon Transform A the
CUDA version of (Gao, 2012). For the training the network (20),
480 measurement-template pairs with 480 target images, and 480
momentum are used. Whilst for testing (34), 48 measurement-
template pairs are used.

4.3. Evaluation methodology

We evaluate our proposed framework based on the following
scheme.

Comparison against other MRI reconstruction schemes For the first
part of our evaluation, we compared our framework against the
well-established compressed sensing (CS) reconstruction scheme.
We solve the CS scheme with TV, and LDDMM computed sequen-
tially. Furthermore, we ran experiments using three different sam-
pling patterns: radial, 2D random and 1D random (cartesian). To
show generalisation capabilities, we use different sampling rates =
{1/5.1/4, 1/3}.

2 https://bitbucket.org/scicompanat/pyca/wiki/Home.
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Fig. 4. MRI Reconstruction outputs and reconstruction errors using Dataset A with sampling rate = 1/5. Comparison of our approach vs. classic scheme (TV + LDDMM). Our
approach reconstruct higher quality images with sharp edges, preservation of fine details and contrast.

We report the results of these comparisons based on both qual-
itative and quantitative results. The former is based on visual as-
sessment of the reconstruction, and the latter on the computation
of two well-established metrics: the structural similarity (SSIM)
index and the Peak Signal-to-Noise Ratio (PSNR); along with the
computational cost given in seconds.

Generalisation capabilities using CT data For generalisation
capabilities, we evaluate our framework using data coming
from sparse view CT and low-dose CT. We compared our
framework against classic TV-reconstruction scheme + LD-
DMM computed sequentially and another indirect registra-
tion approach that of Chen and Oktem (2018). We report the
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Fig. 6. MRI Reconstruction outputs and reconstruction errors using Dataset A with sampling rate = 1/4 and with different sampling patterns. Results from classic scheme
(TV + LDDMM) vs our approach. One can see that our reconstructions have higher quality, this is reflected in the reconstruction error plots.

comparison using qualitative and quantitative results using visual 4.4. Results and discussion

comparison of the reconstructions along with the error maps,

reconstruction quality in terms of PSNR, SSIM and computation In this subsection, we demonstrate the capabilities of our
cost. framework following the evaluation scheme of Section 4.3.
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go¢*(x,1)
via (38)

SPARSE-VIEW CT [DATASET B]

Low-Dosg CT [DATASET C]

Fig. 7. CT reconstruction outputs and reconstruction errors using Datasets B and C. A comparison is displayed between classic reconstruction scheme and our approach. In
a closer inspection, one can see that our reconstructions have higher image quality than the compared schemes. This is further supported by the reconstruction error plots,

in which our reconstructions display the lowest errors.

> Is Our Framework better than a classic MRI Reconstruc-
tion Scheme? We begin by evaluating our approach against clas-
sic TV+LDDMM reconstruction scheme. We remark to the reader
that classic scheme performs sequentially the reconstruction and
registration whilst our approach computes simultaneously the MRI
reconstruction and indirect image registration.

We report both qualitative and quantitative results in Table 1
and Figs. 4-6. In Fig. 4, we show nine reconstructed output ex-
amples with three different sampling patters. Visual assessment
agrees with the theory of our model, in which we highlight the re-
construction of higher quality and preservation of relevant anatom-
ical parts whilst enhancing fine details and contrast. In a closer in-
spection at these reconstructions, one can see that our framework
(in both cases either using (36) or (38)) leads to reconstructions
with sharper edges and better preservation of fine details than the
classic MRI reconstruction scheme. This is further supported by the
reported reconstruction errors, in which our approach reported the
lowest error values for all reconstructed samples.

To show further generalisation capabilities, we ran a range of
experiments using different sampling factors = {1/5, 1/4, 1/3}. Re-
construction outputs can be seen in Figs. 4-6. One can see that the
benefits of our approach described above are prevalent to all sam-
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pling factors. That is, our approach preserves small structures for
example the papillary muscles of the heart. Moreover, in a visual
comparison between these figures, we notice that our method gen-
eralises very well even when the acceleration factor is increasing;
contrary to the classic scheme that exhibits loss of contrast and
blurry effects. Overall, we can show that providing a shape prior,
through a registration task, yields to higher quality images whilst
decreasing the number of measurements to form an MRIL

> Is a Two-task Model better than a Sequential Model - Does
It Pay Off? To further support the aforementioned benefits of our
model and for a more detailed quantitative analyses, we report the
overall results of the Dataset A in Table 1. The results are the av-
erage of the image metrics, (PSNR, SSIM), across the whole Dataset
A with different sampling patterns and sampling rates. We observe
that our approach reported significant improvement in both met-
rics with respect to the classic MRI + LDDMM reconstructions and
for all accelerations. These results further validate our hypothesis
that providing shape prior improve substantially the reconstruction
image quality.

After demonstrating the benefits of our approach quality-wise,
we now pose a question- how is our approach performing from a
computational point of view? The computational time is displayed
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Fig. 8. Visualisation of the predicted momentum. (From left to right) ground truth (i, 1f1,) and predicted ones using cartesian and radial sampling patters, and DAtasets A,

B and C.

MRI RADIAL
[DATASET C] [DATASET B] [DATASET A

Low-DostE CT SPARSE-VIEwW CT

Table 1

Numerical comparison of our approach vs. other reconstruction schemes using the Dataset A, with different
reconstruction patterns and acceleration factors. Results are reported from the testing set. SSIM is denoted in

102 . denotes the best image quality scores whilst

MRI 1D RANDOM
[DATASET A]
-

the lowest computational cost.

.

ParrerN | Quanmiry [ TV+LDDMM | Owrs (36) | Ours (38)
DATASET A WITH SAMPLING RATE = 1/5
RADIAL (PSNR, SSIM) | (25.84,77.36) | (37.90,93.59) | (35.11, 88.25)
Time Cost (s) 1.54 0.52 0.61
(PSNR, SSIM) | (25.06,77.61) | (36.08,93.34) | (34.32, 88.38)
2D RaNpoM oSt (5) 1.66 0.56 0.67
(PSNR, SSIM) | (20.61,61.31) | (36.10,93.31) | (34.99, 88.42)
ID RaNDOM e oSt () 151 0.51 0.63
DaAtaseT A wiTH SAMPLING RATE = 1/4
RADIAL (PSNR, SSIM) | (26.52,78.89) | (38.77,94.43) | (35.74, 90.18)
Time Cost (s) 1.60 0.57 0.63
(PSNR, SSIM) | (25.94,78.19) | (38.12,94.42) | (35.70, 90.44)
2D RaNpoM - oS (5) 1.63 0.53 0.71
(PSNR, SSIM) | (22.02,65.67) | (37.44,94.33) | (35.82, 90.18)
ID RaNDOM e oSt () 1.58 0.56 0.66
Dataser A witH SAMPLING RaATE = 1/3
RADIAL (PSNR, SSIM) | (26.82,79.63) | (39.01, 94.63) | (35.77, 90.36)
Time Cost (s) 1.57 0.56 0.64
(PSNR, SSIM) | (26.18,78.77) | (38.79, 94.75) | (35.78, 90.65)
2D RANDOM e Cost (5) 147 0.49 0.63
(PSNR, SSIM) | (22.60, 66.83) | (38.45,94.42) | (35.84,90.21)
ID RaNDOM e oSt ) 1.64 0.56 0.59

1
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Numerical comparison for sparse-view and low-dose CT datasets (B&C). The displayed results are the averaged accuracy and efficiency

on the testing dataset.

denotes the best image quality scores whilst

the lowest computational cost.

QUANTITY ‘ TV+LDDMM ‘ CHEN ET AL. (Chen and Oktem, 2018) | Ours (36) ‘ Ours (38)
DataseT B
(PSNR,SSIM) (26.71,0.72) (30.11, 0.96) (36.34,0.97) | (34.48,0.95)
Time Cost (s) 1.82 81.37 0.76 0.87
Dataser C
(PSNR, SSIM) (30.66, 0.86) (31.41, 0.95) (39.18,0.97) | (35.78, 0.96)
Time Cost (s) 1.73 112.35 0.84 1.08

in Table 1, we report the GPU time following common protocol e.g.
Bailey (2005). One can observe that another major advantage of
our model is the computational time, we achieve to decrease an
average of 65% the computation cost with respect to the classic
reconstruction scheme whilst achieving a substantial improvement
in terms of image quality in both metrics. Overall, the potentials
of our approach are preserved for all datasets and for all sampling
rates.

> Can Our Approach be Applied to other Modalities? Gen-
eralisation Capabilities To demonstrate generalisation capabilities
of our model, we run experiments on both sparse-view and low-
dose CT datasets (e.g. Datasets B and C). We remark to the reader,
that to the best of our knowledge, this is the first hybrid ap-
proach reported that performs two tasks as a hybrid model. That
is- an approach that combines a model-based and a deep learning-
based models to improve image reconstruction. However, there is
a model-based approach that follows similar philosophy than ours,
which is that of Chen and Oktem (2018) that is applied to the CT
case. Therefore, we ran our approach and compared against both
the classic CT reconstruction scheme with TV + LDDMM, and that
of (Chen and Oktem, 2018).

We begin by evaluating visually our approach against the com-
pared schemes and the results are displayed in Fig. 7. In that fig-
ure, we display two samples outputs using datasets B and C re-
spectively. In a closer look at the reconstructions, one can see that
classic TV + LDDMM reconstructions fail to preserve fine details
and introduce strong blurring artefacts (see first column). Simi-
larly, the algorithmic approach of that (Chen and Oktem, 2018)
shows reconstructions with loss in contrast and texture, blurry
artefacts and fine details. These negative effects are reflected at the
reconstruction error plots in which our reconstructions (last two
columns) reported the lowest errors. From these plots, one can see
that our approach is able to reconstruct sharp edges whilst keeping
fine details and texture.

To further support our approach, we perform further quantita-
tive experiments, which are reported in Table 2. Similarity-wise
we reported the highest values for both PSNR and SSIM met-
rics. In particular, we would like to highlight two major potentials
of our approach. Firstly, our approach offers substantial improve-
ment, in terms of both image quality metrics. In particular, for the
PSNR metric the improvement is highly substantial compared to
the approach. Also, in terms of SSIM, it outperforms the classic TV
scheme and readily competes against Chen and Oktem (2018). Sec-
ondly, the computational cost is significantly lower than the ap-
proach of Chen and Oktem (2018) and the classic reconstruction
scheme. Finally, for further visualisation support, we display the
predicted momentum in Fig. 8.

5. Conclusion

In this paper, we propose for the first time a hybrid ap-
proach for simultaneous reconstruction and indirect registration.
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We demonstrated that indirect image registration, in combination
with deep learning, is a promising technique for providing a shape
prior to substantially improve image reconstruction. We show that
our framework can significantly decrease the computational cost
via deep nets.

In particular, we highlight the potentials of leveraging physics-
driven regularisation methods with the powerful performance of
deep learning in an unified framework. We show that our ap-
proach improves over existing regularisation methods. These im-
provements are in terms of getting higher quality images that
preserve relevant anatomical parts whilst avoiding geometric dis-
tortions, and loss of fine details and contrast. Moreover, we also
showed that our framework can substantially decrease the com-
putational time by more than 66% whilst reporting the highest
image quality metrics. These benefits are consistent over different
settings such as acceleration factors, sampling patterns and medi-
cal image modalities.
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Appendix A. Supplementary visual results
In this section, we extend the comparison of visual results from

the main paper. The main goal of these results is to further support
our technique for the case of Atlas-to-Image registration.
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Our first experiment is using MRI data (Wissmann et al., 2014),
in which we followed the next protocol. We select 1 image as our
training template image, 83 images as our training target images
and the remaining 12 image as our test target images. We used
83 measurement-template pairs with 83 target images and 83 mo-

u. via (36) 920 ((gé)”

Fig. 9. MRI Reconstruction outputs and reconstruction errors using Dataset A with sampling rate = 1/4 and with different sampling patterns. Results from classic scheme
(TV + LDDMM) vs our approach. The experiments reflect the case of Atlas-to-Image registration.
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go¢*(x,1)

uy via (36) via, (38)

Fig. 10. CT reconstruction outputs and reconstruction errors using Datasets B and C. A comparison is displayed between classic reconstruction scheme and our approach.
The reconstruction error plots from our technique shows the lowest errors. The experiments reflect the case of Atlas-to-Image registration for CT.

mentums for training our technique (20), and 12 measurement-
template pairs for testing (34). We ran our experiments using three
different sampling patterns: radial, 2D random and 1D random
(cartesian) using a sampling rate of 1/4. The results are displayed
in Fig. 9. A closer look at the error plots, we can see that our tech-
nique was able to reconstruct higher quality images than TV + LD-
DMM. In particular, our proposed model was able to keep fine de-
tails with less blurry type reconstructions.

As second supplementary experiment, we use 4D CT data
(Castillo et al., 2009). In the experiment of atlas-to-image indi-
rect registration, we split 10 images of a patient in the 4D CT
dataset along time axis and obtain 120 images via interpolation
using PyCA (Singh et al,, 2013). Then we select 1 image as our
training template image, 95 images as our training target images
and the remaining 24 image as our test target images. For train-
ing our proposed approach (20), 95 measurement-template pairs
with 95 target images and 95 momentums are used along with
24 measurement-template pairs for testing (34). We used 18 and
181 views for the sparse view CT and low-dose CT correspond-
ingly. Our results are visualised in Fig 10, in which we compared
our approach against that of (Chen and Oktem, 2018). In a close
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inspection, one can see that our reconstructions are closer to the
ground truth as they report the lowest reconstruction errors. Our
technique performs better in terms of boundaries and anatomical
structure preservation.

We underline a main message from these supplementary re-
sults, our technique show potential results on only in the case for
image-to-image registration but also for the Atlas-to-image setting.
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