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a b s t r a c t 

Indirect image registration is a promising technique to improve image reconstruction quality by providing 

a shape prior for the reconstruction task. In this paper, we propose a novel hybrid method that seeks to 

reconstruct high quality images from few measurements whilst requiring low computational cost. With 

this purpose, our framework intertwines indirect registration and reconstruction tasks is a single func- 

tional. It is based on two major novelties. Firstly, we introduce a model based on deep nets to solve the 

indirect registration problem, in which the inversion and registration mappings are recurrently connected 

through a fixed-point interaction based sparse optimisation. Secondly, we introduce specific inversion 

blocks, that use the explicit physical forward operator, to map the acquired measurements to the image 

reconstruction. We also introduce registration blocks based deep nets to predict the registration param- 

eters and warp transformation accurately and efficiently. We demonstrate, through extensive numerical 

and visual experiments, that our framework outperforms significantly classic reconstruction schemes and 

other bi-task method; this in terms of both image quality and computational time. Finally, we show gen- 

eralisation capabilities of our approach by demonstrating their performance on fast Magnetic Resonance 

Imaging (MRI), sparse view computed tomography (CT) and low dose CT with measurements much below 

the Nyquist limit. 

© 2020 Published by Elsevier B.V. 
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. Introduction 

Image reconstruction and registration are two fundamental 

asks in medical imaging. They are necessary to gain better 

nsights in different applications - including diagnostic, surgery 

lanning and radiotherapy (e.g. Alp et al., 1998; Wein et al., 2008; 

rum et al., 2004; Smit et al., 2016 ) just to mention few. For sev-

ral medical imaging modalities, for example Magnetic Resonance 

maging (MRI), it is highly desirable to reduce the number of the 

cquired measurements to avoid image degradation ( Sachs et al., 

995; Zaitsev et al., 2015 ) (for example - geometric distortions 

nd blurring effects). This with the purpose to deal with the 

entral problem in MRI - the long acquisition time. However, to 

erform these tasks from undersampled and highly corrupted 

easurements become even a more challenging problem yet of 

reat interest from the theoretical and practical points of view. 
∗ Corresponding author. 

E-mail addresses: matliuj@nus.edu.sg , ai323@cam.ac.uk (J. Liu). 
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There have been different attempts to perform image re- 

onstruction and registration in the community, which these 

wo tasks are performed either separately and most recently 

ointly. For image reconstruction the majority of algorithmic 

pproaches follow the notion of Compressed Sensing (CS)- 

.g. Lustig et al. (2007) ; Liang (2007) ; Lingala et al. (2011) ;

tazo et al. (2015) ; Zhang et al. (2015) . Most recently, there has

een a growing interest in exploring similarity of image struc- 

ures of to-be-registrated images as shape prior e.g. Liu et al. 

2015_ , and deep learning based reconstruction approaches 

.g. Sun et al. (2016) ; Hyun et al. (2018) ; Hammernik et al. (2018) .

or a detailed survey in image reconstruction, we refer the reader 

o Ravishankar et al. (2019) . Whilst for image registration, that 

eeks to find a mapping that aligns two or more images, the 

ody of literature has reported promising results. These can be 

oughly divided in rigid and deformable algorithmic approaches. 

hilst rigid registration, e.g. Adluru et al. (2006) ; Wong et al. 

2008) ; Johansson et al. (2018) , has shown promising results, it 

s not enough robust to describe complex physiological motions. 

eformable registration offers greater opportunities to describe 

omplex motion - for example ( Beg et al., 2005; Cao et al., 2005;

ercauteren et al., 2009 ). We refer the reader to Sotiras et al. 

https://doi.org/10.1016/j.media.2020.101930
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101930&domain=pdf
mailto:matliuj@nus.edu.sg
mailto:ai323@cam.ac.uk
https://github.com/jiulongliu/Deep-Joint-Indirect-Registration-and-Reconstruction
https://doi.org/10.1016/j.media.2020.101930
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2013) for an extensive revision on deformable registration. 

ore recently, deformable image registration has also bene- 

ted of the potentials of deep learning- e.g. Yang et al. (2017) ;

hen et al. (2019) ; Balakrishnan et al. (2019) ; Haskins et al. (2019) .

owever, these approaches assume that the given images are 

lready reconstructed. 

A commonality of the aforementioned approaches is that 

hey perform the reconstruction and registration tasks sepa- 

ately. In very recent developments in the area, e.g. Aviles- 

ivero et al. (2018) ; Corona et al. (2019) , have shown that per-

orming those tasks jointly can reduce error propagation result- 

ng in improving accuracy whilst achieving better generalisation 

apabilities ( Caruana, 1997 ). However, a major bottleneck of such 

oint models is the computational complexity as they often seek 

o solve highly non-convex optimisation problems. Motivated by 

he current drawbacks in the literature, we address the problem 

f - how to get higher quality reconstructed and registered images 

rom noisy and undersampled MRI measurements whilst demand- 

ng low computational cost. 

In this work, we address the previous question by proposing 

 new framework for simultaneous reconstruction and registra- 

ion from corrupted and undersampled MRI data. Our approach is 

ramed as a deep joint model, in which these two task are inter- 

wined in a single optimisation model . It benefits from the theoreti- 

al guarantees of large deformation diffeomorphic metric mapping 

LDDMM) and the powerful performance of deep learning. Our 

odelling hypothesis is that by providing a shape prior (i.e. reg- 

stration task) to the reconstruction task, one can boost the overall 

erformance of the final reconstruction. Most precisely, our frame- 

ork seeks to learn a network parametrised mapping (u, g) → f, 

here u is the image to be reconstructed and g, f are the template 

nd target images to-be-register. 

We remark to the reader that unlike the works of 

hat ( Balakrishnan et al., 2019; Shen et al., 2019; Yang et al., 

017; Haskins et al., 2019 ), our approach follows a different 

hilosophy which is based on three major differences. Firstly, we 

ddress the problem of indirect registration, in which the target 

mage is unknown but encoded in the indirect corrupted measure- 

ents (i.e. raw data) . Secondly, our ultimate goal is to improve the 

nal image reconstruction through shape prior (i.e. registration task) 

nstead of evaluate the tasks separately. Thirdly, unlike the work 

f that ( Lang et al., 2018 ) we gain further computational efficiency 

nd reconstruction quality through our registration blocks based 

eep nets. 

We highlight that computing image reconstruction and indirect 

egistration simultaneously is even more challenging than perform- 

ng the reconstruction and registration separately. This is because 

 is not explicitly given and is encoded in a corrupted measure- 

ent, and the general physical forward operators (e.g. Fourier and 

adon transforms) are not trivial to be learnt ( Zhu et al., 2018 ).

herefore, to build an end-to-end parameterised mapping for inverse 

roblems is not straightforward via standard deep nets . Motivated by 

he existing shortcomings in the body of literature, in this work 

e propose a novel framework, that to the best of our knowledge, 

t is the first hybrid method (i.e. a combination of a model-based 

nd deep-learning based approaches) that intertwines reconstruc- 

ion and indirect registration. Although we emphasise the appli- 

ation of fast MRI, we also show generalisation capabilities using 

omputerised Tomography (CT) data. Whilst this is an relevant part 

f our approach, our contributions are: 

• We propose a novel mathematically well-motivated and com- 

putationally tractable framework for simultaneous reconstruc- 

tion and indirect registration, in which we highlight: 

- A framework based on deep nets for solving indirect registra- 

tion efficiently, in which the inversion and registration map- 
2 
pings are recurrently connected through a fixed-point itera- 

tion based sparse optimisation. 

- We introduce two types of blocks for efficient numerical so- 

lution of our bi-task framework. The first ones are specific 

inversion blocks that use the explicit physical forward op- 

erator, to map the acquired measurements to the image re- 

construction. Whilst the second ones are registration blocks 

based deep nets to predict the registration parameters and 

warping transformation. 

• We exhaustively evaluate our framework with a range of nu- 

merical results and for several applications including fast MRI, 

sparse view computerised tomography (CT) and low dose CT. 
• We show that the carefully selected components in our frame- 

work mitigate major drawbacks of the traditional reconstruc- 

tion algorithms resulting in significant increase in image quality 

whilst decreasing substantially the computational cost. 

. When reconstruction meets LDDMM: a joint model 

In this section, we first introduce the tasks of image reconstruc- 

ion and registration separately, and then, we describe how these 

wo tasks can be cast in a unified framework . 

Mathematically, the task of reconstructing a medical image 

odality, u, from a set of measurements y reads: 

 = Au + η, (1) 

here A is the forward operator associated with the acquired mea- 

urement y ; and η is the inherent noise. To deal with the ill- 

osedness of (1) , one can be casted it as a variational approach as: 

rgmin u D(Au, y ) + αJ (u ) , where D is the data fidelity term, d J 

s a regularisation term to restrict the space of solutions, and α is 

 positve parameter balancing the influence of both terms. Whilst 

he task of registering a template image, g, to a target one, f, can 

e cast as an optimisation problem, which functional can be ex- 

ressed as: 

(�) = R (φ) + 

1 

σ
‖ g ◦ φ−1 − u ‖ 

2 
2 , (2) 

here φ denotes a deformation map and R (φ) regularises the de- 

ormation map. In general, the registration problem is ill-posed, 

nd a regulariser, R (φ) , is necessary to obtain a reliable solu- 

ion. There are several methods proposed in the literature to reg- 

larise the deformation mapping ( Sotiras et al., 2013 ). One well- 

stablished algorithmic approach, due to its desirable mathemati- 

al properties, is Large Deformation Diffeomorphic Metric Mapping 

LDDMM) ( Beg et al., 2005; Bruveris and Holm, 2015; Cao et al., 

005; Christensen et al., 1996; Dupuis et al., 1998; Younes, 2010 ). 

In the LDDMM setting, the deformation map φ is assumed to 

e invertible (to make the deformation meaningful), and both φ
nd φ−1 should be sufficiently smooth, i.e. φ ∈ Diff 

p 
( R 

n ) , which is 

efined as: 

iff 
p 
( R 

n ) 

= 

{
φ ∈ C p ( R 

n , R 

n ) : φ is bijective with φ−1 ∈ C p ( R 

n , R 

n ) 
} (3) 

The Diff 
p 
( R 

n ) forms a group with the identity mapping I as 

he neutral element. When small perturbations εv of the identity 

apping are applied to φi −1 , at a particular time point i − 1 , the 

eformation at the next time point i becomes φi = (I + εv ) ◦ φi −1 ,

hich can be described by the following difference equation: 

φi − φi −1 

ε
= v ◦ φi −1 , (4) 

nd leads to a continuous-time flow equation, which reads: 

t (x, t) = v (φ(x, t) , t) . (5) 
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LDDMM is a PDE constrained optimisation problem, which can 

e formulated as: 

min 

v 
γ

∫ 1 
0 ‖ v ‖ 

2 
L + 

1 
2 
‖ g ◦ φ−1 (x, 1) − u (x ) ‖ 

2 
2 

s.t . φt (x, t ) = v (φ(x, t) , t) , φ(x, 0) = I, for t ∈ [0 , 1] 
(6) 

here ‖ v ‖ 2 
L 

= < L v , v >, L is a self-adjoint differential operator,

hose numerical solution can be given via Euler-Lagrange equa- 

ions ( Beg et al., 2005 ). Let the momentum m be the dual of veloc-

ty, i.e. m := L v , and K the inverse of L then (6) can be expressed

s a function of the momentum m as: 
 

 

 

 

 

 

 

min 

m (x,t) 

γ
2 
〈 m (x, t) , Km (x, t) 〉 + 

1 
2 
‖ g ◦ φ−1 (x, 1) − u (x ) ‖ 

2 
2 

s.t . 

{ 

φt (x, t ) = v (φ(x, t) , t) 
φ(x, 0) = I 
m (x, t ) − L v (x, t) = 0 . 

(7) 

From an optimisation point of view, instead of solving (6) over 

ll possible velocities v , one can apply the shooting formula- 

ion ( Vialard et al., 2012 ) and account only for those with least

orm for a given φ. Now when computing Euler-Lagrange equa- 

ion to the regularisation term 〈 m (x, t) , Km (x, t) 〉 , one can get the

uler-Poincaré equation ( Holm et al., 1998 ): 

 t (x, t) + ad ∗v m (x, t) = 0 , (8) 

here the adjoint action ad v u = dv · u − du · v and the conjoint ac-

ions ad ∗v is defined via 〈 ad ∗v m, u 〉 = 〈 m, ad v u 〉 . Therefore, (7) can be

fficiently optimised over m (x, t) via Geodesic shooting. It can now 

e expressed as: 
 

 

 

 

 

 

 

 

 

min 

m (x, 0) 

γ
2 
〈 m (x, 0) , Km (x, 0) 〉 + 

1 
2 
‖ g ◦ φ−1 (x, 1) − u (x ) ‖ 

2 
2 

s.t . 

⎧ ⎪ ⎨ 

⎪ ⎩ 

φt (x, t ) = v (φ(x, t) , t) 
φ(x, 0) = I 
m (x, t ) − L v (x, t) = 0 

m t (x, t ) + ad ∗v m (x, t) = 0 

(9) 

As we are interested in performing simultaneously reconstruc- 

ion and registration. We now turn to describe how these two task 

an be intertwined in an unified framework. Consider the target 

mage u to be encoded in a set of measurements y, then one can 

oin these two tasks, i.e. (1) and (2) , as a single optimisation prob-

em , which reads: 

(�) = R (�) + 

1 

λ
‖ Au − y ‖ 

2 
2 + 

1 

σ
‖ g ◦ φ−1 − u ‖ 

2 
2 (10)

One can naturally rewrite (10) using LDDMM via geodesic 

hooting (9) . This results in the following expression: 
 

 

 

 

 

 

 

 

 

 

 

 

 

min 

m (x, 0) ,u 

γ
2 
〈 m (x, 0) , Km (x, 0) 〉 
+ 

1 
2 
‖ Au (x ) − y ‖ 

2 
2 + 

μ
2 
‖ g ◦ φ−1 (x, 1) − u (x ) ‖ 

2 
2 

s.t . 

⎧ ⎪ ⎨ 

⎪ ⎩ 

φt (x, t ) = v (φ(x, t) , t) 
φ(x, 0) = I 
m (x, t ) − L v (x, t) = 0 

m t (x, t ) + ad ∗v m (x, t) = 0 . 

(11) 

here K is the inverse of L . However, a potential shortcoming of 

11) is that the solution, via Euler-Lagrange method, is computa- 

ionally expensive. In the next section, we describe how (11) can 

e efficiently solved by using Deep Learning. In particular, us- 

ng deep nets parametrised Douglas-Rachford iteration ( Lions and 

ercier, 1979 ). 

. Deep nets paramatrised Douglas-Rachford fixed-point 

teration of sparsity optimisation (SOFPI-DR-net) for 

imultaneous reconstruction and registration 

In this section, we describe in details our novel framework that 

oins two tasks in a unified optimisation problem. We then demon- 

trate that it can be solved efficiently by splitting our optimisation 
3 
odel into more tractable sub-problems. We also define our inver- 

ion and registration blocks based on deep nets. Fig. 1 displays the 

verview of our proposed frameworks. 

We remind to the reader that we seek to solve (11) in a com-

utational tractable manner. An efficient option to solve this prob- 

em is via Alternating Direction Method of Multipliers (ADMM)/ 

ouglas-Rachford splitting. However, to be able to apply this op- 

ion, one needs to redefine the model from (11) . With this purpose 

n mind, we derive an equivalent model for (11) , which reads: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

min 

m (x, 0) ,u 

γ
2 
〈 m (x, 0) , Km (x, 0) 〉 + 

1 
2 
‖ Au − y ‖ 

2 
2 

+ 

μ
2 
‖ g ◦ φ−1 (x, 1) − f (x ) ‖ 

2 
2 

s.t . 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

φt (x, t ) = v (φ(x, t) , t) 
φ(x, 0) = I 
m (x, t ) − L v (x, t) = 0 

m t (x, t ) + ad ∗v m (x, t) = 0 

f = u. 

(12) 

We can now break (12) into more computational tractable sub- 

roblems. Therefore, we solve (12) via alternating minimisation, 

hich yields to the following sub-problems: 

(13) 

We now turn to give more details on the solution of each sub- 

roblem. The first sub-problem [ ] can be solved by a general in- 

ersion method such as conjugate method as: 

 

k +1 := 
( f k − b k , y ) (14) 

However, solving the second sub-problem [ ] is similar to LD- 

MM, and therefore, solving it is still computationally expensive. 

he solution is denoted as: 

f k +1 := �(u 

k +1 + b k , g) . (15) 

he b is the dual variable or Lagrange multiplier, and the update 

or b in (13) is obtained from the dual problem using gradient as- 

ent. The problem (13) can be also rewritten as a fixed-point iter- 

tion as: 

 

k +1 = b k + u 

k +1 (16) 

nd then one can obtain: 

f k = �(t k , g) , (17) 

nd 

 

k = b k −1 + (u 

k − f k ) 

= b k −1 + t k − b k −1 − f k 

= t k − f k 

= t k − �(t k , g) . (18) 

Based on the update of u k +1 along with (16) –(18) , a fixed-point 

teration for (13) reads: 

 

k +1 = b k + u 

k +1 

= b k + 
( f k − b k , y ) 

= t k − �(t k , g, θ ) + 
(2�(t k , g) − t k , y )) . (19) 
k 
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Fig. 1. Workflow of our proposed framework, in which the simultaneous reconstruction and registration is achieved using deep nets parametrised Douglas-Rachford iteration 

with k stages ( k = 0 , 1 , . . . , N − 1 ) where the t 0 is initialised by u 0 which can be reconstructed by a conventional method such as total variation regularised reconstruction. 
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The fixed-point iteration is also called Douglas-Rachford iter- 

tion ( Lions and Mercier, 1979 ). We consider parameterise the 

nversion mapping 
 and registration mapping � for the Douglas- 

achford iteration (19) . For 
, a learnable inversion 
(v , y, ρ) -

ith the parameter ρ in optimisation model (13) considered to be 

ither learnable or manually tunable - is used in the fixed-point 

teration of (19) . Whilst for the registration mapping, �, a pa- 

ameterised �(t, g, θ ) is replaced in the the fixed-point iteration 

19) . To use LDDMM framework to regularise the registration pa- 

ameters, we use �(u, g, θ ) consisting of a momentum prediction 

eural net m = (t, g, θ1 ) instead of searching momentum by (11) .

oreover, a shooting-warping neural net f = �(m, g, θ2 ) , which 

imics the shooting and warping in (11) , is used. Finally, our 

ramework for parameterising the algorithm (11) with N stages is 

btained by computing: 

 

k +1 = t k − �((t k , g, θ1 ,k ) , g, θ2 ,k ) 

+
(2�((t k , g, θ1 ,k ) , g, θ2 ,k ) − t k , y, ρk )) , (20) 

or k = 0 , 1 , . . . , N − 1 . We now give more details on the Deep Nets

sed for 
,  and � in each stage. 

.1. The inversion operator 
 and its backward gradients 

We remark that we continue using the physical forward oper- 

tor for inversion (instead of a neural net parameterised forward 

perator), and therefore, the analytic inversion can be obtained by 

olving the first sub-problem of (13) , which reads: 

(v , y, ρ) = 

(
A 

	 A + ρI 
)−1 

(A 

	 y + ρv ) . (21) 

One can numerically solve (21) by conjugate gradient. With this 

urpose, the derivatives for 
 can be obtained by differentiating 

he following expression: 

A 

	 A + ρI 
)

 = A 

	 y + ρv , (22) 

e then get: 

A 

	 A + ρI 
)
∂ 
 + 
∂ ρ = A 

	 ∂ y + ρ∂ v + v ∂ ρ (23)

Then the derivatives of 
 are given by: 


 = ρ
(
A 

	 A + ρI 
)−1 

∂v + 

(
A 

	 A + ρI 
)−1 

A 

	 ∂y 

+ 

(
A 

	 A + ρI 
)−1 

(v − 
) ∂ρ. (24) 

To give the backward gradients for the backpropagation algo- 

ithm, let f : R 

n → R - then the derivatives of f (
(v , y, ρ)) with
4 
espect to v , y and ρ can be correspondingly computed by: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂ f (
(v ,y,ρ)) 
∂v = [ ρ

(
A 

	 A + ρI 
)−1 

] 	 ∂ f 
∂


= ρ
(
A 

	 A + ρI 
)−1 ∂ f 

∂

∂ f (
(v ,y,ρ)) 

∂y 
= [ 

(
A 

	 A + ρI 
)−1 

A 

	 ] 	 ∂ f 
∂


= A 

(
A 

	 A + ρI 
)−1 ∂ f 

∂

∂ f (
(v ,y,ρ)) 

∂ρ
= [ 

(
A 

	 A + ρI 
)−1 

(v − 
)] 	 ∂ f 
∂


= (v − 
) 	 
(
A 

	 A + ρI 
)−1 ∂ f 

∂


(25) 

For the inversion 

(
A 

	 A + ρI 
)−1 ∂ f 

∂

, one can compute the 

erivatives of f (
) with respect to v , y and ρ by applying con- 

ugate gradient. 

.2. A deep registration Net � for image shape prior 

In this subsection, we establish a neural-network-parameterised 

egistration mapping, which serves as image shape prior for in- 

ersion block. Our motivation comes from recent developments on 

ector momentum-parameterised deep networks proposed, for ex- 

mple, in Yang et al. (2017) ; Shen et al. (2019) , in which authors

howed promising accuracy and significant speedup in obtaining 

he initial momentum prediction. With this motivation in mind, in 

his work, we split the deep registration net �(t, g, θ ) into two- 

ets: a momentum prediction net m = (t, g, θ1 ) and shooting- 

arping net �(m, g, θ ) . These nets are applied to each stage k . The

omentum net is expressed as: 

 

k +1 = (t k , g, θ1 ,k ) (26) 

hilst the warp Net reads: 

f k +1 = �(m 

k +1 , g, θ2 ,k ) . (27) 

That is- it can be expressed as: 

f k +1 = �(t k , g, θk ) = �((t k , g, θ1 ,k ) , g, θ2 ,k ) (28)

In this work, for the momentum prediction we use the vector 

omentum-parameterised stationary velocity field (vSVF) model of 

hat ( Shen et al., 2019 ). Our motivation to use this formulation is 

hat the deep net can predict directly a smooth momentum. This 

as the advantage to avoid predicting the velocity field and then 

redict a smooth version. We remark that the momentum predic- 

ion is only used to model the LDDMM solution. This is displayed 

n Fig. 2 . For the Shooting-warping Net �, we propose an extension 

f the momentum Net to a symmetrical-like Net, whose detailed 

tructure can be seen in Fig. 3 . 
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Fig. 2. Detailed architecture for the momentum prediction net (t k , g, θ1 ,k ) → m 

k +1 . 

Fig. 3. Detailed architecture used for the shooting-warping net �(m 

k , g, θ2 ,k ) → f k +1 . 
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.3. Loss function with momentum regularised via LDDMM 

We denote the input template images and acquired measure- 

ents as { g � , y � } l � =1 
with corresponding ground truth target im- 

ges denoted as { f � } l � =1 
. Moreover, let � be the collection of the 

eights of all registration Nets { θk } N k =1 
. We then use the following 

oss function: 

 (�) = E(�) + R (�) , (29) 

here 

(�) = αN ‖ u 

N (�) − f ‖ 

2 
2 . (30) 

Whilst R (�) , which seeks to regularise the registration param- 

ters and guarantees physical meaning of all blocks, is denoted as: 
5 
 (�) = 

N ∑ 

i =1 

αi ‖ u 

i − f ‖ 

2 
2 + 

N ∑ 

i =1 

βi ‖ m 

i − ˜ m ‖ 

2 
2 , (31) 

We remark that the � 2 norm is used as a metric to measure 

he discrepancy between LDDMM solution 

˜ m and momentum pre- 

iction m 

i . We set the parameters L = K 

−1 = −a ∇ 

2 − b∇ (∇ ·) + c

ith [ a, b, c] = [0 . 01 , 0 . 01 , 0 . 001] , and γ = 0 . 04 for LDDMM (9) to

btain the solution 

˜ m . We set 10 time steps and 50 iterations gra- 

ient descent and fixed step size 4 × 10 −6 . In our training phase, 

 ̃

 m � } l � =1 
are obtained from target-template pairs { ( f � , g � ) } l � =1 

by 

9) . Therefore, all momentum and reconstructed (warped) images 

an be obtained simultaneously, in which we seek that they 



J. Liu, A.I. Aviles-Rivero, H. Ji et al. Medical Image Analysis 68 (2021) 101930 

a

‖
a

‖

l

t

f  

m

m

m

F  

b

u

u⎧⎪⎪⎨
⎪⎪⎩
a

t

u

s

4

d

4

m

M

 

t

t

t

T

s

f

s

p

r

4

e

r

a

O


  

a  

i

o

i

t  

[  

t

1

A

i

t

l

t  

W  

3

m

1

s

e

a

m

m

C  

4

m

t

4

s

p

w

W

t

p

s

{

pproximate the ground-truth gradually stage by stage. That is, 

 u 

1 − f ‖ 

2 
2 ≥ ‖ u 

2 − f ‖ 

2 
2 ≥ . . . ≥ ‖ u 

N − f ‖ 

2 
2 (32) 

nd 

 m 

1 − ˜ m ‖ 

2 
2 ≥ ‖ m 

2 − ˜ m ‖ 

2 
2 ≥ . . . ≥ ‖ m 

N − ˜ m ‖ 

2 
2 . (33) 

After we obtain the learned network parameter set �∗, the 

earned network 

 

k +1 = t k − �((t k , g, θ ∗
1 ,k ) , g, θ ∗

2 ,k ) 

+
(2�((t k , g, θ ∗
1 ,k ) , g, θ ∗

2 ,k ) − t k , y, ρk )) , (34) 

or k = 0 , 1 , . . . , N − 1 , is ready to be used for mapping a given

easurement-template data pair (y, g) to a predicted momentum 

 

∗ by the output of the last momentum net, that is: 

 

∗ = (t N , g, θ ∗
2 ,N ) , (35) 

or estimating u ∗, one can have two options. As first option, u ∗ can

e obtained from the output of the last shooting-warping net as: 

 

∗ = �(t N , g, θ ∗
N ) . (36) 

Alternatively, the predicted momentum m t (x, 0) = m 

∗ can be 

sed to obtain φ(x, 1) via the shooting equations: 

 

 

 

 

 

 

 

φt (x, t) = v (φ(x, t) , t) 
φ(x, 0) = I 
m (x, t) − L v (x, t) = 0 

m t (x, t) + ad ∗v m (x, t) = 0 

m t (x, 0) = m 

∗

(37) 

nd finally, as a second option, we can get the estimated ground 

ruth image by: 

 

∗ = g ◦ φ−1 (x, 1) . (38) 

In the experimental results, we include an ablation study to 

how the benefits of computing u ∗ using (36) and (38) . 

. Experimental results 

In this section, we describe in details the experiments con- 

ucted to validate our proposed framework. 

.1. Data description 

We remark that whilst our approach can be applied to different 

edical modalities. In this work, we showcase our approach for 

RI, sparse-view CT and low dose CT. 

• Dataset A [MRI Dataset] : Cardiac cine MRI data coming from 

realistic simulations generated using the MRXCAT phantom 

framework ( Wissmann et al., 2014 ). The heart beat and respira- 

tion parameters were set to 1 s and 5 s respectively. Moreover, 

the Matrix size is 409 × 409 , heart phases = 24 and coils = 12.
• Dataset B [Sparse-view CT Dataset] : We use the Thoracic 4D 

Computed Tomography (4DCT) dataset ( Castillo et al., 2009 ). 1 

The measurements are generated by: y = Au with 18 views over 

360 ◦, where A is X-ray transform and u is normalised to [0,1]. 
• Dataset C [Low Dose CT Dataset] : As in Dataset B we use Tho- 

racic 4D Computed Tomography (4DCT) dataset ( Castillo et al., 

2009 ). However, the measurements are generated by: y = A (u + 

σξ ) with 181 views over 360 ◦ and ξ obey i.i.d normal distribu- 

tion, σ = 0 . 10 . 
1 https://www.dir-lab.com/Downloads.html . 

6 
We remark that the MRI measurements are generated by par- 

ial Fourier transform as: y = KF(u + σ (ξ1 + ξ2 ∗ i )) . Where σ is 

he noise level, ξ1 , ξ2 obey i.i.d normal distribution, u is the ground 

ruth image, and K is the undersampled operator, and F is Fourier 

ransform. In this work, we retrospectively undersampled the mea- 

urements using: radial sampling, 2D random variable-density with 

ully sampled center radius and 1D variable-density with fully 

ampled center. To show generalisation capabilities of our pro- 

osed approach, we ran our approach using different sampling 

ates = { 1 / 5 , 1 / 4 , 1 / 3 } 

.2. Parameter selection and setting details 

In this part, we give further details on the choice of the param- 

ters along with further specifics of how we ran our experimental 

esults. 

For the 
 and � Nets, we set the number of stages N = 3 for 

ll our applications: for fast MRI, sparse-view CT, and low-dose CT. 

ur approach is a GPU-based implementation in Pytorch. The ρ in 

are set to be learnable, and we also restrict ρ ∈ [0 , c] by adding

 layer as: ρ = cσ (0 . 4 w ) , where σ = 

e x 

1 −e x 
is a Sigmoid function, w

s learnable, and c = 0 . 8 to prevent ρ to become too big. 

We use the PyCA toolbox 2 for the LDDMM registration. More- 

ver, we use Adam algorithm for training with the follow- 

ng parameters: learning rate: 1e-4, epochs = 500. Moreover, for 

he learned ρ : MRI ρ = [0 . 16 , 0 . 26 , 0 . 33] ; sparse-view CT ρ =
0 . 55 , 0 . 34 , 0 . 41] and low-dose CT ρ = [0 . 64 , 0 . 42 , 0 . 38] . Our end-

o-end method took ∼50 hours to train using a single Nvidia GTX 

080 Ti. 

Setting for the MRI case The temporal cine cardiac data (Dataset 

) is used to generate 376 2D image pairs as target-template 

mage pairs, and then the momentums dataset associated with 

arget-template image pairs is obtained via LDDMM (9) for regu- 

arising the momentum prediction Nets in our approach (20) . In 

his work, u is normalised to [0 , 1] and set noise level σ = 0 . 05 .

e use undersampling rate of { 1 / 5 , 1 / 4 , 1 / 3 } . In each experiment,

60 measurement-template pairs with 360 target images and 360 

omentums are used to train our proposed approach (20) , and 

6 measurement-template pairs are used for testing by (34) . For 

peedup the training, we pretrain the model stage by stage for 500 

poch, and finally train the whole network for 500 epochs. 

Setting for the sparse-view and low-dose CT case We gener- 

te 528 2D image pairs as target-template, and then the mo- 

entum is obtained via LDDMM (9) for regularising the mo- 

entum prediction Net. We use for the Radon Transform A the 

UDA version of ( Gao, 2012 ). For the training the network (20) ,

80 measurement-template pairs with 480 target images, and 480 

omentum are used. Whilst for testing (34) , 48 measurement- 

emplate pairs are used. 

.3. Evaluation methodology 

We evaluate our proposed framework based on the following 

cheme. 

Comparison against other MRI reconstruction schemes For the first 

art of our evaluation, we compared our framework against the 

ell-established compressed sensing (CS) reconstruction scheme. 

e solve the CS scheme with TV, and LDDMM computed sequen- 

ially. Furthermore, we ran experiments using three different sam- 

ling patterns: radial, 2D random and 1D random (cartesian). To 

how generalisation capabilities, we use different sampling rates = 

1/5,1/4, 1/3}. 
2 https://bitbucket.org/scicompanat/pyca/wiki/Home . 

https://www.dir-lab.com/Downloads.html
https://bitbucket.org/scicompanat/pyca/wiki/Home
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Fig. 4. MRI Reconstruction outputs and reconstruction errors using Dataset A with sampling rate = 1 / 5 . Comparison of our approach vs. classic scheme (TV + LDDMM). Our 

approach reconstruct higher quality images with sharp edges, preservation of fine details and contrast. 
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We report the results of these comparisons based on both qual- 

tative and quantitative results. The former is based on visual as- 

essment of the reconstruction, and the latter on the computation 

f two well-established metrics: the structural similarity (SSIM) 

ndex and the Peak Signal-to-Noise Ratio (PSNR); along with the 

omputational cost given in seconds. 
7 
Generalisation capabilities using CT data For generalisation 

apabilities, we evaluate our framework using data coming 

rom sparse view CT and low-dose CT. We compared our 

ramework against classic TV-reconstruction scheme + LD- 

MM computed sequentially and another indirect registra- 

ion approach that of Chen and Oktem (2018) . We report the 
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Fig. 5. MRI Reconstruction outputs and reconstruction errors using Dataset A with sampling rate = 1 / 3 and with different sampling patterns. Reconstructions show that 

our approach reconstructs higher quality images than classic scheme TV + LDDMM. This is further supported by the reconstruction error plots, in which our reconstructions 

reported the lowest error. 

8 
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Fig. 6. MRI Reconstruction outputs and reconstruction errors using Dataset A with sampling rate = 1 / 4 and with different sampling patterns. Results from classic scheme 

(TV + LDDMM) vs our approach. One can see that our reconstructions have higher quality, this is reflected in the reconstruction error plots. 

c

c

r

c

4

f

omparison using qualitative and quantitative results using visual 

omparison of the reconstructions along with the error maps, 

econstruction quality in terms of PSNR, SSIM and computation 

ost. 
9 
.4. Results and discussion 

In this subsection, we demonstrate the capabilities of our 

ramework following the evaluation scheme of Section 4.3 . 
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Fig. 7. CT reconstruction outputs and reconstruction errors using Datasets B and C. A comparison is displayed between classic reconstruction scheme and our approach. In 

a closer inspection, one can see that our reconstructions have higher image quality than the compared schemes. This is further supported by the reconstruction error plots, 

in which our reconstructions display the lowest errors. 
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� Is Our Framework better than a classic MRI Reconstruc- 

ion Scheme? We begin by evaluating our approach against clas- 

ic TV+LDDMM reconstruction scheme. We remark to the reader 

hat classic scheme performs sequentially the reconstruction and 

egistration whilst our approach computes simultaneously the MRI 

econstruction and indirect image registration. 

We report both qualitative and quantitative results in Table 1 

nd Figs. 4–6 . In Fig. 4 , we show nine reconstructed output ex- 

mples with three different sampling patters. Visual assessment 

grees with the theory of our model, in which we highlight the re- 

onstruction of higher quality and preservation of relevant anatom- 

cal parts whilst enhancing fine details and contrast. In a closer in- 

pection at these reconstructions, one can see that our framework 

in both cases either using (36) or (38) ) leads to reconstructions 

ith sharper edges and better preservation of fine details than the 

lassic MRI reconstruction scheme. This is further supported by the 

eported reconstruction errors, in which our approach reported the 

owest error values for all reconstructed samples. 

To show further generalisation capabilities, we ran a range of 

xperiments using different sampling factors = {1/5, 1/4, 1/3}. Re- 

onstruction outputs can be seen in Figs. 4–6 . One can see that the

enefits of our approach described above are prevalent to all sam- 
10 
ling factors. That is, our approach preserves small structures for 

xample the papillary muscles of the heart. Moreover, in a visual 

omparison between these figures, we notice that our method gen- 

ralises very well even when the acceleration factor is increasing; 

ontrary to the classic scheme that exhibits loss of contrast and 

lurry effects. Overall, we can show that providing a shape prior, 

hrough a registration task, yields to higher quality images whilst 

ecreasing the number of measurements to form an MRI. 

� Is a Two-task Model better than a Sequential Model - Does 

t Pay Off? To further support the aforementioned benefits of our 

odel and for a more detailed quantitative analyses, we report the 

verall results of the Dataset A in Table 1 . The results are the av-

rage of the image metrics, (PSNR, SSIM), across the whole Dataset 

 with different sampling patterns and sampling rates. We observe 

hat our approach reported significant improvement in both met- 

ics with respect to the classic MRI + LDDMM reconstructions and 

or all accelerations. These results further validate our hypothesis 

hat providing shape prior improve substantially the reconstruction 

mage quality. 

After demonstrating the benefits of our approach quality-wise, 

e now pose a question- how is our approach performing from a 

omputational point of view? The computational time is displayed 
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Fig. 8. Visualisation of the predicted momentum. (From left to right) ground truth ( ̃  m x , ˜ m y ) and predicted ones using cartesian and radial sampling patters, and DAtasets A, 

B and C. 

Table 1 

Numerical comparison of our approach vs. other reconstruction schemes using the Dataset A, with different 

reconstruction patterns and acceleration factors. Results are reported from the testing set. SSIM is denoted in 

10 −2 . denotes the best image quality scores whilst the lowest computational cost. 

11 
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Table 2 

Numerical comparison for sparse-view and low-dose CT datasets (B&C). The displayed results are the averaged accuracy and efficiency 

on the testing dataset. denotes the best image quality scores whilst the lowest computational cost. 
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n Table 1 , we report the GPU time following common protocol e.g. 

ailey (2005) . One can observe that another major advantage of 

ur model is the computational time, we achieve to decrease an 

verage of 65% the computation cost with respect to the classic 

econstruction scheme whilst achieving a substantial improvement 

n terms of image quality in both metrics. Overall, the potentials 

f our approach are preserved for all datasets and for all sampling 

ates. 

� Can Our Approach be Applied to other Modalities? Gen- 

ralisation Capabilities To demonstrate generalisation capabilities 

f our model, we run experiments on both sparse-view and low- 

ose CT datasets (e.g. Datasets B and C). We remark to the reader, 

hat to the best of our knowledge, this is the first hybrid ap- 

roach reported that performs two tasks as a hybrid model . That 

s- an approach that combines a model-based and a deep learning- 

ased models to improve image reconstruction. However, there is 

 model-based approach that follows similar philosophy than ours, 

hich is that of Chen and Oktem (2018) that is applied to the CT

ase. Therefore, we ran our approach and compared against both 

he classic CT reconstruction scheme with TV + LDDMM, and that 

f ( Chen and Oktem, 2018 ). 

We begin by evaluating visually our approach against the com- 

ared schemes and the results are displayed in Fig. 7 . In that fig-

re, we display two samples outputs using datasets B and C re- 

pectively. In a closer look at the reconstructions, one can see that 

lassic TV + LDDMM reconstructions fail to preserve fine details 

nd introduce strong blurring artefacts (see first column). Simi- 

arly, the algorithmic approach of that ( Chen and Oktem, 2018 ) 

hows reconstructions with loss in contrast and texture, blurry 

rtefacts and fine details. These negative effects are reflected at the 

econstruction error plots in which our reconstructions (last two 

olumns) reported the lowest errors. From these plots, one can see 

hat our approach is able to reconstruct sharp edges whilst keeping 

ne details and texture. 

To further support our approach, we perform further quantita- 

ive experiments, which are reported in Table 2 . Similarity-wise 

e reported the highest values for both PSNR and SSIM met- 

ics. In particular, we would like to highlight two major potentials 

f our approach. Firstly, our approach offers substantial improve- 

ent, in terms of both image quality metrics. In particular, for the 

SNR metric the improvement is highly substantial compared to 

he approach. Also, in terms of SSIM, it outperforms the classic TV 

cheme and readily competes against Chen and Oktem (2018) . Sec- 

ndly, the computational cost is significantly lower than the ap- 

roach of Chen and Oktem (2018) and the classic reconstruction 

cheme. Finally, for further visualisation support, we display the 

redicted momentum in Fig. 8 . 

. Conclusion 

In this paper, we propose for the first time a hybrid ap- 

roach for simultaneous reconstruction and indirect registration. 
12 
e demonstrated that indirect image registration, in combination 

ith deep learning, is a promising technique for providing a shape 

rior to substantially improve image reconstruction. We show that 

ur framework can significantly decrease the computational cost 

ia deep nets. 

In particular, we highlight the potentials of leveraging physics- 

riven regularisation methods with the powerful performance of 

eep learning in an unified framework. We show that our ap- 

roach improves over existing regularisation methods. These im- 

rovements are in terms of getting higher quality images that 

reserve relevant anatomical parts whilst avoiding geometric dis- 

ortions, and loss of fine details and contrast. Moreover, we also 

howed that our framework can substantially decrease the com- 

utational time by more than 66% whilst reporting the highest 

mage quality metrics. These benefits are consistent over different 

ettings such as acceleration factors, sampling patterns and medi- 

al image modalities. 
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ppendix A. Supplementary visual results 

In this section, we extend the comparison of visual results from 

he main paper. The main goal of these results is to further support 

ur technique for the case of Atlas-to-Image registration. 
ig. 9. MRI Reconstruction outputs and reconstruction errors using Dataset A with samp

TV + LDDMM) vs our approach. The experiments reflect the case of Atlas-to-Image regist

13 
Our first experiment is using MRI data ( Wissmann et al., 2014 ), 

n which we followed the next protocol. We select 1 image as our 

raining template image, 83 images as our training target images 

nd the remaining 12 image as our test target images. We used 

3 measurement-template pairs with 83 target images and 83 mo- 
ling rate = 1 / 4 and with different sampling patterns. Results from classic scheme 

ration. 
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Fig. 10. CT reconstruction outputs and reconstruction errors using Datasets B and C. A comparison is displayed between classic reconstruction scheme and our approach. 

The reconstruction error plots from our technique shows the lowest errors. The experiments reflect the case of Atlas-to-Image registration for CT. 
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entums for training our technique (20) , and 12 measurement- 

emplate pairs for testing (34) . We ran our experiments using three 

ifferent sam pling patterns: radial, 2D random and 1D random 

cartesian) using a sampling rate of 1/4. The results are displayed 

n Fig. 9 . A closer look at the error plots, we can see that our tech-

ique was able to reconstruct higher quality images than TV + LD- 

MM. In particular, our proposed model was able to keep fine de- 

ails with less blurry type reconstructions. 

As second supplementary experiment, we use 4D CT data 

 Castillo et al., 2009 ). In the experiment of atlas-to-image indi- 

ect registration, we split 10 images of a patient in the 4D CT 

ataset along time axis and obtain 120 images via interpolation 

sing PyCA ( Singh et al., 2013 ). Then we select 1 image as our

raining template image, 95 images as our training target images 

nd the remaining 24 image as our test target images. For train- 

ng our proposed approach (20) , 95 measurement-template pairs 

ith 95 target images and 95 momentums are used along with 

4 measurement-template pairs for testing (34) . We used 18 and 

81 views for the sparse view CT and low-dose CT correspond- 

ngly. Our results are visualised in Fig 10 , in which we compared 

ur approach against that of ( Chen and Oktem, 2018 ). In a close
14 
nspection, one can see that our reconstructions are closer to the 

round truth as they report the lowest reconstruction errors. Our 

echnique performs better in terms of boundaries and anatomical 

tructure preservation. 

We underline a main message from these supplementary re- 

ults, our technique show potential results on only in the case for 

mage-to-image registration but also for the Atlas-to-image setting. 
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