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Abstract. How to overcome the ill-posed nature of inverse problems is a per-
vasive problem in medical imaging. Most existing solutions are based on regu-

larization techniques. This paper proposed a deep neural network (DNN) based
image reconstruction method, the so-called DR-Net, that leverages the inter-

pretability of existing regularization methods and adaptive modeling capacity

of DNN. Motivated by a Douglas-Rachford fixed-point iteration for solving `1-
norm relating regularization model, the proposed DR-Net learns the prior of

the solution via a U-Net based network, as well as other important regulariza-

tion parameters. The DR-Net is applied to solve image reconstruction problem
in diffusion optical tomography (DOT), a non-invasive imaging technique with

many applications in medical imaging. The experiments on both simulated and

experimental data showed that the proposed DNN based image reconstruction
method significantly outperforms existing regularization methods.

1. Introduction. Image reconstruction in medical imaging is about generating
high-quality images, i.e., visual representation of internal structures of physiological
organs, from measurements collected by the instrument. It can be formulated as
solving a linear inverse problem:

(1) y = Au+ ε,

where y denotes collected measurements, u denotes the image, and ε denotes mea-
surement noise, and the operator A models image acquisition process. Different
imaging techniques have different forms of the measurement matrix A. As the ma-
trix A is usually ill-posed in medical imaging, the problem (1) requires solving a
challenging linear inverse problem. Moreover, the trend of medical imaging col-
lecting less measurement using the instrument with weaker radiation power. For
instance, computed tomography (CT) imaging prefers to lower radiation dose to re-
duce the object exposure to X-ray radiation, and magnetic resonance imaging (MRI)
prefers to use low k-space data sampling rate to reduce scan time. Diffusion optical
tomography (DOT) is an emerging technique to image hemodynamic changes in
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human breast for its non-invasive nature, low cost, and portability. As a result, in
these techniques, the signal-to-noise ratio (SNR) of measurement y is lower, and
the matrix A is more ill-posed.

The ill-posedness of a linear inverse problem usually can be resolved by imposing
certain prior on the image u when solving (1), which can be done by formulating it
as an optimization problem:

(2)
1

2
‖Au− y‖22 + λp(u).

where p(·) is the regularization term derived from the image prior. In the past, many
predefined image priors have been proposed for solving inverse problems in imag-
ing. To list some, squares of `2-norm based Tikhonov regularization that assumes
the smoothness of image [29], total variation (TV) [27] and wavelet transform [4]
based `1-norm relating regularization that exploit the sparsity prior of image gradi-
ents, and non-local regularization that assumes the recurrence prior of local image
patches [7, 20, 18, 5]. These regularization techniques see their applications in many
medical image reconstruction tasks, including DOT imaging (see e.g. [6, 15]). As
these predefined image priors are not adaptive to the variations among different
images, the reconstruction quality from these regularization methods often is not
satisfactory, especially when collected measurements are few and of low SNR. For
instance, many image details are erased when using Tikhonov regularization, and
there are stair-casing artifacts shown in the reconstructed images using `1-norm
relating regularization methods.

In recent years, as a powerful machine learning tool, deep learning also sees its
applications in medical image reconstruction. Instead of using DNN as a black
box to directly model the mapping between the measurements and the image, a
more promising approach is to include the knowledge of imaging physics in the
deep learning based method. Earlier works [13, 33, 14] used DNN as a post-process
denoising to refine the results reconstructed from some existing methods. Recently,
a more appealing approach is integrating DNN into the reconstruction process.
One popular approach is to unroll some iterative algorithms of a regularization
method and replace the operation involving image prior by a DNN based learnable
operation. Such a learned image prior is then adaptive to target images and it
is expected to perform better than those using predefined image priors. There
has been an enduring effort on developing such optimization unrolling based DNN
for medical image reconstruction. For example, proximal gradient descent based
methods [2, 1, 23] for CT reconstruction, and ADMM-Net[28], learned variational
network [12] for MRI reconstruction.

The basic procedure to design a DNN that unrolls an optimization method with
learnable prior is given as follows. Taking `1-norm based regularization methods
for example, these methods formulate the reconstruction problem as solving the
following optimization problem:

(3) ‖Au− y‖22 + λ‖Du‖1,

where the operator D can be a differential operator or wavelet transform. The alter-
nating direction method of multipliers (ADMM) method [3, 9] is one representative
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algorithm for solving (3), which reads

(4)


uk+1 = arg min

u
‖Au− y‖2 + ρ

2‖Du− d
k + bk‖22;

dk+1 = arg min
d
λ‖d‖1 + ρ

2‖Du
k+1 − d+ bk‖22;

bk+1 = bk + (Duk+1 − dk+1).

An image reconstruction algorithm with learned prior is about replacing the second
step in the iteration above by an NN based function Φ(·;ϑ) with trainable weights
ϑ. The function Φ maps Duk+1 to dk and bk. It can be seen that the image prior
induced by the regularization term p(·) is replaced by a more powerful one learned
from training data.

In this paper, we propose a new unrolling scheme for medical image reconstruc-
tion, which includes both the inversion with learnable parameters and the prior
learned by a NN. The proposed deep learning based image reconstruction method,
called DR-Net, is then applied to the challenging image reconstruction problem in
DOT imaging. The proposed DR-Net is motivated from a fixed-point iteration based
reformulation of (4), i.e., the so-called Douglas-Rachford iteration. There are sev-
eral concatenated stages in the DR-Net. Each stage corresponds to one step of the
iteration. Each stage contains two blocks: (i) inversion block and (ii) de-artifacting
block. The inversion block reconstructs the image from the collected measurement,
assisted by additional information from the de-artifacting block in the previous
stage. In our approach, such additional information is the image de-artifacted in
the previous stage under a learned linear transform D. The de-artifacting block is
for refining the image reconstructed in the inversion block using image prior learned
from a NN. The DR-Net is built using the blocks that have clear physics meaning.
The experiments in image reconstruction for DOT imaging showed that the DR-Net
does not suffer from of over-fitting on both our simulated dataset and experimental
dataset, and it noticeably outperformed representative regularization methods.

The rest of this paper is organized as follows. In section 2, we give a brief in-
troduction to medical image reconstruction and then propose a learnable Douglas-
Rachford iteration via convolutional neural networks(CNN). Section 3 gives a brief
introduction to DOT imaging and applies the DR-Net to solve image reconstruction
problem in DOT imaging. The performance of the DR-Net for DOT image recon-
struction is evaluated and analyzed in Section 4. Section 5 concludes the paper.

2. Learnable Douglas-Rachford iteration for image reconstruction. Reg-
ularization has been one main tool for solving inverse problems which are typically
ill-conditioned. The performance of these methods remains unsatisfactory when
being used for reconstructing images when measurements are few and of low SNR.
Motivated by impressive performance of deep learning based methods for many im-
age processing problems(see e.g. [31, 16]), as well as image reconstruction in CT
and MRI (see e.g. [28, 1, 21]), this section aims at developing a new DNN-based
image reconstruction method that can be used in many medical imaging techniques.

With the concatenation of many simple nonlinear operations parameterized by
millions of adjustable weights, DNN can model very complex functions. To utilize
prior knowledge of imaging physics, one approach is to unroll the iterative scheme
of existing regularization methods and replace the predefined prior based module by
a deep learning based module. For example, several deep learning based methods
have been proposed for MRI image reconstruction that unrolls different numeri-
cal methods for solving `1-norm relating regularization models. The ADMM-net
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method [28] unrolls the ADMM method and replaces the thresholding operation by
an NN-based function. The method proposed in [1] unrolls the primal-dual method,
and the method [21] unrolls the variable splitting methods.

In this section, we propose a method for medical image reconstruction, which
unrolls a re-formulated version of the ADMM algorithm from the perspective of
Douglas-Rachford iteration, a fixed-point iteration. Recall that the ADMM for
solving (3) is a three-block iterative scheme given as follows.

(5)


uk+1 = Ψ(dk − bk, y) := arg min

u
‖Au− y‖2 + ρ

2‖Du− (dk − bk)‖22,
dk+1 = Φ(Duk+1 + bk) := arg min

d
‖d‖1 + ρ

2‖Du
k+1 − d+ bk‖22,

bk+1 = bk + (Duk+1 − dk+1).

Following the procedure described in [8], we can reformulate the iteration scheme
(5) as a fixed-point iteration. Define the variable

(6) tk+1 = bk +Duk+1.

Then, we have dk+1 = Φ(tk+1), and thus

bk+1 = bk + (Duk+1 − dk+1) = tk+1 − dk+1 = tk+1 − Φ(tk+1).

Plug them into the first equation in (5), we have then

(7) tk+1 = bk+Duk+1 = bk+D(Ψ(y, dk−bk)) = tk−Φ(tk)+D(Ψ(2Φ(tk)−tk, y))).

The fixed-point iteration (7) is also called Douglas-Rachford iteration [17]. In our
method, we propose to implement the inversion mapping Ψ with learnable parame-
ters ρ and NN-based learnable transform D, and to replace the prior-based mapping
Φ by NN-based learnable function. Let Dθ and Φϑ denote the functions modeled
by the NN with parameters θ and ϑ. Then the learnable version of the Douglas-
Rachford iteration (7) can be expressed as

(8) tk+1 = TΘk
(tk) = tk − Φϑk

(tk) +DθkΨ(2Φϑk
(tk)− tk, y, ρk,Dθk)

for k = 1, 2, · · · , N , where the NN parameters are

Θ = {Θk}Nk=1 = {ρk, θk, ϑk}Nk=1

The optimization problem in the first step of the iteration (5) is quadratic, and
thus we have an analytic solution:

(9) Ψ(v, y, ρ,Dθ) =
(
A>A+ ρD>θ Dθ

)−1
(A>y + ρD>θ v).

The linear system above usually is large-scale in medical imaging. Thus, we need
to call some iterative solver for computational efficiency, e.g., conjugate gradient
method. In our approach, not only the parameter ρ in (9) is a learnable parameter,
but also the linear operator Dθ is a function with learnable parameters θ. For com-
putational feasibility, the operator Dθ needs to fit well a computational architecture
of NN. Thus, we propose to adopt the operator D in the form of a filter bank:

(10) D : u→ θ ∗ u = [θ` ∗ u]L`=1,

where ∗ denotes the 2D discrete convolution operator here. The operator D defined
by (10) can be implemented via a CNN in which the bias is set to 0, and the
activation function is set to identity. For completeness, the backward derivative of
the inversion block with a one-layer and one-channel CNN used in backpropagation
is listed below.
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Proposition 1. Consider a function f : Rn → R. Let Dθ denote the transform
defined by (10) and Ψ the function defined by (9). The backward derivatives of
f(Ψ(v, y, ρ,Dθ)) are given by
(11)

∂f(Ψ(v, y, ρ,Dθ))
∂v

=ρDθ
(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ
∂f(Ψ(v, y, ρ,Dθ))

∂y
=A

(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ

∂f(Ψ(v, y, ρ,Dθ))
∂ρ

=(D>θ v −Ψ)>
(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ

∂f(Ψ(v, y, ρ,Dθ))
∂θ

=Ψ[−·,−·] ∗ Dθ
(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ

+ ((v −DθΨ) ∗ (Dθ
(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ
))[−·,−·].

where [−·,−·] reverses the order of the elements along two axes.

Proof. See Appendix A for the detailed derivation.

The backward derivatives for the case of 3D images with 3D convolution can
be similarly obtained. The linear systems involved in the calculation of backward
derivatives defined in (32) can be solved by the conjugate gradient method.

Using a learnable function modeled by NN to replace the mapping Φ derived from
the predefined prior has been proposed to solve many general image restoration
problems, including image denoising [30, 22, 31], super-resolution and many others
[10, 25, 11]. In the proposed approach, we also adopt a CNN-based function to
model the function Φ in (5) in the de-artifacting block by

d := Φϑ(t),

which is learned over training samples.

3. DR-Net for DOT image reconstruction.

3.1. Introduction to image reconstruction in DOT. In non-invasive diffusive
optical imaging, both light sources and detectors are outside of the human body.
As near-infrared light from light sources is strongly scattered in soft tissue, the pho-
tons do not form straight-line beams anymore. Indeed, they become diffusive and
probe a rather broad volumetric region after propagating through the body, which is
measured and recorded in detectors. The so-called image reconstruction problem is
then about how to translate the measurement collected in detectors into a map, the
so-called optical image, that relates to optical properties of tissues. Photon prop-
agation in a turbid media can be described by a diffusion equation parameterized
by the absorption and scattering coefficients, and photon density is the function to
be solved. The goal of image reconstruction is to estimate the optical properties
including absorption and diffusion coefficients within the tissue from collected mea-
surements. There are many applications of DOT in medical imaging, e.g. optical
mammography. Optical mammography uses DOT to image hemodynamic changes
in the human breast. Owing to its non-invasive nature and low cost, optical mam-
mography allows more frequent scans of patients than X-ray mammography does,
and its portability makes it a good complementary device for pre-screening. Also,
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Figure 1. A prototype time-resolved diffuse optical tomography sys-
tem designed for optical imaging of human breast [24]

the DOT image contains additional functional information for differentiating ma-
lignant cancers from benign lesions. There are different experimental approaches to
DOT. The majority of existing DOT systems can be classified into two categories:
continuous wave (CW) and frequency domain (FD). In a CW system, the output
of light sources is roughly constant, and the intensity of time-independent photon
density waves is measured. In an FD system, light sources are modulated at a fre-
quency in the typical range of 50 - 200 MHz so that phase delay of photon density
wave can be obtained besides amplitude. As time-resolved measurement of diffu-
sive light contains more information for facilitating image reconstruction process,
recent DOT technology can capture time-resolved measurement of diffusive light
with faster data acquisition and high signal to noise ratio; see Fig 1 for an illustra-
tion of a time-solved DOT system designed for early detection of breast cancers.

During image acquisition in optical mammography, a human subject lays prone
on the top of the machine so that her breasts are suspended into the imaging cham-
ber, in which two transparent plates compress the breasts gently to ensure good
contact with the skin. A laser head emits a collimated beam that illuminates the
breast tissue perpendicularly through one of the compression plates, while three
detectors on the opposite side collect the diffusive light transmitted through the
tissue. A large number of measurements can be made by simultaneously raster
scanning the sources and the detectors.

Time-resolved optical measurements can be predicted by a time-dependent dif-
fusion equation that describes the propagation of diffusive light in turbid medium:

(12) κ∇2φ(r, t)− µaφ(r, t) = −1

c

∂φ(r, t)

∂t
− S(r, t),

where φ(r, t) is the measurable fluence rate (or photon density) at time t and position
r, S(r, t) is the optical source going into the medium, c is the light velocity in the
tissue, and

(13) κ =
1

3 [µa + (1− g)µs]
=

1

3µst
=
lr
3
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is the photon diffusion coefficient. In (13), µa denotes absorption coefficient, µs
denotes scattering coefficient, g denotes isotropic factor, µst = (1 − g)µs + µa de-
notes linear transport coefficient, and ltr = 1

µst
denotes transport mean free path.

Given incident source intensity, their corresponding locations, the measurements
and their detector locations, how to reconstruct the optical properties, including
both absorption and scattering coefficients, from diffusion equation (12) is a non-
linear and ill-posed inverse problem. If the distributions of optical properties in a
volume are given, the diffusion equation (12) can then be solved by some numerical
methods, such as finite element method (FEM). Then, we have a forward problem
expressed as

(14) Y = F(µ)

where the optical property µ contains both absorption coefficient µa and scattering
coefficient µs (or diffusion coefficient κ), and Y is the collected measurement. In
practice, we use the optical property µ representing total distribution, e.g., a tumor
in the homogeneous background which has initial optical properties estimation µ0,
and usually the total optical property µ is close to its initial optical property esti-
mation µ0. The increased optical property δµ will consequently result in a change in
the measurement. Thus, instead of reconstructing µ, we construct the perturbation
of δµ

(15) δµ =

(
δµa
δµs

)
=

(
µa
µs

)
−
(
µ0a

µ0s

)
:=

(
ua
us

)
:= u.

By taking the first-order Taylor approximation to the measurement Y , we have then

(16) δY =
∂F

∂µ
δµ+ o(||δµ||2) := y.

In the end, image reconstruction problem using time-resolved optical measurements
can be simplified as the problem of solving the following linear system

(17) y = Au

where y = δY , A is the Jacobian matrix w.r.t. the first-order derivative of ∂F
∂µ , and

u = δµ. In general, the Jacobian matrix A is non-invertible, and thus a certain
prior needs to be imposed on the solution u when solving (17).

The so-called regularization method reformulates the ill-posed linear inverse
problem (17) as a general optimization problem (3). One often-used regulariza-
tion method for medical imaging, including the DOT reconstruction, is Tikhonov
regularization [6]

p(u) = ‖∇u‖22,

where ∇ denotes the first-order spatial differential operator. It can be seen that
Tikhonov regularization assumes that the desired solution is smooth with its energy
concentrated in low frequencies. Thus, the corresponding result tends to be overly
smoothed as the high frequencies of the result that contains edge information is
either erased or severely attenuated. To keep sharp edges in the reconstructed
image, a better approach is using `1-norm relating regularization, e.g., TV-based
regularization, which considers

(18) p(u) = ‖∇u‖1
Inverse Problems and Imaging Volume 14, No. 4 (2020), 683–700
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Figure 2. X-Net: architecture of components of DR-Net, including
Dθ, Φϑ and Dθ>. Note that the weights of Dθ and Dθ> can be shared
with each other, or learned individually.

in the optimization model. TV-based regularization not only sees its wide usages
in image reconstruction problems in CT and MRI, but also is used for image re-
construction in DOT, e.g. [15]. Nevertheless, the details recovered from TV reg-
ularization is still not very satisfactory, and there are often noticeable stair-casing
artifacts in the result. For meeting the needs in practice, there is certainly the
need to develop a more powerful reconstruction algorithm with higher resolution
for DOT.

3.2. DR-Net for image reconstruction in DOT imaging. Image reconstruc-
tion on DOT imaging is about reconstructing both absorption coefficients ua and
scattering coefficients us from collected measurements y. Based on the learnable
Douglas-Rachford iteration (8), we develop the so-called DR-Net for image recon-
struction in DOT imaging. In the proposed DR-Net, there are two NNs. One is for
the transform Dθ in inversion block which is implemented using one-layer standard
CNN without bias and nonlinear activation. The other is for the mapping Φϑ in the
de-artifacting block. The architecture of Φϑ is based on the so-called U-Net [26].
Instead of using a plain version of U-Net, we made some modifications to fit the
need of our problem. More specifically, let the variable uk+1 representing the esti-
mation of the image at the (k+ 1)-th stage. The image contains two entities: uk+1

a

representing absorption coefficients, and uk+1
s representing scattering coefficients.

Although these two entities have rather different distributions on intensity, they are
correlated to each other to a certain degree. Thus, these two entities are updated
via two U-Nets, but the intermediate output of each entity is copied to the NN of
the other one. We call such a NN as X-Net. Such similar architectures can also be
found in [32, 19] to explore the structural similarity. See Fig 2 for the architecture
of one stage of the proposed DR-Net for medical image reconstruction.

Consider L training samples:

{(y`, ũ`)}L`=1,

where y` denotes the measurement and ũ` denotes the corresponding truth image.
For each input measurement y, let uN := D>θN t

N denotes the output of the NN.

Inverse Problems and Imaging Volume 14, No. 4 (2020), 683–700
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The loss function for training is then defined as

(19) L(Θ) =
1

2

L∑
`=1

‖u`,N − ũ`‖22 +R(Θ),

where Θ denote the set of the weights of the whole DNN that include the weights
of all inversion blocks {ρk, ϑk}Nk=1 and de-artifacting blocks {θk}Nk=1, and the regu-
larization R(Θ) for the Θ is considered as following

(20) R(Θ) =

N−1∑
k=1

L∑
`=1

αk‖u`,k − ũ`‖22,

with the parameters α can be empirically set as αk = 1
N−k+2 . The weights of NN are

then learned by minimizing the loss function (19). Once we have a good estimation
on the weights Θ∗, for any input measurement y, the image can be constructed by
the forwarding pass of y in the DNN (8) with the weights Θ.

4. Experimental evaluation. In this section, the proposed DR-Net for DOT
image reconstruction is evaluated on both simulated data and experimental datasets
collected from the time-resolved DOT system illustrated in Fig 1. Our code and
data are available at https://github.com/jiulongliu/SOFPI-DR-Net-DOT.

Through the experiments, the DNN is set up as follows. Totally N = 6 stages
are used in the proposed method, and the learned ρ in the inversion block [ρk]6k=1 =
[5.9731, 5.2703, 4.1330, 3.0843, 2.5850, 2.0939]. The NN is trained using Adam
method with the following training parameters: learning rate 0.001, number of
epoch 300 and batch size 128. The weights of Dθ and Dθ> are not shared with each
other for this DOT reconstruction as we found that it can speed up the training for
this experiment.

4.1. Dataset and experimental set-up. The acquisition of experimental data
is done on a time-solved diffuse optical tomography system shown in Figure 1. A
liquid tissue phantom, mostly composed of a homogeneous 0.6% intralipid solution,
was used to mimic the optical properties of normal breast tissue. A small target
was fabricated by mixing epoxy resin, TiO2, and Ink to achieve a reduced scattering
coefficient similar to that of the intralipid solution and a higher absorption coeffi-
cient around 0.5 cm−1. The target size was 10 mm in length and 8 mm in diameter.
During phantom imaging experiments, the target was suspended in the Intralipid
solution with various depths to simulate a small solid tumor surrounded by normal
breast tissues. We acquired several times of fluence for the same target position
and the times of experiment are listed in Table 1 in which Ii(i = 1, · · · ) denote the
measured fluence. The raw dataset (Table 1) is used to generate 348 measurements
for training and 31 measurements for testing by
(21)

Y (i, j, s) = log(

1/(#Q)
∑
q∈Q

∑
t
Iq(i, j, t)e

p(s)t∑
t
I0(i, j, t)ep(s)t

), 1 ≤ i ≤ 13, 1 ≤ j ≤ 12, 1 ≤ s ≤ 27.

where p denotes Laplace parameter, the measured fluence of multiple times are
averaged, and I0 denotes the measured fluence without presenting the phantom,
and Q is a subset of the measurements obtained at the same position by multiple

Inverse Problems and Imaging Volume 14, No. 4 (2020), 683–700
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experiments. Note that the testing dataset is obtained by presenting the phantom
in different positions from the training dataset.

Table 1. Experimental dataset (Q 6= φ)

Depth(mm) 5 15 25 35 45
raw dataset T1 = {Ii}51 T2 = {Ii}136 T3 = {Ii}1814 T4 = {Ii}1915 T5 = {Ii}2420
Augmentation Q ⊂ T1 Q ⊂ T2 Q ⊂ T3 Q ⊂ T4 Q ⊂ T5

Data size 31 255 31 31 31
Purpose Training Training Testing Training Training

The augmented experimental dataset is not sufficient for training the model (8)
with good generalization. Instead, it is observed that the model (8) can have much
better generalization performance when it is trained with an additional dataset
simulated by the following procedure. The simulated dataset is generated as follows.
We first set up phantom in 4 kinds of shapes, which are denoted as S, composed of
cubic containers of size 5mm × 5mm × 5mm (1 voxel), shown in Fig 3. Then, the
different materials with different optical properties are placed in the containers. In
the simulation, let U denote uniform distribution and N denote normal distribution.
Then, the phantom (ground truth) ũ = [ũa, ũs]

> is set as

ũa(i, j, k) =

{
∼ U(0.4, 0.6), if (i, j, k) ∈ S;

0, otherwise,

and

ũs(i, j, k) =

{
∼ U(0.2, 0.3), if (i, j, k) ∈ S;

0, otherwise.

for 1 ≤ i ≤ 13, 1 ≤ j ≤ 12, 1 ≤ k ≤ 9. The measurements are synthesized by

(22) y = A(ũ+ η) = A(

[
ũa + 0.2ηa
ũs + 0.1ηs

]
),

where the noise ηa of each pixel and the noise ηs of each pixel independently and
identically follow normal distribution N (0, 0.05). The training samples are then
generated by sliding the shape S over different pixels and randomly draw values in
(22) for 3 times. Totally

(13× 12× 9 + 12× 12× 9 + 13× 11× 9 + 12× 11× 9)× 3 = 15525

samples are generated as the training set for training the NN. The testing data
is simulated by sliding the shape S to position (5, 7, k), 1 ≤ k ≤ 9 and randomly
draw values in (22) for once, which leads to a testing dataset of 36 instances. It
is noted that the intensity of all instances in the training dataset and that of the
testing dataset is randomly drawn from the normal distribution, and thus they are
not correlated.

Figure 3. Phantom shapes for simulated data, each cubic container is
of size 5mm× 5mm× 5mm (1× 1× 1 voxel).

Inverse Problems and Imaging Volume 14, No. 4 (2020), 683–700
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Figure 4. Reconstructed absorption coefficients from simulated mea-
surements with phantom size of 10mm×10mm×5mm in depth of 30mm.

4.2. The results. In comparison to the proposed method, totally four methods
are included for reconstructing images from both simulated data and experimental
data. Two are non-learning-based regularization methods including Tikhonov regu-
larization method and the TV-based regularization method. Two are deep learning
based methods. One is called Post-net, which learns NN-based denoiser for post-
processing image reconstructed from the TV regularization method [13, 33, 14], and
the other is called learnable primal dual, which is an NN-based learnable primal
dual method [1] (named as Learned PD). The NNs used in these two methods are
both based on the same NN used in the proposed method for modeling the mapping
Φ.

For simulated data, the results from different methods are visualized in Figure 5
for image slices of absorption coefficients and Figure 5 for image slices of scattering
coefficients. For experimental data, the results from different methods are visualized
in Figure 6 for image slices of absorption coefficients and Figure 7 for image slices
of scattering coefficients. It can be seen that the results from the proposed DR-Net
for DOT image reconstruction are of better resolution than that from the other four
compared methods.

The quantitative evaluation of the reconstructed image quality in terms of con-
trast is based on the contrast-to-noise ratio (CNR) defined by

(23) CNR(G,B) =
MG −MB√
σ2
G + σ2

B

where MG,MB are the mean intensities of the target and the background respec-
tively, and σG, σB are standard deviations of the target and the background re-
spectively. Here we evaluate each pixel which locates in the phantom (G) with its
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Figure 5. Reconstructed scattering coefficients from simulated mea-
surements with phantom of 10mm× 10mm× 5mm in depth of 30mm.

Table 2. CNR of reconstructed phantom in Fig. 4-7 from simulated
data and experimental data

Data Results Pixel Tikhonov TV Post-net Learned PD DR-Net

sim

ua

1 1.04 1.33 13.53 83.65 125.94
2 1.46 1.28 11.27 77.82 158.06
3 1.58 1.42 16.02 66.74 100.64
4 1.94 2.17 15.58 75.16 218.52

us

1 1.48 2.33 6.06 84.81 187.18
2 1.94 2.32 5.61 77.82 123.83
3 1.18 1.17 4.83 66.74 51.55
4 1.36 2.51 5.61 75.16 34.63

exp
ua

1 1.75 1.12 3.14 0.92 5.09
2 2.21 2.39 1.70 4.93 15.57

us
1 1.38 0.64 1.16 0.96 7.09
2 2.40 1.55 2.21 6.7607 18.98

neighborhood and background pixels with radius of 1 pixel (B). The quantitative
evaluation on the reconstructed image quality in terms of reconstruction accuracy
is based on PSNR and SSIM. See Table 2 & 3 for quantitative comparison of the
images reconstructed from both simulated and experimental test data using five
methods. It can be seen that the proposed DR-Net method noticeably outper-
formed the other two non-learning regularization methods and two learning-based
methods.
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Figure 6. Reconstructed absorption coefficients from experimental
measurements {I15, I16, I17} with phantom of 5mm × 10mm × 5mm in
depth of 25mm.

Table 3. Averaged PSNR and SSIM of reconstructed images from
simulated data and experimental data

Data Results Measure Tikhonov TV Post-net Learned PD DR-Net

sim
ua

PSNR 31.68 31.91 38.22 39.46 40.98
SSIM 0.9182 0.9275 0.9759 0.9807 0.9881

us
PSNR 31.29 32.04 34.56 41.34 38.03
SSIM 0.9301 0.9401 0.9740 0.9914 0.9898

exp
ua

PSNR 28.16 28.36 29.01 28.07 29.33
SSIM 0.8612 0.8871 0.9441 0.9412 0.9460

us
PSNR 28.92 29.20 29.94 29.46 31.13
SSIM 0.8870 0.9239 0.9587 0.9700 0.9779

To show that the learned Dθ∗ is beneficial for alleviating ill-posedness of the
inversion procedure and the learned Φϑ∗ can de-artifact gradually, we also plot the
intermediate absorption coefficients {uka,D>θ∗kv

k
a}6k=1 of (8) in Fig. 8 & 9 .

5. Conclusion. In this paper, we developed a DNN based method for image re-
construction in DOT, which is motivated by unrolling a fixed-point reformulation
of the ADMM method, one prevalent numerical solver for `1-norm relating regular-
ization models. By leveraging physics-driven regularization methods and powerful
modeling capability of deep learning, the proposed method can lead to great perfor-
mance gain over existing regularization methods. The evaluation of both simulated
datasets and experimental datasets showed that the proposed method significantly
improved the resolution and accuracy of the reconstructed images in DOT.
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Figure 7. Reconstructed scattering coefficients from experimental
measurements {I15, I16, I17} with phantom of 5mm × 10mm × 5mm in
depth of 25mm.
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Appendix A. Proof for proposition 1.

Proposition 1. Let f : Rn → R and Dθu = θ ∗ u , and the backward deriva-
tives of f(Ψ(v, y, ρ,Dθ)) (9) with respect to v, y, ρ and θ from the derivatives of
f(Ψ(v, y, ρ,Dθ)) with respect to Ψ can be correspondingly given by
(24)

∂f(Ψ(v, y, ρ,Dθ))
∂v

=ρDθ
(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ
∂f(Ψ(v, y, ρ,Dθ))

∂y
=A

(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ

∂f(Ψ(v, y, ρ,Dθ))
∂ρ

=(D>θ v −Ψ)>
(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ

∂f(Ψ(v, y, ρ,Dθ))
∂θ

=Ψ[−·,−·] ∗ Dθ
(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ

+ ((v −DθΨ) ∗ (Dθ
(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ
))[−·,−·].

Proof. Since Dθu = θ ∗ u , its adjoint operator with respect to u,

(25) D>θ v = θ[−·,−·] ∗ v
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Figure 8. Outputs of inversion blocks for absorption coefficients uka of
all stages in inference phase from simulated measurements with phantom
size of 10mm× 10mm× 5mm in depth of 15mm.

where −· represents flipping the variable around its axis which follows the fact

(26) 〈θ ∗ u, v〉 = 〈θ̃ � ũ, ṽ〉 = 〈ũ, ¯̃
θ � ṽ〉 = 〈u, θ[−·,−·] ∗ v〉

where ·̃ denotes the Fourier Transform and ·̄ denotes the conjugate. Therefore, we
obtained

(27) ∂Dθu = ∂θ ∗ u+ θ ∗ ∂u = ∂θ ∗ u+Dθ∂u

and

(28) ∂D>θ v = ∂θ[−·,−·] ∗ v + θ[−·,−·] ∗ ∂v = ∂θ[−·,−·] ∗ v +D>θ ∂v.

and

∂D>θ Du = ∂[θ[−·,−·] ∗ (θ ∗ u)]

= ∂θ[−·,−·] ∗ (θ ∗ u) + θ[−·,−·] ∗ (∂θ ∗ u) + θ[−·,−·] ∗ (θ ∗ ∂u)

= ∂θ[−·,−·] ∗ (Dθu) +D>θ (∂θ ∗ u) +D>θ Dθu
(29)

Then (9) can be differentiated with respect to v, y, ρ and the filter θ, i.e.(
A>A+ ρD>θ Dθ

)
∂Ψ + Ψ∂ρ+ ρ[∂θ[−·,−·] ∗ (DθΨ) +D>θ (∂θ ∗Ψ)]

= A>∂y +D>θ v∂ρ+ ρ[∂θ[−·,−·] ∗ v +D>θ ∂v]
(30)

and then

∂Ψ =
(
A>A+ ρD>θ Dθ

)−1
[ρD>θ ∂v +A>∂y + (D>θ v −Ψ)∂ρ

+ρ(∂θ[−·,−·] ∗ (v −DθΨ)−D>θ (∂θ ∗Ψ))].
(31)
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Figure 9. Outputs of de-artifacting blocks for absorption coefficients
D>θ∗

k
vka of all stages in inference phase from simulated measurements with

phantom size of 10mm× 10mm× 5mm in depth of 15mm.

The backward derivatives of f(Ψ(v, y, ρ,Dθ)) with respect to v ,y , ρ and θ from
the derivatives of f(Ψ(v, y, ρ,Dθ)) with respect to Ψ can be correspondingly given
by
(32)

∂f(Ψ(v, y, ρ,Dθ))
∂v

=ρDθ
(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ
∂f(Ψ(v, y, ρ,Dθ))

∂y
=A

(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ

∂f(Ψ(v, y, ρ,Dθ))
∂ρ

=(D>θ v −Ψ)>
(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ

∂f(Ψ(v, y, ρ,Dθ))
∂θ

=Ψ[−·,−·] ∗ Dθ
(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ

+ ((v −DθΨ) ∗ (Dθ
(
A>A+ ρD>θ Dθ

)−1 ∂f

∂Ψ
))[−·,−·].
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