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Abstract
4D cone-beam computed tomography (4DCBCT) reconstructs a temporal
sequence of CBCT images for the purpose of motion management or 4D
treatment in radiotherapy. However the image reconstruction often involves
the binning of projection data to each temporal phase, and therefore suffers
from deteriorated image quality due to inaccurate or uneven binning in phase,
e.g., under the non-periodic breathing. A 5D model has been developed as an
accurate model of (periodic and non-periodic) respiratory motion. That is,
given the measurements of breathing amplitude and its time derivative, the 5D
model parametrizes the respiratory motion by three time-independent vari-
ables, i.e., one reference image and two vector fields. In this work we aim to
develop a new 4DCBCT reconstruction method based on 5D model. Instead of
reconstructing a temporal sequence of images after the projection binning, the
new method reconstructs time-independent reference image and vector fields
with no requirement of binning. The image reconstruction is formulated as a
optimization problem with total-variation regularization on both reference
image and vector fields, and the problem is solved by the proximal alternating
minimization algorithm, during which the split Bregman method is used to
reconstruct the reference image, and the Chambolleʼs duality-based algorithm
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is used to reconstruct the vector fields. The convergence analysis of the pro-
posed algorithm is provided for this nonconvex problem. Validated by the
simulation studies, the new method has significantly improved image recon-
struction accuracy due to no binning and reduced number of unknowns via the
use of the 5D model.

Keywords: computed tomography, iterative method, image reconstruction

1. Introduction

According to the 2015 report by the American Cancer Society, lung cancer accounts for
approximately 27% of all cancer deaths and is by far the leading cause of cancer death among
both men and women in the United States. Radiation therapy is commonly used for cancer
treatment by conformally delivering the radiation dose to tumors while sparing healthy
organs. However, accurate dose planning and delivery remains challenging for lung cancer
due to respiratory motion, for which motion management or 4D planning has been exten-
sively studied [1]. In any case, 4D imaging is essential as a prerequisite to guide the dose
planning and delivery, such as on-board 4D cone-beam CT (4DCBCT).

4DCBCT provides respiratory phase-resolved volumetric images [2–5]. That is, given the
projection data and the breathing amplitude, the projection data is first binned into phases
using the breathing measurement, and then each respiratory phase is reconstructed inde-
pendently. However, due to a very limited amount of projection data available for each phase,
its image quality can be degraded which hinders clinical use. To improve image quality by
utilizing the prior knowledge that the patient anatomy during respiration is highly correlated,
the simultaneous reconstruction methods of all phases are developed with spatiotemporal
regularization among different respiratory phases [6–12]; the reconstruction of deformation
vector fields on a prior reference image or in addition to the image reconstruction is intro-
duced for 4DCBCT [14–16]. Meanwhile, another approach with no binning requirement, so-
called cine CBCT, is developed based on low-rank matrix factorization [17].

On the other hand, a novel breathing motion model, the so-called 5D model, was
established to model breathing motion [18] such that the position of a region of interest within
the patient can be expressed as a linear function of a reference position vector field, breathing
amplitude and its time derivative (rate). That is, given the measurements of breathing
amplitude, 5D model parametrizes the respiratory motion by three time-independent vari-
ables, i.e., one reference image and two deformation vector fields (corresponding to breathing
amplitude and rate). It has been applied to 4D planning CT for motion estimation [13, 19] and
image reconstruction [20, 21].

The purpose of this work is to develop a new 4DCBCT reconstruction method based on
the 5D model. Instead of reconstructing a temporal sequence of images after the projection
binning, the new method reconstructs time-independent reference image and vector fields
with no requirement of binning. Compared with the above conventional approaches [2–
12, 14–16] that require data binning, the new method does not require binning, and therefore
is free from binning artifacts caused by inaccurate or uneven binning in phase, e.g., under
non-periodic breathing. Compared with the cine CBCT approach [17] with no data binning
requirement as well, the proposed method utilizes the breathing measurement (breathing
amplitude and rate), and therefore is expected to improve the image reconstruction quality.
Compared with existing approaches with motion reconstruction [14–16], the method here
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reconstructs only two time-independent vector fields instead of time-dependent deformation
vector fields, and therefore has a significantly reduced number of unknowns.

In terms of reconstruction algorithms, the image reconstruction will be formulated as a
nonconvex optimization problem with simultaneous reconstruction of reference image and
time-independent vector fields, both of which are regularized by the total variation (TV) [22].
Specifically the proximal alternating minimization [23, 24] will be developed to solve this
nonconvex problem, during which the split Bregman method (or so-called alternating direction
method of multipliers) is used to reconstruct the reference image [25, 26], and the Chambolleʼs
duality-based algorithm is used to reconstruct the vector fields [27]. The proximal alternating
minimization has led to many applications for nonconvex problems [28–30]. Moreover, we will
provide the convergence analysis of the proposed algorithm, which is to the best of our
knowledge first-of-its-kind for simultaneous reconstruction of image and motion.

The rest of the paper is organized as follows: the background of the proposed method is
summarized in section 2; the 5D model based image reconstruction is introduced in section 3;
the details of the solution algorithm and its convergence analysis are provided in section 4; the
simulation results in comparison with the state-of-art 4DCBCT image reconstruction methods
are given in section 5, which demonstrate that the proposed method has significantly
improved image quality for periodic or non-periodic breathing; and then the proposed method
is summarized in section 6.

2. Background

2.1. 4DCBCT

With the conventional 4DCBCT image reconstruction methods, the projection data is first
binned into phases and then the images are reconstructed individually phase by phase [2–5]. Let
It be the image phases to be reconstructed with T phases of 2D N by N images, i.e.,
I x y i j N t T, , 1 , , 1 .t i j{ ( ) }    The conventional phase-by-phase 4DCBCT method can
be formulated as the following iterative reconstruction method with the TV regularization [22]

AI y I t Tmin , 1 , 1
I

t t t2
2

1
t

∣ ∣ ( ) m- +  

where A is the system matrix from the x-ray transform [31], yt the binned projection data to
the phase t, and λ the regularization parameter for the spatial TV term (for the purpose of
denoising the image during the iterative reconstruction) defined by

I I I , 2t
i j

x t y t1
,

2 2( )( )∣ ∣ ( )å = ¶ + ¶

with I I x y I x y, ,x t t i j t i j1( ) ( )¶ = -+ and I I x y I x y, , .y t t i j t i j1( ) ( )¶ = -+
In this work, we also compare with a state-of-art 4DCBCT method that utilizes a priori

knowledge that the patient anatomy is correlated for the dynamic images to be reconstructed,
through the use of TV to promote the temporal similarity among image phases in addition to
the spatial smoothness for each phase [6]. Thus, all the image phases are simultaneously
reconstructed instead, which render each other complementary information that would be
otherwise missing due to undersampled projection data. That is, the 4DCBCT method with
the simultaneous reconstruction of all the image phases is formulated as

AI y I Imin , 3
I t

t t
t

t t t2
2

1 1
t

∣ ∣ ∣ ∣ ( )
{ } å åm l- +  +  
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with the temporal TV term defined by

I I 4t t
i j t

t t1
, ,

∣ ∣ ( )å = ¶

with I I x y I x y, ,t t t i j t i j1( ) ( )¶ = -+ and the regularization parameter .tl
For the above convex optimization problems (1) and (3), the solution algorithm can be

conveniently developed based on the split Bregman method [25, 26] with the details given in
our previous work [8, 9].

2.2. 5D respiratory motion model

The 5D model [18] is developed to accurately model the respiratory motion. It parametrizes
the dynamic position of a region of interest on the reference image based on reference
position, breathing amplitude and rate. Mathematically, the 5D model can be described by

X X v M f M 5t t t1 2 ( )= + +
   

in which Xt


and X


are spatial coordinates in It and the reference image I0 with the same image

intensity value, vt the breathing amplitude, ft the breathing rate (vt and ft both measured data
during free breathing), M1


and M2


the corresponding time-independent deformation vector

fields. Correspondingly

I X I X . 6t t0 ( ) ( ) ( )=
 

That is, the region of interest at X

in the reference image I0 deforms to a new location Xt


in an

arbitrary image phase It through the 5D model (5) parameterized by the reference image I0
and its corresponding time-independent vector fields M M M, .1 2( )=

  
Note that M


is

dependent on I0 and therefore M

has different values for a different I0.

2.3. Proximal alternating minimization algorithm

The proximal alternating minimization algorithm [23] has been developed for the nonconvex
and nonsmooth minimization problems. Considering a class of nonconvex and nonsmooth
problems of the form

P x y f x Q x y g y, , , 7( ) ( ) ( ) ( ) ( )= + +

where

f R R g R R

Q R R R C
Q R R

: , : are proper lower semicontinous;

: is a function;
is Lipschitz continous on bounded subsets of .

n m

n m

n m

1

{ } { }È È +¥  +¥
´ 

 ´

⎧
⎨⎪
⎩⎪
The proximal alternating linearized minimization algorithm [23, 24] has been proposed to
solve (7), i.e.,

x P x y x x

y P x y y y

arg min ,

arg min , ,
8

k

x

k k

k

y

k k

1 1
2

2

1 1 1
2

2

k

k

( )
( )

( )
= + -

= + -

s

h

+

+ +

 

 

⎧
⎨⎪

⎩⎪

where the ks and kh are positive sequences for weighting the proximal term. The convergence
of this algorithm can be established based on the Kurdyka–Łojasiewicz (K–Ł) property [23]
of the function P x y, ,( ) which will be provided in this work.
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3. 5D Model based 4DCBCT

The innovation of this work is to consider the 4DCBCT image reconstruction based on 5D
model (5) through

AI I M y I Mmin , , 9
I M t

t t
,

0 2
2

0 1 1
0

( ) ∣ ∣ ∣ ∣ ( )å m l- +  +  

where M denotes time-independent vector fields, e.g., M M M M M, , ,x y x y1 1 2 2( )= in 2D with
M M M, ,x y1 1 1( )=


and M M M,x y2 2 2( )=


correspondingly in (5), and M is regularized in the
TV norm component-wise for improved smoothness, i.e., M M .

i j x y
ij1

1,2 , ,
1∣ ∣ ∣ ∣

{ } { }
å = 

Î Î
Note that (1) the regularization on M is essential to resolve the illposedness when solving M
[32]; (2) no data binning on yt is assumed here and therefore the number of image phases It to
be reconstructed is the same as the number of projections yt. For notation convenience, we
shall eliminate

tå from the data fidelity term in (9) from now on.
Next we adapt (9) to the linearized form based on which the proximal alternating line-

arized minimization algorithm can be conveniently developed. Recall that It is related to the
reference image I0 and vector fields M by (5) and (6), i.e.

I X I X L M . 10t t0 ( ) ( )( ) ( )= +
 

With L M v M f M .t t t1 2( ) = +
 

Then from the linearization

I X I X I L M , 11t
T

t t0 ( ) ( ) · ( ) ( )» + 
 

where I L M I v M f M I v M f M ,T
t t x t t x t x y t t y t y1 2 1 2· ( ) · ( ) · ( ) = ¶ + + ¶ + we have

I I I L M 12t
T

t t0 · ( ) ( )= - 

and correspondingly the linearized form of (9)

A I I L M y I Mmin . 13
I M

T
t t t

,
0 2

2
0 1 1

0

( )· ( ) ∣ ∣ ∣ ∣ ( )m l-  - +  +  

Note that since the vector field M is with respect to I0, It can be computed based on the
deformation from I0, but not vice versa. Also, during the computation of It, since the
deformed spatial coordinates X L Mt ( )+


from the Cartesian coordinate X


of I0 may not be on

the Cartesian coordinate of It, the interpolation is necessary to derive the Cartesian values of
It, which is through cubic interpolation here.

To summarize, (9) is solved through iteratively alternating between linearized optimi-
zation (13) and aforementioned interpolation, i.e.

I M A I I L M y

I M

I I I M

, arg min

, .

14

K K

I M

T
t
K

t t

t
K

t
K K

0
1 1

,
0 2

2

0 1 1

1
0

1 1

0
( ) ( )

( )

· ( )

∣ ∣ ∣ ∣ ( )m l

= -  -

+  + 

=

+ +

+ + +

 ⎧
⎨
⎪⎪

⎩
⎪⎪

Furthermore, we consider the following constrained version of (13)

A I I L M y I Mmin , 15
I M

T
t t t

0 ,
0 2

2
0 1 1

0

( )· ( ) ∣ ∣ ∣ ∣ ( )
   

m l-  - +  + 
a b b-

 

where α and β are positive upper bounds. Note that this constrained formulation (15) is
mainly for the convenience of the algorithm convergence analysis. From our simulation
experiences, these constraints are not essential for the algorithm to converge in practice.
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However this does not exclude the possibility they may be required in the presence of
significantly large motions.

4. Alternating reference-image and vector-field reconstruction

The optimization problem (15) is nonconvex and nonsmooth, for which we shall develop the
solution algorithm based on the proximal alternating linearized minimization in this section.
For the convergence analysis, we also consider the following variant of (15),

A I I L M y I Mmin , 16
I M

T
t t

0 ,
0 0 2

2
0 1 1

0

( )· ( ) ∣ ∣ ∣ ∣ ( )
   

m l-  - +  + 
a b b-

 

or in the iterative form similar to (14)

I M A I I L M y I M, arg min ,

17

K K

I M

T K
t t0

1 1

,
0 0 2

2
0 1 1

0
( ) ( )· ( ) ∣ ∣ ∣ ∣

( )

m l= -  - +  + + +  

where I It 0 »  by taking  on both sides of (12) and neglecting the high-order gradients.
From our experience, two forms (15) and (16) provide the similar accuracy with (15) being
slightly better. In the following, the description of the solution algorithm will be based on
(15), while the convergence analysis will be based on (16).

In the notion of general framework (7) for the proximal alternating minimization algo-
rithm, we denote the nonconvex objective function in (15) by

P I M f I Q I M g M, , , 180 0 0( ) ( ) ( ) ( ) ( )= + +

where

f I I I

Q I M A I I L M y

g M M M

, , 19

I

T
t t t

M

0 0 1 0 0

0 0 2
2

1

0

( )
( ) ( )
( )

∣ ∣

· ( )
( ) ∣ ∣ ( )

( )




 

 

m

l

=  +

= -  -

=  +

a

b b-

 

⎧
⎨⎪

⎩⎪

with the pointwise indicator function S defined as

X
X i j S

X i j S

0, if , ;
, if , .

20S( )
( )
( )

( ) =
Î

+ ¥ Ï

⎧⎨⎩
and then apply the proximal alternating linearized minimization (8) for (18), i.e.

I A I I L M y I

I I

M A I I L M y

M M M

arg min

1

2

arg min

.

21

K

I

T
t
K

t
K

t

K

K

M

K T
t
K

t t

K

0
1

0
0 2

2
0 1

0 0 2
2

1
0

1 1
2
2

1
1

2 2
2

0
( )

( )

( )· ∣ ∣

· ( )

∣ ∣

( )

 

 

m

s

l

= -  - + 

+ -

= -  -

+  + -

a

b b

h

+

+

-

+ +

 

 

 

 

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

Here K indexes the outer loop by the proximal alternating linearized minimization, and its
inner loop (indexed by k) for solving I K

0
1+ and MK 1+ will be described next. Note that (21)
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also solves (9), since the updates of It
K 1+ in (14) are included in (21). Therefore, the inclusion

of the iterative scheme (21) in the outer loop (14) makes (21) unchanged. Here we found the
constant values for η and σ work well for our problem, although they could vary during
iterations (8). Note that although the optimization problem (15) is nonconvex and nonsmooth,
the proximal operator added to the subproblems guarantees the convergence of the outer loop
[23, 24, 34], which will be proved next.

4.1. Reference-image reconstruction

In this section, we consider the I0 subproblem of (21), i.e.

I AI y I I Iarg min
1

2
, 22K

I t
K K

0
1

0
0 2

2
0 1 0 0 2

2

0

∣ ∣ ( )
 

m
s

= - +  + -
a

+    

where y A I L M y ,t
K T

t
K

t
K

t( · ( ))=  + and It
K is obtained through cubic interpolation on the

deformed I .K
0

Since (22) is a convex problem with sparsity regularization, we adopt the split Bregman
method [25, 26] with the details given in our previous work [8, 9]. For algorithm com-
pleteness, we shall briefly describe it here. That is, introducing dummy variables
d d I I, ,x y x y0 0( ) ( )= ¶ ¶ and its auxiliary variables b b,x y( ) for isotropic TV norm (2), the
convex problem (22) is reformulated as

I d d AI y d d

d I b d I b I I

, , arg min ,

2
,

1

2
. 23

x y
I d d t

K
x
k

y
k

x x x y y y
K

0
0 , ,

0 2
2

1

0 0 2
2

0 0 2
2

x y0
( )( )

( ) ( )

 
m

r
s

= - +

+ - ¶ - - ¶ - + -

a
 

   

Then we update I0 and d d,x y( ) alternately through

I AI y d I b d I b

I I

arg min
2

,

1

2
, 24

k

I t
K

x
k

x x
k

y
k

y y
k

K

0
1

0
0 2

2
0 0

2

2

0 0 2
2

0
( )

( )

 
r

s

= - + - ¶ - - ¶ -

+ -

a

+    

 

d d d d d I b d I b, arg min ,
2

, 25x
k

y
k

d d
x y x x

k
x
k

y y
k

y
k1 1

, 1 0 0 2
2

x y
( ) ( )( ) ( )r

= + - ¶ - - ¶ -+ +  

with auxiliary variables b b,x y( ) updated by

b b I d , 26x
k

x
k

x
k

x
k1

0
1 1( ) ( )= + ¶ -+ + +

b b I d . 27y
k

y
k

y
k

y
k1

0
1 1( ) ( )= + ¶ -+ + +

For the constrained I0 subproblem (24), we introduce another auxiliary variable D for the
constraint to decouple the constraint from the data fidelity, i.e.,
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I AI y d I b d I b

I I I D

I I D

arg min ,

arg min .

28

k

I t
K

x
k

x x
k

y
k

y y
k

K k

k

D

k

0
1

0 2
2

2 0 0 2
2

1
2 0 0 2

2 1
2 0 2

2

0
1

0
0

1
2
2

0

( )¯

¯

( )

 

= - + - ¶ - - ¶ -

+ - + -

= -

r

s g

a

+

+ +

   

   

 

⎧

⎨
⎪⎪

⎩
⎪⎪

The first equation of (28) is a standard L2 problem and the second equation of (28) has the
analytical solution. Therefore, the solution I k

0
1+ can be obtained by

I I , 29k k
0

1
0, 0

1( )¯ ( )[ ]P= a
+ +

where the project operator P is defined as

x x l umin max , , . 30l u, ( ) { { } } ( )[ ]P =

Here the linear system for L2 subproblems in (28) is never explicitly formulated, since the
problem (28) can be conveniently solved by conjugate gradient method as described in our
previous work [8, 9] without explicitly forming the system matrix A, which can be computed
on-the-fly through the parallel computation of x-ray transform and its adjoint [31]. And the
d d,x y( ) subproblem (25) has the explicit solution, i.e., the so-called isotropic shrinkage
formula

d d s
I I b b

s
, max , 0

, ,
, 31x

k
y
k k

x
k

y
k

x
k

y
k

k
1 1 0 0( ) ( ) ( )

( )m
r

= -
¶ ¶ +

+ +
⎛
⎝⎜

⎞
⎠⎟

where s I b I b .k
x

k
x
k

y
k

y
k

0
2

0
2( ) ( )= ¶ + + ¶ +

4.2. Vector-field reconstruction

Next we consider the M subproblem of (21), i.e.

M A I I L M y M M Marg min
1

2

32

K

M

K T
t
K

t t
K1

0
1

2
2

1 2
2( )· ( ) ∣ ∣

( )

 
l

h
= -  - +  + -

b b
+

-

+   

via the Chambolleʼs duality-based algorithm.
First we introduce a convex relaxation of (32)

M U A I I L M y U

M M U M

, arg min

1

2

1

2
, 33

K K

M U

K T
t
K

t t

K

1 1

,
0

1
2
2

1

2
2

2
2

( )( ) · ( ) ∣ ∣

( )

( )

( )

 
l

h q

= -  - + 

+ - + -

b b
+ +

-

+ 

   

where U is an auxiliary variable. Since (32) is convex, (33) is still convex. Thus, the
following alternating scheme (34) is convergent.
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U U U M

M A I I L M y M M

M U

arg min

arg min

.

34

k

U

k

k

M

K T
t
K

t t
K

k

1
1

1
2 2

2

1
0

1
2
2 1

2 2
2

1
2

1
2
2

( )
∣ ∣

· ( ) ( )
 

l=  + -

= -  - + -

+ -

q

b b h

q

+

+

-

+

+

 

   

 

⎧

⎨
⎪⎪

⎩
⎪⎪

Then from the Chambolleʼs duality-based algorithm [27], the problem (34) can be
solved by

U U U M

p U U M

p U U M

M A I I L M y M U

M M

div

arg min

arg min max ,

arg min max ,

arg min

.

35

k

U

k

U p

k

U p

k k

k

M

K T
t
K

t t
k

K

1
1

1
2 2

2

1

1
2 2

2

1

1
2 2

2

1
0

1
2
2 1

2
1

2
2

1
2 2

2

( )

∣ ∣

· ( )

( )
*

*





 

=  + -

=  + -

= + -

= -  - + -

+ -

ql

ql

ql

b b q

h

+

+

-

+ +

 

 

 

   

 

 

 

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪
For the U subproblem, the solution can be analytically obtained by first computing the

fixed point of the following iteration (36) over the dual variable p [27, 33]

p
p M p

M p

div

div1
36k

k k k

k k

1
1

1

( )
( )

( )
( )∣

( )
t q q

t q q
=

+  +

+  +
+

+

+

and then

U M pdiv . 37k k k1 1 ( ) ( )q= ++ +

Note that both (36) and (37) are with respect to each component of M, e.g.,
U M pdivx

k
x

k
x
k

0
1

0
1

0( )q= ++ + in (37) for M .x0

For the constrained M subproblem, similar to (28), we have

M A I I L M y M U

M M M D

M M D

arg min

arg min ,

38

k

M

K T
t
K

t t
k

K k

k

D

k

1
0

1
2
2 1

2
1

2
2

1
2 2

2 1
2 2

2

1 1
2
2

( )¯ · ( )

¯

( )

 

= -  - + -

+ - + -

= -

q

h g

b b

+ + +

+

-

+

   

   

 

⎧

⎨
⎪⎪

⎩
⎪⎪

and thus

M M . 39k k1
,

1( )¯ ( )[ ]P= b b
+

-
+

The solution M k 1¯ + for the first L2 subproblem (38) can be obtained again by conjugate
gradient method based on the following first-order optimality conditions

v I A A I I L M y M U

M M M M

1

1 1
0, 40

t x t
T K T

t
K

t t x x
k

x x
K

x x
k

0 1 1
1

1 1 1 1

( )
( ) ( )

( ) ( )· · ( )

( )( ) ( )

q

h n

- ¶ -  - + -

+ - + - =

+
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v I A A I I L M y M U

M M M M

1

1 1
0, 41

t y t
T K T

t
K

t t y y
k

y y
K

y y
k

0 1 1
1

1 1 1 1

( )
( ) ( )

( ) ( )· · ( )

( )( ) ( )

q

h n

- ¶ -  - + -

+ - + - =

+

f I A A I I L M y M U

M M M M

1

1 1
0, 42

t x t
T K T

t
K

t t x x
k

x x
K

x x
k

0 2 2
1

2 2 2 2

( )
( ) ( )

( ) ( )· · ( )

( )( ) ( )

q

h n

- ¶ -  - + -

+ - + - =

+

f I A A I I L M y M U

M M M M

1

1 1
0. 43

t y t
T K T

t
K

t t y y
k

y y
K

y y
k

0 2 2
1

2 2 2 2

( )
( ) ( )

( ) ( )· · ( )

( )( ) ( )

q

h n

- ¶ -  - + -

+ - + - =

+

Again there is no need to explicitly form the system matrix A, which can be computed on-the-
fly through the parallel computation of x-ray transform and its adjoint [31].

4.3. Alternating reconstruction algorithm

For the convenience of implementation, our alternating reference-image and vector-field
reconstruction algorithm is summarized in this section.

Algorithm 1. Alternating reference-image and vector-field reconstruction algorithm.

M I 00 0= =
while I IK K

0
1

0 2 1d- >+  do
I I ,K
0
0

0= b b d d 0x y x y
0 0 0 0= = = =

while I Ik k
0

1
0 2 2d- >+  do

I A I I

L M y d I b d I b I I

arg min

,

k

I

T
t
K

t
K

t x
k

x x
k

y
k

y y
k K

0
1

0
0

2
2

2 0 0 2
2 1

2 0 0 2
2

0

( ·

( )) ( )
 

= - 

- + - ¶ - - ¶ - + -

a

r
s

+ 

    

d smax , 0x
k k I b

s
1 x

k
x
k

k
0( )= - m

r
+ ¶ +

d smax , 0y
k k I b

s
1 y

k
y
k

k
0( )= - m

r
+ ¶ +

b b I dx
k

x
k

x
k

x
k1

0
1 1( )= + ¶ -+ + +

b b I dy
k

y
k

y
k

y
k1

0
1 1( )= + ¶ -+ + +

k k 1= +
end while
I IK k
0

1
0=+

M M ,K0 = p 00 =
while M Mk k1

2 3d- >+  do

pk p M p

M p

div

div
1

1

k k k

k k

1

1
( ( ))

( )
= t q q

t q q
+ + +

+ +

+

+

U M pdivk k k1 ( )q= ++

M A I I L M y M U M Marg mink

M

K T
t
K

t t
k K1

0
1

2
2 1

2
1

2
2 1

2 2
2( · ( ))

 
= -  - + - + -

b b q h
+

-

+ +     
k k 1= +
end while
M MK k1 =+

K K 1= +
end while
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In this study, based on algorithm 1, the number of the outer loop K is around 20, the
number of split Bregman inner loop for updating I0 is around 20, the number of Chambolleʼs
inner loop for updating M is around 100, and the number of conjugate gradient iterations in
both inner loops is around 10. Similar to other iterative reconstruction methods, the major
computational time is spent on x-ray transform and its adjoint. However, the computational
time is significantly longer due to the outer loop, which is simply 1 for most iterative methods
with image reconstruction only, such as (1) and (3). The computational efficiency will be
further explored in the future.

4.4. Convergence analysis

In this section, we shall analyze the convergence of the proposed algorithm for the following
optimization problem for which we denote

P I M A I I L M y I M

I M

,

44

t t

I M

0 0 0 2
2

0 1 1

0 00

( ) ( )
( )

· ( ) ∣ ∣ ∣ ∣

( ) ( )    

m l= -  - +  + 

+ +a b b-

 

and

f I I I

Q I M A I I L M y

g M M M

, ,

.

45

I

T
t t

M

0 0 1 0 0

0 0 0 2
2

1

0

( )
( ) ( )

( )
∣ ∣

· ( )
( ) ∣ ∣ ( )

( )




 

 

m

l

=  +

= -  -

=  +

a

b b-

 

⎧
⎨⎪

⎩⎪

We will start with some notations and preliminary results and then prove the convergence
of the sequence I M,K K

0( ) generated by algorithm 1.

Definition 1. Let f R R: n { }È ¥ be a proper lower semicontinuous function.
(i) For each x fdom ,Î the Frechet subdifferential of f at x is defined as

f x s
x y

f y f x s y x: lim inf
1

, 0 . 46y x y x,
ˆ ( ) ( ( ) ( ) ) ( )¶ =

-
- - - ¹  

⎧⎨⎩
⎫⎬⎭

If x fdom ,Ï then f x .ˆ ( )¶ = Æ
(ii) The (limiting-)subdifferential of f at x fdomÎ is defined as

f x x x x f x f x s f x x: , s.t. , . 47n n n n{ }( ) ( ) ( ) ˆ ( ) ( )* *¶ = $   Î ¶ 

(iii) The point x is a critical point of f if f x0 .( )Î ¶

Definition 2. Let f R R: n { }È ¥ be a proper lower semicontinuous function. f is said to
have the K–Ł property at x fdom¯ Î ¶ if there exists 0,h > a neighborhood U of x̄ and a
continuous concave function R: 0,[ )f h  + such that

· 0 0( )f =
· f is C1 on 0,( )h
· for all s 0, ,( )hÎ s 0( )f¢ >
· for all x U f x f x f x ,[ ( ¯ ( ) ( ¯) )]Ç hÎ < < + the K–Ł inequalityholds

f x f x f xdist 0, 1.( ( ) ( ¯) ( ( ))f¢ - ¶ >
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Definition 3. A subset S of n is called the semialgebraic set if there exists a finite number of
real polynomial functions g h,ij ij such that

S x g x h x: 0, 0 . 48
j i

n
ij ij{ }⋃⋂ ( ) ( ) ( )= Î = <

A function f(x) is called the semi-algebraic function if its graph x t t f x, ,n{( ) ( )} Î ´ =
is a semi-algebraic set.

Theorem 4. [24] The sequence Z x y,K K K( )= generated by the proximal alternating
minimization algorithm for (7) converges to the critical point of (7), if the following
conditions hold:

(1) P x y,( ) is a K–Ł function;
(2) Z K, 1, 2,K{ }=  is a bounded sequence and there exists some positive constant l u, ,

such that l u, .K Ks h< <
(3) Q x y,( ) has a Lipschitz constant on any bounded set.

Lemma 1. P I M,0( ) (44) is a K–Ł function.

Proof 1. Since the indicator function is a real-analytic function [23],
f I I II0 0 1 0 00( ) ( )  m=  + a and g M M MM1( ) ( )  l=  + b b- are both real-
analytic functions, and therefore, they are both K–Ł functions. In addition, since A and T
are linear operators and Lt is a linear function ,Q I M,0( )= A I I L M yK T

t t0
1

0 2
2( · ( ))-  -+ 

is a real polynomial function, and thus a semi-algebraic function as well. According to [23],
the addition of these three terms is a K–Ł function.

Lemma 2. The sequence Z I M,K K K
0( )= generated by algorithm 1 is a square summable

sequence and therefore is subsequence-convergent.

Proof 2. By definition of proximal operator and the convergence of split Bregman method
[25] and Chambolleʼs duality-based algorithm [27], we have

P I M I I P I M

P I M M M P I M

, ,

, ,
49

K K K K K K

K K K K K K

0
1 1

2 0
1

0 2
2

0

0
1 1 1

2
1

2
2

0
1

( ) ( )
( ) ( ) ( )




+ -

+ -
s

h

+ +

+ + + +

 

 

⎧
⎨⎪
⎩⎪

then

P Z P Z Z Z
1

2

1

2
. 50K K i i1 1

2
2( ) ( ) ( )

s h
- + -+ + 

⎛
⎝⎜

⎞
⎠⎟

Sum up (50) from 0 to K, and we have

P Z P Z Z Z
1

2

1

2
. 51K

i

i K
i i0 1

0

1
2
2( ) ( ) ( ) ås h

- + -+

=

=
+ 

⎛
⎝⎜

⎞
⎠⎟

Let l umin , , max , ,{ } { }s h s h= = and then

P Z P Z
u

Z Z
1

. 52K

i

i K
i i0 1

0

1
2
2( ) ( ) ( ) å- -+

=

=
+ 
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Since P ZK( ) is a decreasing sequence with lower bound

Z Z . 53
i

i
i i

0

1
2
2 ( )å - < +¥

=

=¥
+ 

We also have

P I M I I P I M

I I I R

P I M M M P I M

M M M R

, ,

,

, ,

,

54

K K K K K

K n

K K K K K

K m

0
1 1

2 0
1

0 2
2

0

1
2 0 0 2

2
0

0
1 1 1

2
1

2
2

0

1
2 2

2

( )

( ) ( )

( )

( )





+ -

+ - " Î

+ -

+ - " Î

s

s

h

h

+ +

+ + +

 

 

 

 

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪
i.e.

f I Q I M I I

f I Q I M I I I R

g M Q I M M M

g M Q I M M M M R

,

, ,

,

, , .

55

K K K K K

K K n

K K K K K

K K m

0 0
1 1

2 0
1

0 2
2

0 0
1 1

2 0 0 2
2

0

1
0

1 1 1
2

1
2
2

0
1 1

2 2
2

( ) ( )

( )
( )

( )
( )

( )

( )

( )





+ + -

+ + - " Î

+ + -

+ + - " Î

s

s

h

h

+ +

+

+ + + +

+

 

 

 

 

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

Let I M,0( ¯ ¯ ) be a limit point of sequence I M, .K K
0( ) Then there exists a subsequence

I M,K K
0( )¢ ¢

of I M,K K
0( ) converging to I M, .0( ¯ ¯ )

Q I M,0( ) is a continuous function, so

Q I M Q I Mlim inf , , . 56
K

K K
0

1 1
0( ) ( )¯ ¯ ( )=

¢+¥

¢+ ¢+

From (55) and (56) together with Z Zlim 0,
K

K K1
2
2- =

¥

¢+ ¢
  we have

f I Q I M f I Q I M I M I Rlim inf , ,
1

2
, .

57

K

K n
0 0 0 0 0 2

2
0( ) ( ) ( )( )¯ ¯ ¯ ¯

( )


s

+ + + - " Î
¢

¢+¥
 

Specifically for I I ,0 0̄= we have

f I f Ilim inf . 58
K

K
0 0( ) ( )¯ ( )¢

¢+¥

Since f I I IT
I0 0 1 0 00( ) ( )  m=  + a is a lower semicontinuous function here, we get

f I f Ilim inf . 59
K

K
0 0( ) ( )¯ ( )=

¢

¢+¥

Similarly

g M g Mlim inf . 60
K

K( ) ( )¯ ( )=
¢

¢+¥

Finally

P I M P I Mlim inf , , . 61
K

K K
0 0( ) ( )¯ ¯ ( )=

¢ ¢

¢+¥
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Therefore, there exists a subsequence of Z K ¢
which is convergent. Furthermore, the existence

of l and u is also validated for theorem 4.

Lemma 3. Q I M,0( ) in (44) has a Lipschitz constant on any bounded set.

Proof 3. In the function (44), Q I M A I I L M y, ,T
t t0 0 0 2

2( ) ( · ( ))= -  -  and for
simplicity, we denote the I L M I BM.T

t
T

0 0· ( ) ≔ ·  Itʼs easy to know B is linear function.
Therefore, the gradient of Q I M A I I BM y, T

t0 0 0 2
2( ) ( · )= -  -  is

Q I M
A BM A A I I BM y

I B A A I I BM y
, 62

T T T
t

T T T T
t

0

0 0

0 0 0

( )
( )

( ) ( )
( ) ( )( )

· ·

· ·
( ) =

-  -  -

 -  -

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

and its Hessian matrix

H
A BM A A A BM

B A A I I BM y B A A A I BM

T T T

T T T T
t

T T T T
0 0 0( )

( )( )
( ) ( ) ( )( )

· ·

· · · ·
=

-  - 

 -  - +  - 

⎡

⎣
⎢⎢⎢

B A A I I BM y A BM A A I B

I B I B
. 63

T T
t

T T T

T T T

0 0 0

0 0

( )( ) ( ) ( )( )
( )( )

· · · ·

· ·
( )

 -  - + -  

 


⎤

⎦
⎥⎥⎥

Since A ,  and B are linear bounded operators, we can conclude that the Hessian matrix
of Q I M,0( ) (63) are bounded on any bounded set. Namely, Q I M,0( ) in (44) has a
Lipschitz constant on any bounded set.

Lemma 4. The sequence Z I M,K K K
0( )= generated by algorithm 1 is a bounded sequence.

Proof 4. Define the bound set I M0 , .0{ }    a b b= - By the definition of
project operator ,P we conclude that the sequence by algorithm 1 Z I M, .K K K

0 0( ) = Î
Therefore, the sequence Z I M,K K K

0( )= generated by algorithm 1 is a bounded sequence.

Theorem 5. The sequence Z I M,K K K
0( )= generated by algorithm 1 converges to the

critical point of P I M, .0( )

Proof 5. The conclusion follows from theorem 4.

5. Numerical results

The proposed method (abbreviated as ‘5D Method’) (9) was validated based on experimental
data of a lung patient in comparison with the conventional phase-by-phase FBP recon-
struction (abbreviated as ‘FBP’) and iterative reconstruction (abbreviated as ‘TV’) (1) and a
state-of-art method of simultaneously reconstructing all phases with spatiotemporal TV
regularization (abbreviated as ‘TVt’) (3).
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The reconstructed reference image and vector fields, measured breathing amplitude and
rate were used to simulate a 4DCBCT in 2D with periodic and non-periodic breathing.
Specifically, the breathing amplitude and rate were measured together with a 4DCT patient
scan, and then time-independent deformation vector fields of the 5D model were derived
based on the existing method [20]. In this proof-of-concept work, the above 5D model and its
deformation vector fields were restricted to 2D, i.e., at each projection angle, the 5D model
generates a corresponding 2D image, based on which the x-ray transform generates the
projection data at this angle, for either periodic or non-periodic data. In our numerical
simulation, there were 570 projections evenly distributed in one rotation with 500 detection
pixels for each projection. The reconstructed images were 500 500,´ and the displayed
images were 500 300´ (central parts) for better visualization.

For ‘FBP’, ‘TV’ and ‘TVt’, the 570 projections data were first binned into 10 phases.
After image reconstruction, the 10 reconstructed image phases were re-mapped to 570 pro-
jections in the same order of projection binning. For the proposed ‘5D Method’, no projection
binning is necessary and dynamic images It were formed based on reconstructed I M,0( )
through the 5D model (5). The reconstruction results were presented with optimized recon-
struction parameters.

For quantitative comparison, the reconstruction error was defined by

Err
I I

I
65

recon Groundtruth 2

Groundtruth 2

( )=
- 

 

in L2 norm. To further illustrate the reconstruction results, the reconstruction errors
I Irecon Groundtruth- of all methods with respect to the ground truth (figure 1), and the zoom-in
details of the right-bottom images (figure 2 and figure 4) are plotted in figure 3 and figure 5
with the same scale. To summarize, both reconstruction results (figures 2–5) and quantitative
errors (tables 1) suggest that the proposed ‘5D Method’ improves the image quality
significantly under periodic or non-periodic breathing.

Next we consider the model error to evaluate the robustness of the proposed method,
when there is a discrepancy between the ideal 5D model and the realistic model. For this
purpose, the projection data is generated from the following perturbed 5D model with 10%
relative difference in motion magnitude

X X M vM f M
T

t1 0.1 sin 15
2

. 67t t t0 0 1 2( ) ( ( )) ( )p
= + + + +

    

Figure 1. Ground truth. (a) Periodic breathing; (b) non-periodic breathing.
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Here T is the total number of frames/projections; 15 in (1) is the number of the breathing
cycle, assuming 4 seconds per breathing cycle and 60 seconds per scan rotation. Then the
proposed method based on the ideal 5D model is used to reconstruct the CBCT images using

Figure 2. Reconstruction results for periodic breathing. (a) FBP; (b) TV; (c) TVt; (d)
5D Method.

Figure 3. Reconstruction errors and zoom-in details for periodic breathing. (a) FBP; (b)
TV; (c) TVt; (d) 5D Method.
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Figure 4. Reconstruction results for non-periodic breathing. (a) FBP; (b) TV; (c) TVt;
(d) 5D Method.

Figure 5. Reconstruction errors and zoom-in details for non-periodic breathing. (a)
FBP; (b) TV; (c) TVt; (d) 5D method.

Table 1. Relative errors between reconstructed images and ground truth (periodic
breathing) (unit in %).

Method FBP TV TVt 5D method

Periodic 27.63 3.75 2.91 0.44
Non-periodic 28.14 3.86 2.96 0.45
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perturbed projection data. The corresponding results are plotted in figures 6, 7, 8, 9, and
quantitative errors are summarized in table 2, which again suggest that the proposed “5D
Method” improves the image quality under periodic or non-periodic breathing.

Figure 6. Reconstruction results for periodic breathing (with model error). (a) FBP;
(b) TV; (c) TVt; (d) 5D Method.

Figure 7. Reconstruction errors and zoom-in details for periodic breathing (with model
error). (a) FBP; (b) TV; (c) TVt; (d) 5D Method.
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Figure 8. Reconstruction results for non-periodic breathing (with model error). (a) FBP;
(b)TV; (c) TVt; (d) 5D Method.

Figure 9. Reconstruction errors and zoom-in details for non-periodic breathing (with
model error). (a) FBP; (b) TV; (c) TVt; (d) 5D method.

Table 2. Relative errors between reconstructed images and ground truth (unit in %).

Method FBP TV TVt 5D Method

Periodic 27.82 4.08 2.97 1.33
Non-Periodic 28.04 4.18 3.52 1.33
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6. Conclusion

We have developed a new 4DCBCT image reconstruction method based on 5D respiratory
motion model, with improved image reconstruction from standard and state-of-art methods
for both periodic and non-periodic breathing. The new reconstruction algorithm is formulated
as a nonconvex and nonsmooth optimization problem with the reconstruction of reference
image and time-independent vector fields, which is solved by the proximal alternating
minimization with convergence analysis provided in this work.
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