Kibble-Zurek scaling and its breakdown for spontaneous generation of Josephson vortices in Bose-Einstein condensates

Shih-Wei Su1, Shih-Chuan Gou2, Ashton Bradley3, Oleksandr Fialko4, and Joachim Brand4

1Department of Physics, National Tsing Hua University, Hsinchu 30013 Taiwan
2Department of Physics and Graduate Institute of Photonics, National Changhua University of Education, Changhua 50058 Taiwan
3Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago, Dunedin, New Zealand
4Centre for Theoretical Chemistry and Physics, New Zealand Institute for Advanced Study, Massey University (Albany Campus), Auckland, New Zealand

email: scgou@cc.ncue.edu.tw

Abstract:

Atomic Bose-Einstein condensates confined to a dual-ring trap support Josephson vortices as topologically stable defects in the relative phase. We propose a test of the scaling laws for defect formation by quenching a Bose gas to degeneracy in this geometry. Stochastic Gross-Pitaevskii simulations reveal a $-1/4$ power-law scaling of defect number with quench time for fast quenches, consistent with the Kibble-Zurek mechanism. Slow quenches show stronger quench-time dependence that is explained by the stability properties of Josephson vortices, revealing the boundary of the Kibble-Zurek regime. Interference of the two atomic fields enables clear long-time measurement of stable defects, and a direct test of the Kibble-Zurek mechanism in Bose-Einstein condensation.

References: