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Nonlinear Solitary Wave Basis Functions 
for Long Time Solution of Wave Equation



Objective
Simulate short pulse over long distance

As in shock capturing, conserve integrals such as 
centroid, energy, etc. in normal direction



Conventional Methods
• Conventional Discretization

- Not feasible due to long distance
• Lagrangian Ray Tracing

- Difficulty with diverging waves and interference
- Difficulty with incorporation of created waves 

• Free Space Greens Function
- Not feasible due to varying medium properties and 

reflections
• General Greens Function

- Very expensive



Unsuitability of Direct Discretization of PDE

Higher order cannot help
- only meaningful if significant  number of cells in pulse 
Not Feasible in 3D – Requires too many grid points

Short initial pulse Pulse spreads even 
after short propagation 
and high order 
discretization



Approach
• Modify wave equation to generate localized thin 

nonlinear Solitary Waves (SW’s)

• SW’s serve as “Basis Functions”
- stable co-dimension 1 “surfaces” that 
propagate/scatter/reflect accurately and “carry”
properties of pulse

• Implement discretization scheme that preserves 
these properties



Effects to be Included:
• Long range propagation (≥ 106 λ) in arbitrary 

directions

• Varying index of refraction

• Multiple reflections from complex features

• Ability to “capture” and simulate wave on 
local fine grid and easily project onto global 
coarse grid



Solitary Waves
• Propagate over indefinitely long distance with 

zero numerical expansion (dispersion, 
diffusion)

• Propagate with fixed (computational) profile

• Centroids generate characteristic surfaces



• Physical pulse width can be 
much smaller than computed 
pulse (as in shock capturing)

• Physical properties of actual 
pulse such as width (w), 
amplitude (A), direction (   ), 
etc. can be propagated on 
grid nodes “carried” by 
computed pulse

w, A,    …

Simulation on Eulerian Grid
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Simple Example
Linear 1-D Wave Equation

Propagation of 
short pulse

2 2 2
t xcφ φ∂ = ∂



Nonlinear “Solitary Wave” Dynamics

• Solve Propagation PDE with Relaxation Term:
Modified Wave Equation

• F defines structure of pulse
• Decouples structure relaxation from propagation 
dynamics
• Heat Equation in pulse frame:

2 2 2 2
t x t xc Fφ φ∂ = ∂ + ∂ ∂

( 0)F →



Requirements for F

• Homogeneous—degree 1
- Dynamics independent of scale of 

• Contracting (negative dissipation) at longer    
wavelengths

• Expanding (saturating) at shorter wavelengths
• Nonlinear
• Waves do not interact  ( no phase shift or 
amplitude exchange)  in spite of nonlinearity

φ



Conserves mass (A), Velocity (V), Width (W)
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Solitary Wave Equation (1D Example)
2 2 2 2
t x t xc Fφ φ∂ = ∂ + ∂ ∂



- Anti dissipative at small k
- Dissipative at large k
- Transfers small k to large k

Features
0 1 2F F F F= + +
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- Linear
- Nonlinear

0 1,F F
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Analogous to Cahn Hilliard Equation(1958)



Structure Factor (PDE)
( )2

2 2 x
xF

φ
αλφ α φ

φ

⎛ ⎞∂
= − − ∂ −⎜ ⎟⎜ ⎟

⎝ ⎠

0 sec ( ( ))h x ctφ φ γ→ − γ λ=
, , 0λ α γ >

After relaxation

( )2 1
2 ,xF α ψ λψ ψ φ

ψ
−⇒ = ∂ − =

Basic Form



Discretized Structure Factor

• Good results with 

- type of non-linear mean
• Do not get instabilities
• Taylor expansion results in desired    

PDE
• Persists at “highly discrete” level

(2~3 grid cells)

{ }( )F φ φ= −Φ
Φ



Discretized 1-D Wave Equation
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0ε = ~ 1.5 ~ 4μ ε μ< <

Periodic Boundary Conditions
Fifteenth Pass

With ConfinementWithout Confinement



No Interaction Effects
(even though nonlinear)

Centroid Motion (Colliding Pulses)



Pulse Interaction
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After interaction (Born Approximation)

Since    in far field0IF →

Iφ φ≡Change in



Multidimensions (2D example)
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Demonstration of “Linear” Interaction

Amplitude Contours - 128×128 grid





Acoustic Pulse Scattering from Small Cylinder
INITIAL PULSE



3-D Pulse Propagation

64×64×64 grid



Validation
Varying Index of Refraction
Comparison with Ray Tracing

Wave Contours vs Ray Markers
Normalized 

Index of refraction



Wave Propagation in Long Duct

Effect of Varying Index of Refraction



Focusing

Moments conserved through focus
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Focusing



• set to zero every time-step 
inside  boundary

• Confinement term (            )
- eliminates tangential           

“stair-case” by smoothing
- eliminates spreading at 

boundary by compressing in 
normal direction

Reflection from “Immersed” Surface

φ

2
t xF∂ ∂

Surface Definition              
For Approximate B.C.’s



Scattering from Complex Objects

View Plane





Fine to Coarse Grid Projection

Far field
(coarse)

Near Field
(fine)


