
Chapter 5

Volterra Integral Equations

This chapter is devoted to spectral approximations of the Volterra integral equation

(VIE):

y(t)+

� t

0
R(t,τ)y(τ)dτ = f (t), t ∈ [0,T ], (5.1)

where the source function f and the kernel function R are given, and y(t) is the
unknown function. We shall also implement and analyze spectral algorithms for

solving the VIE with weakly singular kernel:

y(t)+

� t

0
(t− τ)−µR(t,τ)y(τ)dτ = f (t), t ∈ [0,T ], 0< µ < 1, (5.2)

where R(t, t) �= 0 for t ∈ [0,T ].
While there have been many existing numerical methods for solving VIEs (see,

e.g., Brunner (2004) and the references therein), very few are based on spec-

tral approximations. In Elnagar and Kazemi (1996), a Chebyshev spectral method

was developed to solve nonlinear Volterra-Hammerstein integral equations, and in

Fujiwara (2006), it was applied to the Fredholm integral equations of the first kind

under multiple-precision arithmetic. However, no theoretical analysis was provided

to justify the high accuracy of the proposed methods.

It is known that the Fredholm type equations behave more or less like a bound-

ary value problem (see, e.g., Delves and Mohanmed (1985)). As a result, some ef-

ficient numerical methods useful for boundary values problems (such as spectral

methods) can be used directly to handle the Fredholm type equations (cf. Delves

and Mohanmed (1985)). However, the Volterra equation (5.1) behaves like an ini-

tial value problem. Therefore, it is not straightforward to apply spectral methods

to the Volterra type equations. On the other hand, an essential difference between

(5.1) and a standard initial value problem is that numerical methods for the former

require storage of values at all the grid points, while they only requires information

at a fixed number of previous grid points for the latter.

This chapter is organized as follows. We devote the first two sections to de-

scribing spectral algorithms, including one with Legendre-collocation method
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and one with Jacobi-Galerkin method, for VIEs with regular kernels. We then

propose an efficient Jacobi-collocation method for VIEs with weakly singular ker-

nel in Sect. 5.3. Finally, we discuss applications of these spectral methods to delay

differential equations.

5.1 Legendre-Collocation Method for VIEs

For ease of implementation and analysis, we make the change of variable

t = T (1+ x)/2, x= 2t/T − 1, x ∈ I := [−1,1], t ∈ [0,T ], (5.3)

under which (5.1) is transformed into

u(x)+

� T (1+x)/2

0
R
�

T (1+ x)/2,τ
�

y(τ)dτ = g(x), x ∈ I, (5.4)

where we have set

u(x) = y
�

T (1+ x)/2
�

, g(x) = f
�

T (1+ x)/2
�

. (5.5)

We further convert the interval [0,T (1+ x)/2] to [−1,x] by using the linear trans-
formation: τ = T (1+ s)/2,s∈ [−1,x]. Then, (5.4) becomes

u(x)+

� x

−1
K(x,s)u(s)ds= g(x), x ∈ I, (5.6)

where

K(x,s) =
T

2
R
�

T (1+ x)/2,T(1+ s)/2
�

, x ∈ I, s ∈ [−1,x]. (5.7)

5.1.1 Numerical Algorithm

Let {xi}Ni=0 be a set of Legendre-Gauss, or Legendre-Gauss-Radau or Legendre-
Gauss-Lobatto collocation points (see Theorem 3.29). A first approximation to (5.6)

using a Legendre collocation approach is







Find uN ∈ PN such that

uN(xi)+
� xi

−1
K(xi,s)uN(s)ds= g(xi), 0≤ i≤ N.

(5.8)

However, the integral term in (5.8) can not be evaluated exactly. So we transform

the integral interval [−1,xi] to [−1,1] and use a Gaussian type quadrature rule to
approximate the integral. More precisely, under the linear transformation
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s := s(i) =
1+ xi

2
θ +

xi− 1
2

,

θ := θ (i) =
2

1+ xi
s+

1− xi

1+ xi
, θ ∈ I, s ∈ [−1,xi],

(5.9)

the scheme (5.8) becomes

uN(xi)+
1+ xi

2

� 1

−1
K(xi,s(xi,θ ))uN(s(xi,θ ))dθ = g(xi), 0≤ i≤ N. (5.10)

We then approximate the integral term by a Legendre-Gauss type quadrature for-

mula with the notes and weights denoted by {θ j,ω j}Mj=0, leading to the Legendre
collocation scheme (with numerical integration) for (5.6):











Find uN ∈ PN such that

uN(xi)+
1+ xi

2

M

∑
j=0

K(xi,s(xi,θ j))uN(s(xi,θ j))ω j = g(xi), 0≤ i≤ N.
(5.11)

It is worthwhile to point out that the collocation points {xi}Ni=0 and quadrature points
{θ j}Mj=0 could be chosen differently in type and number. As a result, we can also
use Legendre-Gauss-Radau or Legendre-Gauss-Lobatto for the integral term.

Next, we discuss the implementation of (5.11). Let {h j}Nj=0 be the Lagrange basis
polynomials associated with the Legendre-Gauss-type points {x j}Nj=0. We expand
the approximate solution uN as

uN(x) =
N

∑
k=0

uN(xk)hk(x). (5.12)

Inserting it into (5.11) leads to

uN(xi)+
1+ xi

2

N

∑
k=0

� M

∑
j=0

K(xi,s(xi,θ j))hk(s(xi,θ j))ω j

�

uN(xk) = g(xi), (5.13)

for all 0≤ i≤ N. Setting

aik =
1+ xi

2

M

∑
j=0

K(xi,s(xi,θ j))hk(s(xi,θ j))ω j, A= (aik)0≤i,k≤N ,

u= (uN(x0),uN(x1), . . . ,uN(xN))
T , g= (g(x0),g(x1), . . . ,g(xN))

T ,

the system (5.13) reduces to

(A+ I)u= g. (5.14)

We observe that, as with a typical collocation scheme, the coefficient matrix

of (5.14) is full. Moreover, all unknowns {uN(xi)}Ni=0 are coupled together

and the scheme (5.13) requires the semi-local information {K(xi,s(xi,θ j)}ij=0
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(note that −1 ≤ s(xi,θ j) ≤ xi). As a comparison, to compute uN(xi), piecewise-
polynomial collocation methods or product integration methods only use the semi-

local information of both the approximate solution uN and the kernel K, namely,

{uN(x j)}i−1j=0 and {K(xi,β j)} where {−1 ≤ β j ≤ xi} are some collocation points.
Indeed, this allows us to obtain, as to be demonstrated below, a spectral accuracy

instead of an algebraic order of accuracy for the proposed scheme (5.13).

We see that the entries of A involve the computations of the Lagrange basis

polynomials at the non-interpolation points, i.e., {hk(s(xi,θ j))}. The idea for their
efficient computation is to express hk in terms of the Legendre polynomials:

hk(s) =
N

∑
p=0

αk
pLp(s) ∈ PN , (5.15)

and by (3.193),

αk
p = Lp(xk)ωk/γp where γp =

2

2p+1
, 0≤ p< N, (5.16)

and γN = 2/(2N+1) for the Legendre-Gauss and Legendre-Gauss-Radau formulas,
and γN = 2/N for the Legendre-Gauss-Lobatto case. Consequently,

hk(s) = ωk

N

∑
p=0

Lp(xk)

γp
Lp(s), 0≤ k ≤ N. (5.17)

5.1.2 Convergence Analysis

We now analyze the convergence of the scheme (5.11). For clarity of presentation,

we assume that the collocation and quadrature points in (5.11) are of the Legendre-

Gauss-Lobatto type withM =N. The other cases can be treated in a similar fashion.

In what follows, we need to use the asymptotic estimate of the Lebesgue constant

(see, e.g., Qu and Wong (1988)):

ΛN :=max
|x|≤1

N

∑
j=0

|h j(x)| �
√
N, N � 1. (5.18)

The notation and Sobolev spaces used below are the same as those in Chap. 3.

Theorem 5.1. Let u and uN be the solutions of (5.6) and (5.11)with M=N, respec-

tively. Assume that

K ∈ L∞(D)∩L∞(I;Bk
−1,−1(I)), ∂xK ∈ L∞(D), u ∈ Bm

−1,−1(I), (5.19)
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where D= {(x,s) :−1≤ s≤ x≤ 1} and 1≤ k,m≤ N+ 1. Then we have

�u− uN� ≤ c

�

(N− k+1)!

N!
(N+ k)−k/2max

|x|≤1
�∂ k

s K(x, ·)�ωk−1,k−1�u�

+ c

�

(N−m+1)!

N!
(N+m)−(m+1)/2�∂m

x u�ωm−1,m−1 ,

(5.20)

and

�u− uN�∞ ≤ c

�

(N− k+1)!

N!
(N+ k)−k/2max

|x|≤1
�∂ k

s K(x, ·)�ωk−1,k−1�u�

+ c

�

(N−m+ 1)!

N!
(N+m)−m/2�∂m

x u�ωm−1,m−1 ,

(5.21)

where c is a positive constant independent of k,m,N and u.

Proof. We first prove (5.20). Rewrite (5.11) as

uN(xi)+
1+ xi

2

� 1

−1
K(xi,s(xi,θ ))uN(s(xi,θ ))dθ

= g(xi)+ J1(xi), 0≤ i≤ N,

(5.22)

where

J1(x) =
1+ x

2

� 1

−1
K(x,s(x,θ ))uN(s(x,θ ))dθ

− 1+ x

2

N

∑
j=0

K(x,s(x,θ j))uN(s(x,θ j))ω j.

(5.23)

Let IN be the Legendre-Gauss-Lobatto interpolation operator. Transforming the

integral term in (5.22) back to [−1,x] by using (5.9), we reformulate (5.22) as

uN(x)+IN

� x

−1
K(x,s)uN(s)ds= (INg)(x)+ (INJ1)(x), x ∈ I. (5.24)

Clearly, by (5.6),

(INg)(x) = (INu)(x)+ IN

� x

−1
K(x,s)u(s)ds, x ∈ I. (5.25)

Denote e= uN − u. Inserting (5.25) into (5.24) leads to the error equation:

e(x)+

� x

−1
K(x,s)e(s)ds = (INJ1)(x)+ J2(x)+ J3(x), (5.26)

where

J2(x) = (INu− u)(x),

J3(x) =
� x

−1
K(x,s)e(s)ds− IN

�

� x

−1
K(x,s)e(s)ds

�

.
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Thus, we have

|e(x)| ≤ G(x)+Kmax

� x

−1
|e(s)|ds, (5.27)

where

Kmax :=max
D

|K(x,s)|, G := |INJ1|+ |J2|+ |J3|.

Using the Gronwall inequality (B.9) leads to

|e(x)| ≤ G(x)+Kmaxe
2Kmax

� x

−1
G(s)ds, ∀x ∈ I. (5.28)

This implies

�e� ≤ c�G� ≤ c
�

�INJ1�+ �J2�+ �J3�
�

, (5.29)

where c depends on Kmax.

It remains to estimate the three terms on the right hand side of (5.29). By

Lemma 4.8,

|J1(x)|=
1+ x

2

��

K(x,s(x, ·)),uN(s(x, ·))
�

−
�

K(x,s(x, ·)),uN(s(x, ·))
�

N

�

≤ c

�

(N− k+1)!

N!
(N+ k)−(k+1)/2×

1+ x

2
�∂ k

θK(x,s(x, ·))�ωk−1,k−1�uN(s(x, ·))�.

A direct calculation using (5.9) yields

�∂ k
θK(x,s(x, ·))�2ωk−1,k−1 =

� 1

−1
|∂ k

θK(x,s(x,θ ))|2(1−θ 2)k−1dθ

=
1+ x

2

� x

−1
|∂ k

s K(x,s)|2(x− s)k−1(1+ s)k−1ds

≤ �∂ k
s K(x, ·)�2ωk−1,k−1 ,

and
1+ x

2
�uN(s(x, ·))�2 =

� x

−1
|uN(s)|2ds≤ �uN�2.

Hence, we obtain the estimate of |J1| :

|J1(x)| ≤ c

�

(N− k+1)!

N!
(N+ k)−(k+1)/2�∂ k

s K(x, ·)�ωk−1,k−1�uN�,
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which, together with (5.18), implies

�INJ1� ≤
√
2�INJ1�∞ ≤ c�J1�∞max

|x|≤1

N

∑
j=0

|h j(x)|

≤ c

�

(N− k+1)!

N!
(N+ k)−k/2max

|x|≤1
�∂ k

s K(x, ·)�ωk−1,k−1�uN�

≤ c

�

(N− k+1)!

N!
(N+ k)−k/2max

|x|≤1
�∂ k

s K(x, ·)�ωk−1,k−1
�

�e�+ �u�
�

.

(5.30)

Next, by Theorem 3.44,

�J2� ≤ c

�

(N−m+1)!

N!
(N+m)−(m+1)/2�∂m

x u�ωm−1,m−1. (5.31)

Moreover, using Theorem 3.44 with m= 1 yields

�J3� ≤ cN−1
�

�

�
K(x,x)e(x)+

� x

−1
∂xK(x,s)e(s)ds

�

�

�

≤ cN−1
�

max
|x|≤1

|K(x,x)|+max
D

�∂xK�∞

�

�e�.
(5.32)

The estimate (5.20) follows from (5.29)–(5.32), provided that N is large enough.We

now turn to the proof of (5.21). Clearly, it follows from (5.27) that

�e�∞ ≤ c
�

�INJ1�∞ + �J2�∞ + �J3�∞

�

. (5.33)

Using the inequalities (B.33) and (B.44), we obtain from Theorem 3.44 that

�J2�∞ ≤ c�u− INu�1/2�∂x(u− INu)�1/2

≤ c

�

(N−m+1)!

N!
(N+m)−m/2�∂m

x u�ωm−1,m−1,
(5.34)

and

�J3�∞ ≤ c�J3�1/2�∂xJ3�1/2
(5.32)
≤ cN−1/2�e�1/2

�

�

�
∂x

� x

−1
K(x,s)e(s)ds

�

�

�

≤ cN−1/2�e� ≤ cN−1/2�e�∞.

(5.35)

Finally, a combination of (5.30) (with �e�∞ in place of �e�) and (5.33)–(5.35) leads
to the estimate (5.21). ��

Remark 5.1. As pointed out in Remark 3.7, if the regularity index k (resp. m) is

fixed, the order of convergence in (5.20) is O(N−k) (resp. O(N−m)).



188 5 Volterra Integral Equations

5.1.3 Numerical Results and Discussions

We present below some numerical results and discuss the extension of the proposed

methods to nonlinear VIEs.

Without lose of generality, we only consider the Legendre-Gauss-Lobatto

quadrature rule in (5.11), and numerical evidences show that the other two types of

rules produce similar results. Consider the VIE (5.6) with

K(x,s) = exs, g(x) = e4x+
1

x+ 4

�

ex(x+4)− e−(x+4)
�

, (5.36)

which has the exact solution u(x) = e4x. In Table 5.1, we tabulate the maximum

point-wise errors obtained by (5.11) with various N, which indicate that the desired
spectral accuracy is obtained.

Table 5.1 The maximum point-wise errors
N 6 8 10 12 14

Error 3.66e-01 1.88e-02 6.57e-04 1.65e-05 3.11e-07

N 16 18 20 22 24

Error 4.57e-09 5.37e-11 5.19e-13 5.68e-14 4.26e-14

In practice, many VIEs are usually nonlinear. For instance, the nonlinear version

of (5.6) may take the form

u(x)+

� x

−1
K(x,s,u(s))ds = g(x), x ∈ [−1,1]. (5.37)

However, the nonlinearity adds rather little to the difficulty of obtaining accurate nu-

merical solutions. The methods described earlier remain applicable. Although our

convergence theory does not cover the nonlinear case, it should be quite straight-

forward to establish a convergence result similar to Theorem 5.1 provided that the

kernel K is Lipschitz continuous with respect to its third argument. A similar tech-

nique for the piecewise-polynomial collocation methods was used by Brunner and

Tang (1989) for solving nonlinear Volterra equations. Here, we just show the basic

idea and provide a numerical example to illustrate the spectral accuracy.

Let {xi,ωi}Ni=0 be the Legendre-Gauss-type quadrature nodes and weights as be-
fore. We can design a collocation method for the nonlinear VIE (5.37) similar to the

linear case. More precisely, we seek uN ∈ PN such that

uN(xi)+
1+ xi

2

� 1

−1
K(xi,s(xi,θ ),uN(s(xi,θ )))dθ = g(xi), 0≤ i≤ N, (5.38)

where s(x,θ ) is given by (5.9). We further approximate the integral by the
quadrature rule:

uN(xi)+
1+ xi

2

N

∑
j=0

K
�

xi,s(xi,θ j),uN(s(xi,θ j))
�

ω j = g(xi), 0≤ i≤ N. (5.39)
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Notice that inserting (5.12) into the numerical scheme (5.39) leads to a nonlinear

system for {uN(xi)}Ni=0, so a suitable iterative solver for the nonlinear system (e.g.,
Newton’s method) should be used. In the following computations, we just use a sim-

ple Jacobi-type iteration method to solve the nonlinear system, which takes about 5

to 6 iterations. More detailed discussions on solving nonlinear VIEs with iteration

methods can be found in Tang and Xu (2009).

Consider (5.37) with K(x,s,u(s)) = ex−3su2(s), and

g(x) =− 1

2(1+36π2)

�

e−x+ 36π2e−x− e−x cos6πx+ 6πe−xsin6πx

− 36eπ2
�

ex+ ex sin3πx,

(5.40)

so that the nonlinear VIE (5.37) has the exact solution u(x) = ex sin3πx.

The maximum point-wise errors are displayed in Table 5.2, and once again, the

exponential convergence is observed.

Table 5.2 The maximum point-wise errors
N 6 8 10 12 14

Error 2.33e-02 7.22e-04 1.82e-05 3.15e-07 4.06e-09

N 16 18 20 22 24

Error 3.98e-11 3.05e-13 3.86e-15 3.33e-15 3.98e-15

5.2 Jacobi-Galerkin Method for VIEs

As an alternative to the Legendre collocation method, we introduce and analyze in

this section a Jacobi-Galerkin method for (5.6).

Rewrite (5.6) as

u(x)+ Su(x) = g(x) with Su(x) =

� x

−1
K(x,s)u(s)ds. (5.41)

The Jacobi-Galerkin approximation to (5.41) is
�

Find uN ∈ PN such that

(uN ,vN)ωα,β +(SuN,vN)ωα,β = (g,vN)ωα,β , ∀vN ∈ PN ,
(5.42)

where ωα ,β (x) = (1− x)α(1+ x)β with α,β > −1, is the Jacobi weight function.
Let π

α ,β
N be the L2

ωα,β -orthogonal projection operator. We find from (3.249) that

(5.42) is equivalent to

uN +π
α ,β
N SuN = π

α ,β
N g. (5.43)

Theorem 5.2. Let u and uN be the solutions of (5.41) and (5.42), respectively. If

K, ∂xK ∈ L∞(D), u ∈ Bm
α ,β (I), (5.44)
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where D= {(x,s) :−1≤ s≤ x≤ 1} and 1≤ m≤ N+1, then for −1< α,β < 1,

�u− uN�ωα,β ≤ c

�

(N−m+1)!

N!
(N+m)−(1+m)/2

�

�∂m
x u

�

�

ωα+m,β+m , (5.45)

where c is a positive constant independent of m,N and u.

Proof. Subtracting (5.41) from (5.43) yields

u− uN+ Su−π
α ,β
N SuN = g−π

α ,β
N g. (5.46)

Set e= u−uN. One verifies that

Su−π
α ,β
N SuN = Su−π

α ,β
N Su+π

α ,β
N S(u−uN)

= Su−π
α ,β
N Su+ S(u−uN)−

�

S(u−uN)−π
α ,β
N S(u−uN)

�

= (g−u)−π
α ,β
N (g−u)+ S(u−uN)−

�

S(u−uN)−π
α ,β
N S(u−uN)

�

= (g−π
α ,β
N g)− (u−π

α ,β
N u)+ Se− (Se−π

α ,β
N Se).

(5.47)

It follows from (5.46)-(5.47) that

e(x) =−
� x

−1
K(x,s)e(s)ds+(u−π

α ,β
N u)+ (Se−π

α ,β
N Se).

Consequently,

|e(x)| ≤ Kmax

� x

−1
|e(s)|ds+ |J1|+ |J2|,

where Kmax = �K�L∞(D), and

J1 = u−π
α ,β
N u, J2 = Se−π

α ,β
N Se.

By the Gronwall inequality (B.9),

�e�ωα,β ≤ c
�

�J1�ωα,β + �J2�ωα,β

�

,

where c depends on Kmax. Using Theorem 3.35 yields

�J1�ωα,β ≤ c

�

(N−m+1)!

N!
(N+m)−(1+m)/2

�

�∂m
x u

�

�

ωα+m,β+m .

Moreover, using Theorem 3.35 with l = 0 and m= 1 gives

�J2�ωα,β ≤ cN−1
�

�

�
K(x,x)e(x)+

� x

−1
∂xK(x,s)e(s)ds

�

�

�

ωα,β
.
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Using the Cauchy-Schwartz inequality, we find that for−1< α,β < 1,

�

�

�

� x

−1
∂xK(x,s)e(s)ds

�

�

�

2

ωα,β
≤

� 1

−1

�

� x

−1
|∂xK(x,s)||e(s)|ds

�2

ωα ,β (x)dx

≤
� 1

−1

�

� x

−1

�

∂xK(x,s)
�2

ω−α ,−β (s)ds

� x

−1
e2(s)ωα ,β (s)ds

�

ωα ,β (x)dx

≤ �∂xK�2L∞(D)�e�2ωα,β

�

� 1

−1

�

� x

−1
ω−α ,−β (s)ds

�

ωα ,β (x)dx
�

(A.6)
≤ �∂xK�2L∞(D)�e�2ωα,β γ

−α ,−β
0 γ

α ,β
0 .

This implies

�J2�ωα,β ≤ cN−1�e�ωα,β .

Finally, a combination of the above estimates leads to the desired result. ��

Remark 5.2. The scheme (5.41) does not incorporate numerical integrations for

both the kernel and source terms. In practice, we need to use the Galerkin method

with numerical integration by replacing the continuous inner products by the dis-

crete ones, namely,

�

Find uN ∈ PN such that

�uN ,vN�N,ωα,β + �SuN,vN�N,ωα,β = �g,vN�N,ωα,β , ∀vN ∈ PN ,
(5.48)

where �·, ·�N,ωα,β is the discrete inner product associated with a Jacobi-Gauss-type

quadrature rule (see Chap.3). Convergence results similar to Theorem 5.2 can be

established for (5.48). We leave the convergence analysis of the Legendre-Gauss-

Lobatto case as an exercise (see Problem 5.2).

5.3 Jacobi-Collocation Method for VIEs with Weakly

Singular Kernels

In this section, we consider spectral approximation of the VIE (5.2) with singular

kernels. As before, our starting point is to use (5.9) to reformulate (5.2) as:

u(x) = f (x)+

� x

−1
(x− s)−µK(x,s)u(s)ds

(5.9)
= f (x)+

�1+ x

2

�1−µ
� 1

−1
(1−θ )−µK(x,s(x,θ ))u(s(x,θ ))dθ .

(5.49)

Let {x j}Nj=0 be any set of Jacobi-Gauss-Lobatto points, and {θ j,ω j}Mj=0 be a
set of Jacobi-Gauss-Lobatto points and weights with α = −µ and β = 0 (see

Theorem 3.27). The corresponding Jacobi-collocation method for (5.49) is:
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Find uN ∈ PN such that for 0≤ j ≤ N,

uN(x j) = f (x j)+
�1+ x j

2

�1−µ M

∑
k=0

K(x j,s(x j ,θk))uN(s(x j,θk))ωk.
(5.50)

As with the scheme (5.11), the points {x j} and {θ j} can be chosen differently in
type and in number. For simplicity, we assume that they are the same below.

Let {h j}Nj=0 be the Lagrange basis polynomials associated with {x j}Nj=0. We
expand the approximate solution uN as

uN(x) =
N

∑
j=0

uN(x j)h j(x) ⇒ uN(s(x j,θk)) =
N

∑
i=0

uN(xi)hi(s(x j,θk)). (5.51)

Then, the scheme (5.50) becomes

uN(xi) = f (xi)+
�1+ xi

2

�1−µ N

∑
j=0

� N

∑
k=0

K(xi,s(xi,θk))h j(s(xi,θk))ωk

�

uN(x j),

(5.52)

for 0≤ i≤ N.
Typically, there is a weak singularity of the solution of (5.49) even if the given

functions in (5.49) are sufficiently smooth (see, e.g., Brunner (2004)). We only con-

sider here the case that the underlying unknown solution u is sufficiently smooth.

Our attention in this case is to handle the weakly singular kernel occurred in (5.49).

The details of the numerical implementation can be found in Chen and Tang (2010).

We now turn to the convergence analysis of the scheme (5.50). Compared with

the regular kernel case, the analysis for (5.52) is much more involved.

We first make some necessary preparations. Let I = [−1,1]. For r ≥ 0 and 0 ≤
κ ≤ 1, we denote byCr,κ(I) the space of functions whose r-th derivatives are Hölder
continuous with exponent κ , endowed with the usual norm

�v�Cr,κ = max
0≤l≤r

max
x∈I

|∂ l
xv(x)|+ max

0≤l≤r
sup
x�=y

|∂ l
xv(x)− ∂ l

xv(y)|
|x− y|κ .

If κ = 0,Cr,0(I) turns out to be the space of functions with continuous derivatives up
to r-th order on I, which is also commonly denoted byCr(I) with the norm � · �Cr .

Lemma 5.1. (cf. Ragozin (1970, 1971)). For any non-negative integer r and 0 <
κ < 1, there exists a linear transform TN :C

r,κ(I)→ PN such that

�v−TNv�L∞ ≤ cr,κN
−(r+κ)�v�Cr,κ , ∀v ∈Cr,κ(I), (5.53)

where cr,κ is a positive constant.

Another useful result is on the stability of the linear operator:

Mv(x) =
� x

−1
(x− s)−µK(x,s)v(s)ds. (5.54)



5.3 Jacobi-Collocation Method for VIEs with Weakly Singular Kernels 193

Below we prove thatM is a compact operator fromC(I) toC0,κ(I), provided that the
index 0< κ < 1−µ . This result will play a crucial role in the convergence analysis
of this section.

Lemma 5.2. Let 0 < µ < 1. If 0 < κ < 1− µ , then for any function v ∈ C(I) and

any x1, x2 ∈ I = [−1,1] with x1 �= x2, there exists a positive constant c (may depend

on �K�C0,κ and �K�L∞(D) with D= [−1,1]2), such that

|Mv(x1)−Mv(x2)|
|x1− x2|κ

≤ c�v�∞, (5.55)

which implies

�Mv�C0,κ ≤ c�v�∞. (5.56)

Proof. Without loss of generality, we assume that x1 < x2. We first show that

� x1

−1

�

(x1− τ)−µ − (x2− τ)−µ
�

dτ ≤ c|x2− x1|1−µ . (5.57)

As x1 < x2, we have from the linear transformation (5.9) that

� x1

−1

�

(x1− τ)−µ − (x2− τ)−µ
�

dτ

≤
�

�

�

�

� x1

−1
(x1− τ)−µdτ −

� x2

−1
(x2− τ)−µdτ

�

�

�

�

+

�

�

�

�

� x2

x1

(x2− τ)−µdτ

�

�

�

�

≤
��x2+ 1

2

�1−µ
−

�x1+ 1

2

�1−µ�

� 1

−1
(1−θ )−µdθ +

|x2− x1|1−µ

1− µ
.

Observe that

�x2+ 1

2

�1−µ
−

�x1+ 1

2

�1−µ
=
1− µ

21−µ

� x2

x1

(y+1)−µdy

≤ 1− µ

21−µ

� x2

x1

(y− x1)
−µdy= 2µ−1|x2− x1|1−µ ,

where we used the fact that y+1≥ y− x1 for x1 ∈ [−1,1]. Thus, (5.57) follows.
Next, we obtain from the triangle inequality that

|Mv(x1)−Mv(x2)|

≤
�

�

�

�

� x1

−1

�

(x1− τ)−µK(x1,τ)− (x2− τ)−µK(x2,τ)
�

v(τ)dτ

�

�

�

�

+

�

�

�

�

� x2

x1

(x2− τ)−µK(x2,τ)v(τ)dτ

�

�

�

�
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≤
� x1

−1

�

�(x1− τ)−µ − (x2− τ)−µ
�

� · |K(x1,τ)| · |v(τ)|dτ

+
� x1

−1
(x2− τ)−µ |K(x1,τ)−K(x2,τ)| · |v(τ)|dτ

+

� x2

x1

(x2− τ)−µ |K(x2,τ)| · |v(τ)|dτ

:= E1+E2+E3.

We now estimate the three terms one by one. By (5.57),

E1 ≤ �v�∞�K�L∞(D)

� x1

−1

�

�(x1− τ)−µ − (x2− τ)−µ
�

�dτ

≤ c�v�∞|x2− x1|1−µ .

Moreover, we have

E2 ≤ �v�∞|x2− x1|κ
� x1

−1
(x2− τ)−µ |K(x2,τ)−K(x1,τ)|

|x2− x1|κ
dτ

≤ �v�∞�K�C0,κ |x2− x1|κ
1

1− µ

�

(x2+ 1)
1−µ − (x2− x1)

1−µ
�

≤ c�v�∞|x2− x1|κ ,

where c depends on �K�0,κ . Finally, we have

E3 ≤ �K�L∞(D)�v�∞

� x2

x1

(x2− τ)−µdτ ≤ c�v�L∞ |x2− x1|1−µ .

Using the above estimates and the assumption 0 < κ < 1− µ completes the proof
of the lemma. ��

The following lemma on the Lebesgue constant of the Jacobi-Gauss-Lobatto

interpolation (see Theorem 3.1 of Mastroianni and Occorsio (2001b)) also plays

an important role in the convergence analysis.

Lemma 5.3. Let {hi}Ni=0 be the Lagrange basis polynomials associated with the

Jacobi-Gauss-Lobatto interpolations with the parameter pair {−µ ,0}. Then, for
−1/2≤ µ < 3/2, we have

ΛN :=max
|x|≤1

N

∑
i=0

|hi(x)| ∼ lnN. (5.58)

Theorem 5.3. Let u and uN be the solutions to the VIE (5.49) and (5.50) with 0 <
µ < 1, respectively. Assume u ∈ L∞(I)∩Br

−1,−1(I) with integer 1≤ r ≤ N+ 1, and

K∗
m := max

0≤i≤N

�

� xi

−1
|∂m

s K(xi,s)|2(xi− s)m−1−µ(1+ s)m−1ds
�1/2

< ∞ (5.59)
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for certain integer 1≤ m≤ N+1. Then we have the estimate:

�u− uN�∞ ≤ c

�

(N− r+ 1)!

N!
(N+ r)−r/2(lnN)�∂ r

x u�ωr−1,r−1

+ c

�

(N−m+1)!

N!
(N+m)−(m+1)/2(lnN)K∗

m�u�∞,

(5.60)

where c is a positive constant independent of N,r,m and u.

Proof. In what follows, let (·, ·)ω−µ ,0 and �·, ·�N,ω−µ ,0 be the weighted continuous

and discrete inner products, respectively, as defined in Chap. 3. Furthermore, let

I
−µ,0
N be the corresponding interpolation operator. Firstly, we rewrite (5.49) as

u(xi) = f (xi)+
�1+ xi

2

�1−µ
�

K(xi,s(xi, ·)),u(s(xi, ·))
�

ω−µ ,0 , 0≤ i≤ N, (5.61)

and reformulate (5.50) into

uN(xi) = f (xi)+
�1+ xi

2

�1−µ
�

K(xi,s(xi, ·)),uN(s(xi, ·))
�

N,ω−µ ,0 , 0≤ i≤ N.

(5.62)

Denoting e= u−uN, we have the error equation:

e(xi) =
�1+ xi

2

�1−µ
�

K(xi,s(xi, ·)),e(s(xi, ·))
�

ω−µ ,0 +G(xi)

=
� xi

−1
(xi− s)−µK(xi,s)e(s)ds+G(xi),

(5.63)

where

G(x) =
�1+ x

2

�1−µ�

�

K(x,s(x, ·)),uN(s(x, ·))
�

ω−µ ,0

−
�

K(x,s(x, ·)),uN(s(x, ·))
�

N,ω−µ ,0

�

.
(5.64)

Equivalently, we write (5.63) as

I
−µ,0
N u− uN = I

−µ,0
N

�

� x

−1
(x− s)−µK(x,s)e(s)ds

�

+ I
−µ,0
N G. (5.65)

Consequently,

e=

� x

−1
(x− s)−µK(x,s)e(s)ds+G1+G2+ I

−µ,0
N G, (5.66)

where

G1 = u− I
−µ,0
N u,

G2 = I
−µ,0
N

�

� x

−1
(x− s)−µK(x,s)e(s)ds

�

−
� x

−1
(x− s)−µK(x,s)e(s)ds.

(5.67)
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It follows from the Gronwall inequality (see Lemma B.9) that

�e�∞ ≤ c
�

�G1�∞ + �G2�∞ + �I−µ,0
N G�∞

�

. (5.68)

It remains to estimate the three terms on the right hand side of (5.68). Firstly, by

Lemma 5.3 and an estimate similar to Lemma 4.8,

�I−µ,0
N G�∞ ≤ max

0≤i≤N
|G(xi)|

N

∑
i=0

|hi(x)| ≤ c lnN max
0≤i≤N

|G(xi)|

≤ c

�

(N−m+ 1)!

N!
(N+m)−(m+1)/2 lnN×

max
0≤i≤N

��1+ xi

2

�1−µ
�∂m

θ (K(xi,s(xi, ·)))�ωm−1−µ ,m−1�uN(s(xi, ·))�ω−µ ,0

�

.

(5.69)

A direct computation shows that

�∂m
θ (K(xi,s(xi, ·)))�ωm−1−µ ,m−1

=
�1+ xi

2

�(1+µ)/2�
� xi

−1
|∂m

s K(xi,s)|2(xi− s)m−1−µ(1+ s)m−1ds
�1/2

,
(5.70)

and

�uN(s(xi, ·))�ω−µ ,0

=
� 2

1+ xi

�(1−µ)/2�
� xi

−1
|uN(s)|2(xi− s)−µds

�1/2

≤ c
� 2

1+ xi

�(1−µ)/2
�uN�∞.

(5.71)

Hence, we have

�I−µ,0
N G�∞ ≤ c

�

(N−m+1)!

N!
(N+m)−(m+1)/2K∗

m lnN
�

�e�∞ + �u�∞

�

≤ 1

3
�e�∞+ c

�

(N−m+1)!

N!
(N+m)−(m+1)/2K∗

m lnN�u�∞,

(5.72)

provided that N is large enough, where K∗
m is defined in (5.59).

We now turn to the estimation of G1. Let IN be the Legendre-Gauss-Lobatto
polynomial interpolation operator. Using Lemma 5.3, the Sobolev inequality (B.33)

and Theorem 3.44 gives

�G1�∞ = �u− I
−µ,0
N u�∞ = �u− INu+ I

−µ,0
N (INu− u)�∞

≤ (1+ c lnN)�u− INu�∞ ≤ c lnN�u− INu�1/2�u− INu�1/21

≤ c

�

(N− r+ 1)!

N!
(N+ r)−r/2 lnN�∂ r

x u�ωr−1,r−1 .

(5.73)
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To estimate G2, we obtain from Lemmas 5.1–5.3 that

�G2�∞ = �I−µ,0
N (Me)−Me�∞

≤ �I−µ,0
N (Me)−TN(Me)�∞ + �TN(Me)−Me�∞

≤ (1+ c lnN)�TN(Me)−Me�∞

≤ cN−κ lnN�Me�C0,κ ≤ cN−κ lnN�e�∞.

(5.74)

Consequently, if κ > 0 and N is large enough, we have

�G2�∞ ≤ 1

3
�e�∞. (5.75)

Finally, a combination of (5.68), (5.72), (5.73), and (5.75) leads to the desired

estimate. ��

5.4 Application to Delay Differential Equations

We discuss in this section numerical solutions of delay differential equations. To

demonstrate the main idea, we consider the delay differential equation with propor-

tional delay:

u�(x) = a(x)u(qx), 0< x≤ T ; u(0) = y0, (5.76)

where 0< q< 1 is a given constant and a is a smooth function on [0,T ]. This prob-
lem belongs to the class of the so-called pantograph delay differential equations (see

Fox et al. (1971), Iserles (1993) for details on their theory and physical applications).

The existing numerical methods for solving (5.76) include Runge–Kutta type

methods (see, e.g., Bellen and Zennaro (2003)) and the piecewise-polynomial collo-

cation methods (see, for instance, Brunner (2004)). The main difficulty in the appli-

cation of Runge–Kutta methods to (5.76) is the lack of information at the grid points

for the function on the right hand side of (5.76), so these numerical data have to be

generated by some local interpolation process. While the piecewise-polynomial col-

location methods yield globally defined approximations, the corresponding numer-

ical solutions are not globally smooth. Moreover, it has been shown in Brunner and

Hu (2007) that for arbitrarily smooth solutions of (5.76) the optimal order at the grid

points obtained using piecewise polynomials of degree m cannot exceed p = m+ 2
when m≥ 2 (in contrast to their application to ordinary differential equations where
collocation at the Gauss points leads to O(h2m)-convergence).
If the function a is inCd [0,T ], then the corresponding solution of the initial-value

problem (5.76) lies in Cd+1[0,T ]. In this case, it is suitable to employ spectral-type
methods since they produce approximate solutions that are defined globally on [0,T ]
and globally smooth.
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For ease of notation, we implement and analyze the spectral method on the

reference interval I := [−1,1]. Hence, using the transformation

x=
T

2
(1+ t), t =

2x

T
− 1,

the problem (5.76) becomes

y�(t) = b(t)y(qt+q1), −1< t ≤ 1; y(−1) = y0, (5.77)

where

y(t) = u
�

T (1+ t)/2
�

, b(t) =
T

2
a
�

T (1+ t)/2
�

, q1 = q− 1. (5.78)

To fix the idea, we only consider the Legendre-collocation method for solving

(5.77). To this end, let {t j,ω j}Nj=0 be the set of Legendre-Gauss-Lobatto points and
weights. Integrating (5.77) from−1 to t j gives

y(t j) = y0+
� t j

−1
b(s)y(qs+ q1)ds, 1≤ j ≤ N. (5.79)

Using the linear transformation

s=
t j+ 1

2
v+

t j − 1
2

, v ∈ [−1,1],

yields

y(t j) = y0+

� 1

−1
b̃(v; t j)y

� t j+ 1

2
qv+ q1 j

�

dv, (5.80)

where

b̃(v; t j) :=
1+ t j

2
b
� t j+ 1

2
v+

t j − 1
2

�

, q1 j :=
t j+ 1

2
q− 1.

The Legendre-collocation scheme for (5.80) is to find yN ∈ PN such that

yN(t j) = y0+
N

∑
k=0

b̃(vk;t j)yN

� t j + 1

2
qvk+ q1 j

�

ωk, 0≤ j ≤ N, (5.81)

where {vk = tk}Nk=0 are the Legendre-Gauss-Lobatto points. We now describe in

more detail how to efficiently implement (5.81).

Let {Yj = yN(t j)}Nj=0, and write

yN(t) =
N

∑
j=0

Yjh j(t), (5.82)

where {h j}Nj=0 are the Lagrange basis polynomials relative to {t j}Nj=0. To evaluate
yN at non-interpolation points efficiently, we compute h j(t) by using (5.15)–(5.17).
More precisely, we expand hk(v) in terms of the Legendre polynomials:
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hk(v) =
N

∑
m=0

ckmLm(v), (5.83)

and find that

ckm =
2m+ 1

N(N+1)

N

∑
s=0

hk(xs)
Lm(xs)

[LN(xs)]2
=

2m+ 1

N(N+1)

Lm(xk)

[LN(xk)]2
. (5.84)

Hence, the scheme (5.81) becomes: find yN ∈ PN such that

Yj = y0+
N

∑
i=0

a jiYi, 0≤ j ≤ N (5.85)

with a ji = ∑N
k=0 b̃(vk;t j)hi

�

t j+1
2

qvk + q1 j

�

ωk, which is a linear system (with a full

matrix A = (a ji)) for the unknown vector (Y0,Y1, . . . ,YN)
t , and the entries of the

matrix A can be computed by using (5.83)–(5.84).

Remark 5.3. We may consider more general delay differential or integral equations

with two or more vanishing delays:







y�(t) = a(t)y(t)+
r

∑
�=1

b�(t)y(q�t), t ∈ I := [a,b],

y(0) = y0,

(5.86)

and the analogous multiple-delay Volterra integral equation

y(t) = g(t)+
r

∑
�=1

� q�t

0
K�(t,s)y(s)ds, t ∈ I, (5.87)

where 0 < q1 < .. . < qr < 1 (r ≥ 2). It is demonstrated numerically in Ali et al.

(2009) that for the pantograph-type functional equations the spectral methods pro-

posed yield the exponential order of convergence.

Next, we present some numerical results. Without lose of generality, we only

consider the Legendre-Gauss-Lobatto quadrature rule in (5.11). We first consider

(5.76) with q = 0.7,y0 = 1,T = 1; the function a(x) is chosen such that the exact
solution of u is given by u(x) = cos(2x− 1).
In Table 5.3, we tabulate the maximum point-wise errors obtained by (5.85) with

various N, which indicate that the desired spectral accuracy is obtained.

Table 5.3 The maximum point-wise errors
N 6 8 10 12 14

Error 6.41e-03 6.15e-05 3.06e-07 9.26e-10 1.79e-12
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Below we consider the spectral methods for the case of two proportional delays;

that is, for the functional equation

�

y�(t) = a(t)y(t)+ b1(t)y(q1t)+ b2(t)y(q2t), t ∈ I,
y(0) = y0.

(5.88)

The numerical schemes proposed previously can be readily adapted to deal with

(5.88). In the following, we use numerical examples to illustrate the accuracy and

efficiency of the spectral methods. In (5.88), let b1(t) = cos(t),b2(t) = sin(t) and
a(t) = 0. We choose g(t) such that the exact solution is given by y(t) = sin(tq−11 )+

cos(tq−12 ).

Table 5.4 The maximum point-wise errors with q1 = 0.05,q2 = 0.95
N 12 14 16 18 20

Error 1.14e-02 1.66e-03 2.07e-04 1.37e-5 7.22e-07

In Table 5.4, the maximum point-wise errors with q1= 0.05,q2= 0.95 are listed.
This is a quite extreme case with very small value of the delay parameter q1. For the

piecewise-polynomial collocation methods, it will require few hundred collocation

points to reach the errors of about 10−7; while with the spectral approach only 20
points are needed.

Problems

5.1. Consider the numerical example for (5.6) with the given functions (5.36).

(i) Provide a maximum point-wise errors table similar to Table 5.1 using the Trape-

zoidal method.

(ii) Verify the results in Table 5.1.

5.2. Derive the L2-estimate of the Legendre-Galerkin method with numerical inte-

gration for (5.48), where the discrete inner product is associated with the Legendre-

Gauss-Lobatto quadrature.

5.3. Design a Legendre-collocation method for the delay Volterra integral equation

y(t) = g(t)+

� qt

0
K(t,s)y(s)ds,

with 0< q< 1. Try to provide a convergence analysis.


