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3.2 Jacobi Polynomials

3.2.1 Basic Properties

The Jacobi polynomials, denoted by J
α ,β
n (x), are orthogonal with respect to the

Jacobi weight function ωα ,β (x) := (1− x)α(1+ x)β over I := (−1,1), namely,

 1

−1
Jα ,β

n (x)Jα ,β
m (x)ωα ,β (x)dx = γα ,β

n δmn, (3.88)

where γα ,β
n = Jα ,β

n 2
ωα,β . The weight function ωα ,β belongs to L1(I) if and only if

α,β >−1 (to be assumed throughout this section).

Let k
α ,β
n be the leading coefficient of J

α ,β
n (x). According to Theorem 3.1, there

exists a unique sequence of monic orthogonal polynomials {Jα ,β
n (x)/k

α ,β
n


.

This class of Jacobi weight functions leads to Jacobi polynomials with many

attractive properties that are not shared by general orthogonal polynomials.

3.2.1.1 Sturm-Liouville Equation

We first show that the Jacobi polynomials are the eigenfunctions of a singular Sturm-

Liouville operator defined by

Lα ,β u : =−(1− x)−α(1+ x)−β ∂x


(1− x)α+1(1+ x)β+1∂xu(x)



= (x2− 1)∂ 2
x u(x)+


α−β +(α +β + 2)x


∂xu(x).

(3.89)

More precisely, we have

Theorem 3.16. The Jacobi polynomials are the eigenfunctions of the singular

Sturm-Liouville problem:

Lα ,β Jα ,β
n (x) = λ α ,β

n Jα ,β
n (x), (3.90)

and the corresponding eigenvalues are

λ α ,β
n = n(n+α +β + 1). (3.91)

Proof. For any u ∈ Pn, we have Lα ,β u ∈ Pn. Using integration by parts twice, we

find that for any φ ∈ Pn−1,


Lα ,β Jα ,β

n ,φ


ωα,β =

∂xJ

α ,β
n ,∂xφ


ωα+1,β+1 =


Jα ,β

n ,Lα ,β φ


ωα,β

(3.88)
= 0.

Since Lα ,β J
α ,β
n ∈ Pn, the uniqueness of orthogonal polynomials implies that there

exists a constant λ α ,β
n such that

Lα ,β Jα ,β
n = λ α ,β

n Jα ,β
n .
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To determine λ α ,β
n , we compare the coefficient of the leading term xn on both sides,

and find

kα ,β
n n(n+α +β + 1) = kα ,β

n λ α ,β
n ,

where k
α ,β
n is the leading coefficient of J

α ,β
n . Hence, we have λ α ,β

n = n(n+α+
β + 1).
Remark 3.2. Observe from integration by parts that the Sturm-Liouville operator

Lα ,β is self-adjoint with respect to the inner product (·, ·)ωα,β , i.e.,

(Lα ,β φ ,ψ)ωα,β = (φ ,Lα ,β ψ)ωα,β , (3.92)

for any φ ,ψ ∈


u : Lα ,β u ∈ L2
ωα,β (I)


.

As pointed out in Theorem 4.2.2 of Szegö (1975), the differential equation

Lα ,β u = λu,

has a polynomial solution not identically zero if and only if λ has the form n(n+

α + β + 1). This solution is J
α ,β
n (x) (up to a constant), and no solution which is

linearly independent of J
α ,β
n (x) can be a polynomial. Moreover, we can show that

Jα ,β
n (x) =

n

∑
k=0

an
k (x−1)k,

where

an
k+1

an
k

=
γα ,β
n − k(k+α +β + 1)

2(k+1)(k+α + 1)
. (3.93)

Assume that the Jacobi polynomials are normalized such that

an
0 = Jα ,β

n (1) =


n+α

n


=

Γ (n+α + 1)

n!Γ (α + 1)
, (3.94)

where Γ (·) is the Gamma function (cf. Appendix A). We can derive from (3.93) the

leading coefficient

an
n = kα ,β

n =
Γ (2n+α +β + 1)

2nn!Γ (n+α +β + 1)
. (3.95)

Moreover, working out {an
k} by using (3.93), we find

Jα ,β
n (x) =

Γ (n+α + 1)

n!Γ (n+α +β + 1)

n

∑
k=0


n

k


Γ (n+ k+α +β + 1)

Γ (k+α + 1)

x− 1

2

k

. (3.96)

A direct consequence of Theorem 3.16 is the orthogonality of


∂xJ
α ,β
n


.

Corollary 3.5.

 1

−1
∂xJ

α ,β
n ∂xJ

α ,β
m ωα+1,β+1dx = λ α ,β

n γα ,β
n δnm. (3.97)
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Proof. Using integration by parts, Theorem 3.16 and the orthogonality of


J
α ,β
n


,

we obtain


∂xJ

α ,β
n , ∂xJ

α ,β
m


ωα+1,β+1 =


Jα ,β

n ,Lα ,β Jα ,β
m


ωα,β

(3.90)
= λ α ,β

n Jα ,β
n 2

ωα,β δnm.

This ends the proof.
Since {∂xJ

α ,β
n } is orthogonal with respect to the weight ωα+1,β+1, by Theorem

3.1, ∂xJ
α ,β
n must be proportional to J

α+1,β+1
n−1 , namely,

∂xJ
α ,β
n (x) = μα ,β

n J
α+1,β+1
n−1 (x). (3.98)

Comparing the leading coefficients on both sides leads to the proportionality con-

stant:

μα ,β
n =

nk
α ,β
n

k
α+1,β+1
n−1

(3.95)
=

1

2
(n+α +β + 1). (3.99)

This gives the following important derivative relation:

∂xJ
α ,β
n (x) =

1

2
(n+α +β + 1)J

α+1,β+1
n−1 (x). (3.100)

Applying this formula recursively yields

∂ k
x Jα ,β

n (x) = d
α ,β
n,k J

α+k,β+k

n−k (x), n≥ k, (3.101)

where

d
α ,β
n,k =

Γ (n+ k+α +β + 1)

2kΓ (n+α +β + 1)
. (3.102)

3.2.1.2 Rodrigues’ Formula

The Rodrigues’ formula for the Jacobi polynomials is stated below.

Theorem 3.17.

(1− x)α(1+ x)β Jα ,β
n (x) =

(−1)n

2nn!

dn

dxn


(1− x)n+α(1+ x)n+β


. (3.103)

Proof. For any φ ∈ Pn−1, using integration by parts leads to

 1

−1
∂ n

x


(1− x)n+α(1+ x)n+β


φdx = . . .

= (−1)n

 1

−1


(1− x)n+α(1+ x)n+β


∂ n

x φdx = 0.
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Hence, by Theorem 3.1, there exists a constant cn such that

∂ n
x


(1− x)n+α(1+ x)n+β


= cn(1− x)α(1+ x)β Jα ,β

n (x). (3.104)

Letting x→ 1 and using (3.94) leads to

cn =
1

J
α ,β
n (1)


1

(1− x)α(1+ x)β
∂ n

x


(1− x)n+α(1+ x)n+β


x=1

= (−1)nn!2n.

The proof is complete.

We now present some consequences of the Rodrigues’ formula. First, expanding

the nth-order derivative in (3.103) yields the explicit formula

Jα ,β
n (x) = 2−n

n

∑
j=0


n+α

j


n+β

n− j


(x−1)n− j(x+1) j. (3.105)

Second, replacing x by −x in (3.103) immediately leads to the symmetric relation

Jα ,β
n (−x) = (−1)nJβ ,α

n (x). (3.106)

Therefore, the special Jacobi polynomial J
α ,α
n (x) (up to a constant, is referred to as

the Gegenbauer or ultra-spherical polynomial), is an odd function for odd n and an

even function for even n. Moreover, using (3.94) and (3.106) leads to

Jα ,β
n (−1) = (−1)n Γ (n+β + 1)

n!Γ (β + 1)
, (3.107)

and by the Stirling’s formula (A.7),

Jα ,β
n (1)∼ nα and |Jα ,β

n (−1)| ∼ nβ for n 1. (3.108)

As another consequence of (3.103), we derive the explicit formula of the normaliza-

tion constant γα ,β
n in (3.88).

Corollary 3.6.

 1

−1


Jα ,β

n (x)
2

ωα ,β (x)dx = γα ,β
n

=
2α+β+1Γ (n+α + 1)Γ (n+β + 1)

(2n+α +β + 1)n!Γ (n+α +β + 1)
.

(3.109)
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Proof. Multiplying (3.103) by J
α ,β
n and integrating the resulting equality over

(−1,1), we derive from integration by parts that

 1

−1
(1− x)α(1+ x)β [Jα ,β

n (x)]2dx

=
(−1)n

2nn!

 1

−1
∂ n

x


(1− x)n+α(1+ x)n+β


Jα ,β

n (x)dx

=
(−1)2n

2nn!

 1

−1
(1− x)n+α(1+ x)n+β ∂ n

x Jα ,β
n (x)dx

=
k

α ,β
n

2n

 1

−1
(1− x)n+α(1+ x)n+βdx

(3.95)
=

(A.6)

2α+β+1Γ (n+α + 1)Γ (n+β + 1)

(2n+α +β + 1)n!Γ (n+α +β + 1)
.

This ends the proof.

3.2.1.3 Recurrence Formulas

The Jacobi polynomials are generated by the three-term recurrence relation:

J
α ,β
n+1(x) =


aα ,β

n x− bα ,β
n


Jα ,β

n (x)− cα ,β
n J

α ,β
n−1(x), n≥ 1,

J
α ,β
0 (x) = 1, J

α ,β
1 (x) =

1

2
(α +β + 2)x+

1

2
(α−β ),

(3.110)

where

aα ,β
n =

(2n+α +β + 1)(2n+α +β + 2)

2(n+1)(n+α+β + 1)
, (3.111a)

bα ,β
n =

(β 2−α2)(2n+α +β + 1)

2(n+1)(n+α+β + 1)(2n+α +β )
, (3.111b)

cα ,β
n =

(n+α)(n+β )(2n+α+β + 2)

(n+1)(n+α+β + 1)(2n+α +β )
. (3.111c)

This relation allows us to evaluate the Jacobi polynomials at any given abscissa

x ∈ [−1,1], and it is the starting point to derive other properties.

Next, we state several useful recurrence formulas involving different pairs of

(α,β ).

Theorem 3.18. The Jacobi polynomial J
α+1,β
n (x) is a linear combination of

J
α ,β
l (x), l = 0,1, . . . ,n, i.e.,
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Jα+1,β
n (x) =

Γ (n+β + 1)

Γ (n+α +β + 2)
×

n

∑
l=0

(2l+α +β + 1)Γ (l+α +β + 1)

Γ (l+β + 1)
J

α ,β
l (x).

(3.112)

Proof. In the Jacobi case, the kernel polynomial (3.17) takes the form

Kn(x,y) =
n

∑
l=0

1

γα ,β
l

J
α ,β
l (x)J

α ,β
l (y). (3.113)

By Lemma 3.2, {Kn(x,1)} are orthogonal with respect to ωα+1,β . By the unique-

ness of orthogonal polynomials (cf. Theorem 3.1), Kn(x,1) must be proportional to

J
α+1,β
n , i.e.,

Kn(x,1) =
n

∑
l=0

J
α ,β
l (1)

γα ,β
l

J
α ,β
l (x) = dα ,β

n Jα+1,β
n (x). (3.114)

The proportionality constant d
α ,β
n is determined by comparing the leading coeffi-

cients of both sides of (3.114) and working out the constants, namely,

dα ,β
n =

k
α ,β
n J

α ,β
n (1)

k
α+1,β
n γα ,β

n

= 2−α−β−1 Γ (n+α +β + 2)

Γ (α + 1)Γ (n+β + 1)
.

Inserting this constant into (3.114), we obtain (3.112) directly from (3.94) and

(3.109).

Remark 3.3. Thanks to (3.106), it follows from (3.112) that

Jα ,β+1
n (x) =

Γ (n+α + 1)

Γ (n+α +β + 2)
×

n

∑
l=0

(−1)n−l (2l+α +β + 1)Γ (l+α +β + 1)

Γ (l+α + 1)
J

α ,β
l (x).

(3.115)

Theorem 3.19. The Jacobi polynomials satisfy

Jα+1,β
n =

2

2n+α +β + 2

(n+α + 1)J
α ,β
n − (n+ 1)J

α ,β
n+1

1− x
, (3.116a)

Jα ,β+1
n =

2

2n+α +β + 2

(n+β + 1)J
α ,β
n +(n+ 1)J

α ,β
n+1

1+ x
. (3.116b)

Proof. In the Jacobi case, the Christoffel-Darboux formula (3.15) reads

Kn(x,y) =
k

α ,β
n

k
α ,β
n+1γα ,β

n

J
α ,β
n+1(x)J

α ,β
n (y)− J

α ,β
n (x)J

α ,β
n+1(y)

x− y
, (3.117)
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which, together with (3.114), leads to

Jα+1,β
n (x) =

1

d
α ,β
n

Kn(x,1)

=
k

α ,β
n

d
α ,β
n k

α ,β
n+1γα ,β

n

J
α ,β
n+1(x)J

α ,β
n (1)− J

α ,β
n (x)J

α ,β
n+1(1)

x− 1
.

Working out the constants yields (3.116a).

Replacing x in (3.116a) by −x and using the symmetric property (3.106), we

derive (3.116b) immediately.

We state below two useful formulas and leave their derivation as an excise (see

Problem 3.7).

Theorem 3.20.

J
α ,β
n−1(x) = Jα ,β−1

n (x)− Jα−1,β
n (x), (3.118a)

Jα ,β
n (x) =

1

n+α +β


(n+β )Jα ,β−1

n (x)+ (n+α)Jα−1,β
n (x)


. (3.118b)

More generally, we can express J
α ,β
n in terms of {Ja,b

k }n
k=0, where the expansion

coefficients are known as the connection coefficients.

Theorem 3.21. Suppose that

Jα ,β
n (x) =

n

∑
k=0

ĉn
kJ

a,b
k (x), a,b,α,β >−1. (3.119)

Then

ĉn
k =

Γ (n+α + 1)

Γ (n+α +β + 1)

(2k+a+b+1)Γ(k+a+b+1)

Γ (k+a+1)

×
n−k

∑
m=0

(−1)mΓ (n+ k+m+α+β + 1)Γ (m+ k+a+1)

m!(n− k−m)!Γ (k+m+α + 1)Γ (m+2k+ a+ b+2)
.

(3.120)

Proof. By the Rodrigues’ formula and integration by parts,

ĉn
k =

1

γa,b
k

 1

−1
Jα ,β

n (x)Ja,b
k (x)ωa,b(x)dx

=
(−1)k

2kk!γa,b
k

 1

−1
Jα ,β

n (x)∂ k
x


ωa+k,b+k(x)


dx

=
1

2kk!γa,b
k

 1

−1
∂ k

x Jα ,β
n (x)ωa+k,b+k(x)dx.
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Using (3.101) and (3.96) yields

ĉn
k =

d
α ,β
n,k

2kk!γa,b
k

 1

−1
J

α+k,β+k

n−k (x)ωa+k,b+k(x)dx

=
d

α ,β
n,k Γ (n+α + 1)

2kk!γa,b
k Γ (n+ k+α +β + 1)

×
n−k

∑
m=0

(−1)mΓ (n+ k+m+α+β + 1)

2mm!(n− k−m)!Γ (k+m+α + 1)

 1

−1
ωa+m+k,b+kdx.

Working out γa,b
k ,d

α ,β
n,k and the integral respectively by (3.109), (3.102) and (A.6)

leads to (3.120).

Next, we derive some recurrence formulas between {Jα ,β
n } and {∂xJ

α ,β
n }.

Theorem 3.22. The Jacobi polynomials satisfy

(1− x2)∂xJ
α ,β
n = Aα ,β

n J
α ,β
n−1+Bα ,β

n Jα ,β
n +Cα ,β

n J
α ,β
n+1, (3.121)

where

Aα ,β
n =

2(n+α)(n+β )(n+α+β + 1)

(2n+α +β )(2n+α +β + 1)
, (3.122a)

Bα ,β
n = (α−β )

2n(n+α +β + 1)

(2n+α+β )(2n+α +β + 2)
, (3.122b)

Cα ,β
n =− 2n(n+1)(n+α+β + 1)

(2n+α +β + 1)(2n+α +β + 2)
. (3.122c)

Proof. This formula follows from (3.100) and (3.116) directly.

In the Jacobi case, the relation (3.80) takes the following form.

Theorem 3.23.

Jα ,β
n = Aα ,β

n ∂xJ
α ,β
n−1 +

Bα ,β
n ∂xJ

α ,β
n + Cα ,β

n ∂xJ
α ,β
n+1, (3.123)

where

Aα ,β
n =

−2(n+α)(n+β )

(n+α +β )(2n+α +β )(2n+α+β + 1)
, (3.124a)

Bα ,β
n =

2(α−β )

(2n+α +β )(2n+α +β + 2)
, (3.124b)

Cα ,β
n =

2(n+α +β + 1)

(2n+α +β + 1)(2n+α+β + 2)
. (3.124c)
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Proof. We observe from Corollary 3.16 that {∂xJ
α ,β
l }n+1

l=1 forms an orthogonal basis

of Pn. Hence, we can express J
α ,β
n (x) as

Jα ,β
n (x) =

n+1

∑
l=1

e
α ,β
l ∂xJ

α ,β
l (x),

where

e
α ,β
l =

1

γα ,β
l λ α ,β

l

 1

−1
Jα ,β

n (x)(1− x2)∂xJ
α ,β
l (x)ωα ,β (x)dx.

Inserting (3.121) into the above integral and using the orthogonality of {Jα ,β
n }, we

find that

Cα ,β
n = e

α ,β
n+1 =

A
α ,β
n+1γα ,β

n

γα ,β
n+1λ α ,β

n+1

, Bα ,β
n = eα ,β

n =
B

α ,β
n

λ α ,β
n

,

Aα ,β
n = e

α ,β
n−1 =

C
α ,β
n−1γα ,β

n

γα ,β
n−1λ α ,β

n−1

, e
α ,β
l = 0, 0≤ l ≤ n− 2.

Working out the constants yields the coefficients in (3.124).

3.2.1.4 Maximum Value

Theorem 3.24. For α,β >−1, set

x0 =
β −α

α +β + 1
, q = max(α,β ).

Then we have

max
|x|≤1

|Jα ,β
n (x)|=

⎧
⎨
⎩

max
Jα ,β

n (±1)


∼ nq, if q≥− 1

2
,

|Jα ,β
n (x)| ∼ n−

1
2 , if q <− 1

2
,

(3.125)

where x is one of the two maximum points nearest x0.

Proof. Define

fn(x) :=

Jα ,β

n (x)
2
+

1

λ α ,β
n

(1− x2)

∂xJ

α ,β
n (x)

2
, n≥ 1. (3.126)
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A direct calculation by using (3.90) leads to

f n(x) =
2

λ α ,β
n


(α−β )+ (α +β + 1)x


∂xJ

α ,β
n (x)

2

=
2

λ α ,β
n

(α +β + 1)(x− x0)

∂xJ

α ,β
n (x)

2
.

Notice that we have the equivalence

−1 < x0 < 1 ⇐⇒


α +
1

2


β +

1

2


> 0.

We proceed by dividing the parameter range of (α,β ) into four different cases.

• Case I : α,β > − 1
2
. In this case, f n(x) ≤ 0 (resp. f n(x) ≥ 0) for all x ∈ [−1,x0]

(resp. x ∈ [x0,1]). Hence, fn(x) attains its maximum at x =±1, so we have

max
|x|≤1

|Jα ,β
n (x)|= max

Jα ,β
n (±1)


 (3.108)∼

(3.106)
nmax{α ,β}, α,β >−1

2
. (3.127)

• Case II : α ≥− 1
2

and −1 < β ≤− 1
2
. In this case, the linear function

(α−β )+ (α +β + 1)x≥ 0, ∀x ∈ [−1,1],

which implies f n(x)≥ 0 for all x ∈ [−1,1]. Hence, we have

max
|x|≤1

|Jα ,β
n (x)|= |Jα ,β

n (1)| ∼ nα , α ≥−1

2
, −1 < β ≤−1

2
. (3.128)

• Case III : −1 < α ≤ − 1
2

and β ≥ − 1
2
. This situation is opposite to Case II, i.e.,

(α−β )+ (α +β + 1)x≤ 0 and f n(x)≤ 0 for all x ∈ [−1,1]. Thus, we have

max
|x|≤1

|Jα ,β
n (x)|= |Jα ,β

n (−1)| ∼ nβ , −1 < α ≤−1

2
, β ≥−1

2
. (3.129)

• Case IV : −1 < α <− 1
2

and −1 < β <− 1
2
. In this case, we have −1 < x0 < 1,

and f n(x) ≥ 0 (resp. f n(x) ≤ 0) for all x ∈ [−1,x0] (resp. x ∈ [x0,1]). Therefore,

the maximum of fn(x) is attained at x0. Notice that the extreme point of J
α ,β
n (x)

in (−1,1) is the zero of ∂xJ
α ,β
n (x). Thus, we find from (3.126) that the maximum

of |Jα ,β
n (x)| can be attained at one of the zero of ∂xJ

α ,β
n (x) nearest x0 on the left

or on the right of x0.

The proof is complete.
In Fig. 3.1, we plot the first six Jacobi polynomials J

1,1
n (x) and J

1,0
n (x). It is seen

that the maximum values are attained at the endpoints. We also observe that J
1,1
n (x)

is an odd (resp. even) function for odd (resp. even) n, while the non-symmetric

Jacobi polynomial J
1,0
n (x) does not have this property.
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Jacobi polynomials

Fig. 3.1 Jacobi polynomials J
1,1
n (x) (left) and J

1,0
n (x) (right) with n = 0,1, . . .,5

3.2.2 Jacobi-Gauss-Type Quadratures

It is straightforward to derive the Jacobi-Gauss-type (i.e., Jacobi-Gauss (JG), Jacobi-

Gauss-Radau (JGR) and Jacobi-Gauss-Lobatto (JGL)) integration formulas from the

general rules in Sect. 3.1.4. In the Jacobi case, the general quadrature formula (3.33)

reads  1

−1
p(x)ωα ,β (x)dx =

N

∑
j=0

p(x j)ω j +EN [p]. (3.130)

Recall that if the quadrature error EN [p] = 0, we say (3.130) is exact for p.

Theorem 3.25. (Jacobi-Gauss quadrature) The JG quadrature formula (3.130) is

exact for any p ∈ P2N+1 with the JG nodes


x j

N

j=0
being the zeros of J

α ,β
N+1(x) and

the corresponding weights given by

ω j =
G

α ,β
N

J
α ,β
N (x j)∂xJ

α ,β
N+1(x j)

(3.131a)

=
Gα ,β

N

(1− x2
j)

∂xJ

α ,β
N+1(x j)

2
, (3.131b)

where

G
α ,β
N =

2α+β (2N+α +β + 2)Γ (N +α + 1)Γ (N +β + 1)

(N +1)!Γ (N +α +β + 2)
, (3.132a)

Gα ,β
N =

2α+β+1Γ (N +α + 2)Γ (N +β + 2)

(N +1)!Γ (N +α +β + 2)
. (3.132b)
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Proof. The formula (3.131a) with (3.132a) follows directly from (3.39), and the

constant

G
α ,β
N =

k
α ,β
N+1

k
α ,β
N

γα ,β
N

can be worked out by using (3.95) and (3.109).

In order to derive the alternative formula (3.131b) with (3.132b), we first use

(3.110) and (3.121) to obtain the recurrence relation

(2N+α +β + 2)(1− x2)∂xJ
α ,β
N+1(x)

=−(N + 1)

(2N +α +β + 2)x+β −α


J

α ,β
N+1(x)

+ 2(N+α + 1)(N+β + 1)J
α ,β
N (x).

(3.133)

Using the fact J
α ,β
N+1(x j) = 0, yields

J
α ,β
N (x j) =

2N+α +β + 2

2(N+α + 1)(N+β + 1)
(1− x2

j)∂xJ
α ,β
N+1(x j).

Plugging it into (3.131a) leads to (3.131b).

We now consider the Jacobi-Gauss-Radau (JGR) quadrature with the fixed end-

point x0 =−1.

Theorem 3.26. (Jacobi-Gauss-Radau quadrature) Let x0 = −1 and


x j

N

j=1
be

the zeros of J
α ,β+1
N (x), and

ω0 =
2α+β+1(β + 1)Γ 2(β + 1)N!Γ (N +α + 1)

Γ (N +β + 2)Γ (N +α +β + 2)
, (3.134a)

ω j =
1

1+ x j

G
α ,β+1
N−1

J
α ,β+1
N−1 (x j)∂xJ

α ,β+1
N (x j)

,

=
1

(1− x j)(1+ x j)2

Gα ,β+1
N−1

[∂xJ
α ,β+1
N (x j)]2

, 1≤ j ≤ N.

(3.134b)

where the constants G
α ,β+1
N−1 and Gα ,β+1

N−1 are defined in (3.132). Then, the quadrature

formula (3.130) is exact for any p ∈ P2N .

Proof. In the Jacobi case, the quadrature polynomial qN defined in (3.48) is

orthogonal with respect to the weight function ωα ,β+1, so it must be proportional

to J
α ,β+1
N . Therefore, the interior nodes {x j}N

j=1 are the zeros of J
α ,β+1
N .

We now prove (3.134a). The general formula (3.51a) in the Jacobi case reads

ω0 =
1

J
α ,β+1
N (−1)

 1

−1
J

α ,β+1
N (x)ωα ,β (x)dy. (3.135)
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The formula (3.115) implies

J
α ,β+1
N (x) = a

α ,β
N,0 J

α ,β
0 (x)+


linear combination of {Jα ,β

l }N
l=1


, (3.136)

where

a
α ,β
N,0 = (−1)N Γ (α +β + 2)Γ (N +α + 1)

Γ (α + 1)Γ (N +α +β + 2)
.

In view of J
α ,β
0 (x)≡ 1, we find from the orthogonality (3.88) that

ω0 =
a

α ,β
N,0 γα ,β

0

J
α ,β+1
N (−1)

=
2α+β+1(β + 1)Γ 2(β + 1)N!Γ (N +α + 1)

Γ (N +β + 2)Γ (N +α +β + 2)
,

where we have worked out the constants by using (3.107) and (3.109).

We next prove (3.134b). The Lagrange basis polynomial related to x j is

h j(x) =
(1+ x)J

α ,β+1
N (x)

∂x


(1+ x)J

α ,β+1
N (x)


x=x j

(x− x j)

=
(1+ x)J

α ,β+1
N (x)

(1+ x j)∂xJ
α ,β+1
N (x j)(x− x j)

=
1+ x

1+ x j

h̃ j(x), 1≤ j ≤ N,

(3.137)

where {h̃ j}N
j=1 are the Lagrange basis polynomials associated with the Jacobi-Gauss

points


x j

N

j=1
(zeros of J

α ,β+1
N ) with the parameters (α,β + 1). Replacing N and

β in (3.131a) and (3.132a) by N− 1 and β + 1, yields

ω j =

 1

−1
h j(x)ω

α ,β (x)dx =
1

1+ x j

 1

−1
h̃ j(x)ω

α ,β+1(x)dx

=
1

1+ x j

G
α ,β+1
N−1

J
α ,β+1
N−1 (x j)∂xJ

α ,β+1
N (x j)

=
1

(1− x j)(1+ x j)2

Gα ,β+1
N−1

[∂xJ
α ,β+1
N (x j)]2

, 1≤ j ≤ N.

(3.138)

This ends the proof.

Remark 3.4. A second Jacobi-Gauss-Radau quadrature with a fixed right endpoint

xN = 1 can be established in a similar manner.

Finally, we consider the Jacobi-Gauss-Lobatto quadrature, which includes two

endpoints x =±1 as the nodes.
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Theorem 3.27. (Jacobi-Gauss-Lobatto quadrature) Let x0 = −1, xN = 1 and
x j

N−1

j=1
be the zeros of ∂xJ

α ,β
N (x), and let

ω0 =
2α+β+1(β + 1)Γ 2(β + 1)Γ (N)Γ (N +α + 1)

Γ (N +β + 1)Γ (N +α +β + 2)
, (3.139a)

ωN =
2α+β+1(α + 1)Γ 2(α + 1)Γ (N)Γ (N +β + 1)

Γ (N +α + 1)Γ (N +α +β + 2)
, (3.139b)

ω j =
1

1− x2
j

G
α+1,β+1
N−2

J
α+1,β+1
N−2 (x j)∂xJ

α+1,β+1
N−1 (x j)

,

=
1

(1− x2
j)

2

Gα+1,β+1
N−2

∂xJ
α+1,β+1
N−1 (x j)

2
, 1≤ j ≤ N− 1,

(3.139c)

where the constants G
α ,β+1
N−1 and Gα ,β+1

N−1 are defined in (3.132). Then, the quadrature

formula (3.130) is exact for any p ∈ P2N−1.

The proof is similar to that of Theorem 3.26 and is left as an exercise (see

Problem 3.8).

Remark 3.5. The quadrature nodes and weights of these three types of Gaussian

formulas have close relations. Indeed, denote by


ξ α ,β
Z,N, j ,ω

α ,β
Z,N, j

N

j=0
with

Z = G,R,L the Jacobi-Gauss, Jacobi-Gauss-Radau and Jacobi-Gauss-Lobatto

quadrature nodes and weights, respectively. Then there hold

ξ α ,β
R,N, j = ξ α ,β+1

G,N−1, j−1, ωα ,β
R,N, j =

ωα ,β+1
G,N−1, j−1

1+ ξ α ,β+1
G,N−1, j−1

, 1≤ j ≤ N, (3.140)

and

ξ α ,β
L,N, j = ξ α+1,β+1

G,N−2, j−1, ωα ,β
L,N, j =

ωα+1,β+1
G,N−2, j−1

1−

ξ α+1,β+1

G,N−2, j−1

2
, 1≤ j ≤ N− 1. (3.141)

This connection allows us to compute the interior nodes and weights of the JGR and

JGL quadratures from the JG rule. Moreover, it makes the analysis of JGR and JGL

(e.g., the interpolation error) easier by extending the results for JG case.

3.2.3 Computation of Nodes and Weights

Except for the Chebyshev case (see Sect. 3.4), the explicit expressions of the nodes

and weights of the general Jacobi-Gauss quadrature are not available, so they have

to be computed by numerical means. An efficient algorithm is to use the eigenvalue

method described in Theorems 3.4 and 3.6.
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Thanks to the relations (3.140) and (3.141), it suffices to compute the Jacobi-

Gauss nodes and weights. Indeed, as a direct consequence of Theorem 3.4, the ze-

ros of the Jacobi polynomial J
α ,β
N+1 are the eigenvalues of the following symmetric

tridiagonal matrix

AN+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

√
b1

√
b1 a1

√
b2

. . .
. . .

. . .

√
bN−1 aN−1

√
bN

√
bN aN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.142)

where the entries are derived from (3.25) and the three-term recurrence relation

(3.110):

a j =
β 2−α2

(2 j+α +β )(2 j+α +β + 2)
, (3.143a)

b j =
4 j( j+α)( j+β )( j+α +β )

(2 j+α +β − 1)(2 j+α +β )2(2 j+α +β + 1)
. (3.143b)

Moreover, by Theorem 3.6, the Jacobi-Gauss weights {ω j}N
j=0 can be obtained by

computing the eigenvectors of AN+1, namely,

ω j = γα ,β
0


Q0(x j)

2
=

2α+β+1Γ (α + 1)Γ (β + 1)

Γ (α +β + 2)


Q0(x j)

2
, (3.144)

where Q0(x j) is the first component of the orthonormal eigenvector corresponding

to the eigenvalue x j. Notice that weights {ω j}N
j=0 may also be computed by using

the formula (3.131).

Alternatively, the zeros of the Jacobi polynomials can be computed by the

Newton’s iteration method described in (3.30) and (3.31). The initial approxima-

tion can be chosen as some estimates presented below, see, e.g., (3.145).

We depict in Fig. 3.2 the distributions of zeros of some sample Jacobi

polynomials:

• In (a), the zeros of J
1,1
N (x) with various N

• In (b), the zeros


θ j = cos−1 x j

N−1

j=0
of J

1,1
N (cosθ ) with various N

• In (c), the zeros of J
α ,α
15 (x) with various α

• In (d), the zeros of J
α ,0
15 (x) with various α

We observe from (a) and (b) in Fig. 3.2 that the zeros {x j} (arranged in

descending order) of the Jacobi polynomials are nonuniformly distributed in

(−1,1), while {θ j = cos−1 x j} are nearly equidistantly located in (0,π). More pre-

cisely, the nodes (in x) cluster near the endpoints with spacing density like O(N−2),
and are considerably sparser in the inner part with spacing O(N−1). This feature is
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quantitatively characterized by Theorem 8.9.1 of Szegö (1975), which states that

for α,β >−1,

−1 −0.5 0

a

c d

b

0.5 1

x

node distribution in (−1,1)

−1 −0.5 0 0.5 1
0

0.5
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0 1 2 3

θ

node distribution in (0,π)

−1 −0.5 0 0.5 1
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x

α

node distribution (β=0)

Fig. 3.2 Distributions of Jacobi-Gauss quadrature nodes

cos−1 x j = θ j =
1

N + 1


( j+1)π +O(1)


, j = 0,1, . . . ,N, (3.145)

where O(1) is uniformly bounded for all values j = 0,1, . . . ,N, and N = 1,2,3, . . . .
We see that near the endpoints x =±1 (i.e., θ = 0,π),

1− x2
j = sin2 θ j = O(N−2), j = 0,N.

Hence, the node spacing in the neighborhood of x = ±1 behaves like O(N−2).
In particular, for the case

−1

2
≤ α ≤ 1

2
, −1

2
≤ β ≤ 1

2
, (3.146)
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Theorem 6.21.2 of Szegö (1975) provides the bounds

2 j+ 1

2N+ 3
≤ θ j ≤

2 j+ 2

2N+ 3
, 0≤ j ≤ N, (3.147)

where the equality holds only when α =−β =− 1
2

or α =−β = 1
2
.

For a fixed j, we can view x j = x j(N;α,β ) as a function of N,α and β , and

observe from (c) and (d) in Fig. 3.2 that for a given N, the nodes exhibit a tendency

to move towards the center of the interval as α and/or β increases. This is predicted

by Theorem 6.21.1 of Szegö (1975):

∂x j

∂α
< 0,

∂x j

∂β
> 0, 0≤ j ≤ N. (3.148)

In particular, if α = β ,

∂x j

∂α
< 0, j = 0,1, . . . , [N/2]. (3.149)

3.2.4 Interpolation and Discrete Jacobi Transforms

Let {x j,ω j}N
j=0 be a set of Jacobi-Gauss-type nodes and weights. As in Sect. 3.1.5,

we can define the corresponding interpolation operator, discrete inner product and

discrete norm, denoted by I
α ,β
N , ·, ·N,ωα,β and  · N,ωα,β , respectively.

The exactness of the quadratures implies

u,vN,ωα,β = (u,v)ωα,β , ∀u · v ∈ P2N+δ , (3.150)

where δ = 1,0,−1 for JG, JGR and JGL, respectively. Accordingly, we have

uN,ωα,β = uωα,β , ∀u ∈ PN , for JG and JGR. (3.151)

Although the above identity does not hold for the JGL case, we have the following

equivalence.

Lemma 3.3.

uωα,β ≤ uN,ωα,β ≤


2+
α +β + 1

N
uωα,β , ∀u ∈ PN . (3.152)

Proof. For any u ∈ PN , we write

u(x) =
N

∑
l=0

ûlJ
α ,β
l (x), with ûl =

1

γα ,β
l


u,J

α ,β
l


ωα,β .
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By the orthogonality of the Jacobi polynomials and the exactness (3.150),

u2
ωα,β =

N

∑
l=0

û2
l γα ,β

l ,

u2
N,ωα,β =

N−1

∑
l=0

û2
l γα ,β

l + û2
NJ

α ,β
N , J

α ,β
N N,ωα,β .

(3.153)

To estimate the last term, we define

ψ(x) = [J
α ,β
N (x)]2 +

1

N2
(1− x2)


∂xJ

α ,β
N (x)

2

.

One verifies readily that ψ ∈ P2N−1, since the leading term x2N cancels out. There-

fore, using the fact (1− x2
j)∂xJ

α ,β
N (x j) = 0, and the exactness (3.150), we derive


J

α ,β
N , J

α ,β
N


N,ωα,β = 1,ψN,ωα,β = (1,ψ)ωα,β =


J

α ,β
N , J

α ,β
N


ωα,β

+
1

N2


∂xJ

α ,β
N , ∂xJ

α ,β
N


ωα+1,β+1

(3.97)
=


1+

λ α ,β
N

N2


γα ,β
N .

Hence, by (3.91),


J

α ,β
N , J

α ,β
N


N,ωα,β =


2+

α +β + 1

N


γα ,β
N . (3.154)

Inserting it into (3.153) leads to the desired result.
We now turn to the discrete Jacobi transforms. Since the interpolation polynomial

I
α ,β
N u ∈ PN , we write


I

α ,β
N u


(x) =

N

∑
n=0

ũα ,β
n Jα ,β

n (x), (3.155)

where the coefficients {ũα ,β
n }N

n=0 are determined by the forward discrete Jacobi

transform.

Theorem 3.28.

ũα ,β
n =

1

δ α ,β
n

N

∑
j=0

u(x j)J
α ,β
n (x j)ω j, (3.156)

where δ α ,β
n = γα ,β

n for 0≤ n≤ N−1, and

δ α ,β
N =

⎧
⎨
⎩

γα ,β
N , for JG and JGR,


2+ α+β+1
N


γα ,β
N , for JGL.



88 3 Orthogonal Polynomials and Related Approximation Results

Proof. This formula follows directly from Theorem 3.9 and (3.154).

By taking x= x j in (3.155), the backward discrete Jacobi transform is carried out by

u(x j) = (I
α ,β
N u)(x j) =

N

∑
n=0

ũα ,β
n Jα ,β

n (x j), 0≤ j ≤ N. (3.157)

In general, the discrete transforms (3.156)-(3.157) can be performed by a matrix–

vector multiplication routine in about N2 flops. Some techniques to reduce the com-

putational complexity to N(logN)α (with some positive α) are suggested in Potts

et al. (1998), Tygert (2010).

3.2.5 Differentiation in the Physical Space

Let {x j}N
j=0 be a set of Jacobi-Gauss-type points, and let {h j}N

j=0 be the associ-

ated Lagrange basis polynomials. Suppose that u ∈ PN is an approximation to the

underlying solution, and we write

u(x) =
N

∑
j=0

u(x j)h j(x).

As shown in Sect. 3.1.6, the differentiation of u can be done through a matrix–vector

multiplication:

u(m) = Dmu, m≥ 1, (3.158)

where u(k) = (u(k)(x0),u
(k)(x1), . . . ,u

(k)(xN))
T , u = u(0), and the first-order differ-

entiation matrix:

D =

dk j = hj(xk)


k, j=0,1,...,N

.

Hence, it suffices to compute the entries of the first-order differentiation matrix D,
whose explicit formulas can be derived from Theorem 3.11.

3.2.5.1 Jacobi-Gauss-Lobatto Differentiation Matrix

In this case, the quadrature polynomial defined in (3.74) reads

Q(x) = (1− x2)J
α+1,β+1
N−1 (x).

To simplify the notation, we write

J(x) := ∂xJ
α+1,β+1
N−1 (x). (3.159)
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One verifies readily that (note: x0 =−1 and xN = 1):

Q(x j) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2(−1)N−1Γ (N +β + 1)

Γ (N)Γ (β + 2)
, j = 0,

(1− x2
j)J(x j), 1≤ j ≤ N− 1,

−2Γ (N +α + 1)

Γ (N)Γ (α + 2)
, j = N.

Differentiating Q(x) yields

Q(x) =−2J
α+1,β+1
N−1 (x)− 4x∂xJ

α+1,β+1
N−1 (x)+ (1− x2)∂ 2

x J
α+1,β+1
N−1 (x)

(3.90)
= [(α−β )+ (α +β )x]J(x)− (λ α+1,β+1

N−1 + 2)J
α+1,β+1
N−1 (x).

Recalling that {Jα+1,β+1
N−1 (x j) = 0}N−1

j=1 , and using the formulas (3.94), (3.107) and

(3.100) to work out the constants, we find

Q(x j) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2

α−N(N +α +β + 1)


Γ (N +β + 1)

(−1)N+1Γ (N)Γ (β + 3)
, j = 0,


α−β +(α +β )x j


J(x j), 1≤ j ≤ N−1,

2

β −N(N+α +β + 1)


Γ (N +α + 1)

Γ (N)Γ (α + 3)
, j = N.

Applying the general formulas in Theorem 3.11, the entries of the first-order JGL

differentiation matrix D are expressed as follows.

(a). The first column ( j = 0):

dk0 =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α−N(N+α +β + 1)

2(β + 2)
, k = 0,

(−1)N−1Γ (N)Γ (β + 2)

2Γ (N +β + 1)
(1− xk)J(xk), 1≤ k ≤ N− 1,

(−1)N

2

Γ (β + 2)Γ (N +α + 1)

Γ (α + 2)Γ (N +β + 1)
, k = N.

(3.160)

(b). The second to the N-th column (1≤ j ≤ N−1):

dk j=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(−1)NΓ (N+β+1)

Γ (N)Γ (β+2)(1−x j)(1+x j)2J(x j)
, k = 0,

(1−x2
k)J(xk)

(1−x2
j)J(x j)

1

xk−x j

, k = j, 1≤ k ≤ N−1,

α−β+(α+β )xk

2(1−x2
k)

, 1≤ k= j ≤ N−1,

−2Γ (N+α+1)

Γ (N)Γ (α+2)(1−x j)2(1+x j)J(x j)
, k=N.

(3.161)
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(c). The last column ( j = N):

dkN =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)N+1

2

Γ (α + 2)Γ (N +β + 1)

Γ (β + 2)Γ (N +α + 1)
, k = 0,

Γ (N)Γ (α + 2)

2Γ (N +α + 1)
(1+ xk)J(xk), 1≤ k≤ N− 1,

N(N +α +β + 1)−β

2(α + 2)
, k = N.

(3.162)

3.2.5.2 Jacobi-Gauss-Radau Differentiation Matrix

In this case, the quadrature polynomial in (3.74) is Q(x) = (1+x)J
α ,β+1
N (x). Denot-

ing J(x) = ∂xJ
α ,β+1
N (x), one verifies that

Q(x j) =

⎧
⎪⎪⎨
⎪⎪⎩

(−1)NΓ (N +β + 2)

N!Γ (β + 2)
, j = 0,

(1+ x j)J(x j), 1≤ j ≤ N.

We obtain from (3.100) and (3.107) that

Q(x0) = 2∂xJ
α ,β+1
N (−1) =

(−1)N−1(N +α +β + 2)Γ (N +β + 2)

Γ (N)Γ (β + 3)
.

Moreover, by (3.90),

Q(x) = 2∂xJ
α ,β+1
N (x)+ (1+ x)∂ 2

x J
α ,β+1
N (x) = 2∂xJ

α ,β+1
N (x)

+
1

1− x


α−β − 1+(α +β + 3)x


∂xJ

α ,β+1
N (x)−λ α ,β+1

N J
α ,β+1
N (x)


.

In view of


J
α ,β+1
N (x j) = 0

N

j=1
, we derive that

Q(x j) =
1

1− x j


α−β + 1+(α +β + 1)x j


J(x j), 1≤ j ≤ N.
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Applying the general results in Theorem 3.11 leads to

dk j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−N(N +α +β + 2)

2(β + 2)
, k = j = 0,

N!Γ (β + 2)

(−1)NΓ (N +β + 2)
J(xk), 1≤ k ≤ N, j = 0,

(−1)N+1Γ (N +β + 2)

N!Γ (β + 2)

1

(1+ x j)2J(x j)
, k = 0, 1≤ j ≤ N,

(1+ xk)J(xk)

(1+ x j)J(x j)

1

xk− x j
, 1≤ k = j ≤ N,

α−β + 1+(α +β + 1)xk

2(1− x2
k)

, 1≤ k = j ≤ N.

(3.163)

3.2.5.3 Jacobi-Gauss Differentiation Matrix

In this case, the quadrature polynomial in (3.74) is Q(x) = J
α ,β
N+1(x). One verifies

by using (3.90) that

∂ 2
x J

α ,β
N+1(x j) =

1

1− x2
j


α−β +(α +β + 2)x j


∂xJ

α ,β
N+1(x j), 0≤ j ≤ N.

Once again, we derive from Theorem 3.11 that

dk j =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂xJ
α ,β
N+1(xk)

∂xJ
α ,β
N+1(x j)

1

xk− x j

, 0≤ k = j ≤ N,

α−β +(α +β + 2)xk

2(1− x2
k)

, 1≤ k = j ≤ N.

(3.164)

As a numerical illustration, we consider the approximation of the derivatives of

u(x) = sin(4πx), x ∈ [−1,1] by the Jacobi-Gauss-Lobatto interpolation associated

with {x j}N
j=0 with α = β = 1. More precisely, let

u(x)≈ uN(x) = I
1,1
N u(x) =

N

∑
j=0

u(x j)h j(x) ∈ PN . (3.165)

In Fig. 3.3a, we plot u (solid line) versus uN(x) (“·”) and u (solid line) versus

uN(x) (“”) at {x j}N
j=0 with N = 38. In Fig. 3.3b, we depict the errors log10


u −

uNN,ω1,1


(“◦”) and log10


u − uNN,ω1,1


(“”) against various N. We observe

that the errors decay exponentially.
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Fig. 3.3 Convergence of Jacobi differentiation in the physical space

3.2.6 Differentiation in the Frequency Space

We now describe the spectral differentiation by manipulating the expansion coeffi-

cients as in Sect. 3.1.7. For any u ∈ PN , we write

u(x) =
N

∑
n=0

ûnJα ,β
n (x) ∈ PN , u(x) =

N−1

∑
n=0

û
(1)
n Jα ,β

n (x) ∈ PN−1.

The process of differentiation in the frequency space is to express {û(1)n } in terms

of {ûn}.
Thanks to the recurrence formula (3.123), the corresponding coefficients in the

relation (3.80) are

ãn = Aα ,β
n , b̃n = Bα ,β

n , c̃n = Cα ,β
n ,

where Aα ,β
n , Bα ,β

n and Cα ,β
n are given in (3.124a)–(3.124c), respectively.

Hence, by Theorem 3.12, the coefficients {û(1)n }N
n=0 can be exactly evaluated by

the backward recurrence formula

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

û
(1)
N = 0, û

(1)
N−1 =

ûN

Cα ,β
N−1

,

û
(1)
n−1 =

1

Cα ,β
n−1


ûn− Bα ,β

n û
(1)
n − Aα ,β

n+1û
(1)
n+1


,

n = N−1,N−2, . . . ,2,1.

(3.166)

In summary, given the physical values {u(x j)}N
j=0 at a set of Jacobi-Gauss-type

points {x j}N
j=0, the evaluation of {u(x j)}N

j=0 can be carried out in the following

three steps:
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• Find the coefficients {ûn}N
n=0 by using the forward discrete Jacobi transform

(3.156).

• Compute the coefficients {û(1)n }N−1
n=0 by using (3.166).

• Find the derivative values {u(x j)}N
j=0 by using the backward discrete Jacobi

transform (3.157).

Higher-order derivatives can be computed by repeating the above procedure.
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Fig. 3.4 Convergence of Jacobi differentiation in the frequency space

As an illustrative example, we fix the Jacobi index to be (1,1), consider u(x) =
1/(1+ 2x2), x ∈ [−1,1], and approximate its derivatives by taking the derivatives,

in the frequency space, of its interpolation polynomial:

u(x)≈ uN(x) = I
1,1
N u(x) =

N

∑
n=0

ũnJ1,1
n (x) ∈ PN . (3.167)

We observe from Fig. 3.4 that the errors decay exponentially, similar to the differ-

entiation in the physical space as shown in Fig. 3.3.

3.3 Legendre Polynomials

We discuss in this section an important special case of the Jacobi polynomials – then

Legendre polynomials

Ln(x) = J0,0
n (x), n≥ 0, x ∈ I = (−1,1).

The distinct feature of the Legendre polynomials is that they are mutually orthog-

onal with respect to the uniform weight function ω(x) ≡ 1. The first six Legendre

polynomials and their derivatives are plotted in Fig. 3.5.

Since most of them can be derived directly from the corresponding properties

of the Jacobi polynomials by taking α = β = 0, we merely collect some relevant

formulas without proof.
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• Three-term recurrence relation:

(n+1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x), n≥ 1, (3.168)

and the first few Legendre polynomials are

L0(x) = 1, L1(x) = x,

L2(x) =
1

2
(3x2− 1), L3(x) =

1

2
(5x3− 3x).

• The Legendre polynomial has the expansion

Ln(x) =
1

2n

[n/2]

∑
l=0

(−1)l (2n−2l)!

2nl!(n− l)!(n−2l)!
xn−2l, (3.169)

and the leading coefficient is

kn =
(2n)!

2n(n!)2
. (3.170)

• Sturm-Liouville problem:


(1− x2)Ln(x)


+λnLn(x) = 0, λn = n(n+1). (3.171)

Equivalently,

(1− x2)Ln(x)− 2xLn(x)+ n(n+1)Ln(x) = 0. (3.172)

• Rodrigues’ formula:

Ln(x) =
1

2nn!

dn

dxn


(x2− 1)n


, n≥ 0. (3.173)

• Orthogonality:

 1

−1
Ln(x)Lm(x)dx = γnδmn, γn =

2

2n+ 1
, (3.174a)

 1

−1
Ln(x)L


m(x)(1− x2)dx = γnλnδmn. (3.174b)

• Symmetric property:

Ln(−x) = (−1)nLn(x), Ln(±1) = (±1)n. (3.175)

Hence, Ln(x) is an odd (resp. even) function, if n is odd (resp. even). Moreover,

we have the uniform bound

|Ln(x)| ≤ 1, ∀x ∈ [−1,1], n≥ 0.
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• Derivative recurrence relations:

(2n+1)Ln(x) = Ln+1(x)−Ln−1(x), n≥ 1, (3.176a)

Ln(x) =
n−1

∑
k=0

k+n odd

(2k+1)Lk(x), (3.176b)

Ln(x) =
n−2

∑
k=0

k+n even


k+

1

2


n(n+1)− k(k+ 1)


Lk(x), (3.176c)

(1− x2)Ln(x) =
n(n+1)

2n+ 1


Ln−1(x)−Ln+1(x)


. (3.176d)

• The boundary values of the derivatives:

Ln(±1) =
1

2
(±1)n−1n(n+1), (3.177a)

Ln(±1) = (±1)n(n−1)n(n+1)(n+ 2)/8. (3.177b)
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Fig. 3.5 The first six Legendre polynomials and their first-order derivatives

3.3.1 Legendre-Gauss-Type Quadratures

The Legendre-Gauss-type quadrature formulas can be derived from the Jacobi ones

in the previous section.
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Theorem 3.29. Let {x j,ω j}N
j=0 be a set of Legendre-Gauss-type nodes and weights.

• For the Legendre-Gauss (LG) quadrature,


x j

N

j=0
are the zeros of LN+1(x);

ω j =
2

(1− x2
j)[L


N+1(x j)]2

, 0≤ j ≤ N.
(3.178)

• For the Legendre-Gauss-Radau (LGR) quadrature,


x j

N

j=0
are the zeros of LN(x)+LN+1(x);

ω j =
1

(N +1)2

1− x j

[LN(x j)]2
, 0≤ j ≤ N.

(3.179)

• For the Legendre-Gauss-Lobatto (LGL) quadrature,


x j

N

j=0
are the zeros of (1− x2)LN(x);

ω j =
2

N(N + 1)

1

[LN(x j)]2
, 0≤ j ≤ N.

(3.180)

With the above quadrature nodes and weights, there holds

 1

−1
p(x)dx =

N

∑
j=0

p(x j)ω j, ∀p ∈ P2N+δ , (3.181)

where δ = 1,0,−1 for LG, LGR and LGL, respectively.

Proof. The rule (3.181) with (3.178) follows directly from Theorem 3.25 with α =
β = 0.

We now prove (3.179). The formula (3.116b) implies

(1+ x)J0,1
N (x) = LN(x)+LN+1(x). (3.182)

Hence, we infer from Theorem 3.26 that the nodes


x j

N

j=0
are the zeros of LN(x)+

LN+1(x), and the formulas of the weights are

ω0 =
2

(N +1)2
=

1

(N +1)2

1− x0

[LN(x0)]2
,

ω j =
2(2N+1)

N(N +1)

1

(1+ x j)

J

0,1
N−1(x)∂xJ

0,1
N (x)


x=x j

, 1≤ j ≤ N.
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To derive the equivalent expression in (3.179), we deduce from the fact {J0,1
N (x j) =

0}N
j=1 that

∂xJ
0,1
N (x j)

(3.133)
=

2N(N + 1)

2N + 1

J
0,1
N−1(x j)

1− x2
j

(3.182)
=

2N(N + 1)

2N + 1

LN−1(x j)+LN(x j)

(1+ x j)(1− x2
j)

,

which, together with (3.182), leads to

(1+ x j)J
0,1
N−1(x j)∂xJ

0,1
N (x j) =

2N(N + 1)

2N + 1


LN−1(x j)+LN(x j)

1+ x j

2
1

1− x j

.

Due to LN(x j)+LN+1(x j) = 0 for 1≤ j ≤ N, using the three-term recurrence rela-

tion (3.168) gives

LN−1(x j) =
2N+ 1

N
xjLN(x j)−

N+ 1

N
LN+1(x j)

=
2N+ 1

N
xjLN(x j)+

N+ 1

N
LN(x j)

=
2N+ 1

N
(1+ x j)LN(x j)−LN(x j).

A combination of the above facts leads to (3.179).

We now turn to the derivation of (3.180). By Theorem 3.27 with α = β = 0,

ω0 = ωN =
2

N(N +1)
,

ω j =
8

N + 1

1

(1− x2
j)J

1,1
N−2(x j)∂xJ

1,1
N−1(x j)

, 1≤ j ≤ N− 1.

(3.183)

In view of {J1,1
N−1(x j) = 0}N

j=1, we derive from (3.133) that

(1− x2
j)∂xJ

1,1
N−1(x j) = NJ

1,1
N−2(x j), 1≤ j ≤ N−1.

As a consequence of (3.98) and the above equality, we find that

(1− x2
j)J

1,1
N−2(x j)∂xJ

1,1
N−1(x j) = N


J

1,1
N−2(x j)

2
=

4

N


LN−1(x j)

2
.
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Differentiating (3.168) and using (3.176a) and the fact {LN(x j) = 0}N
j=1, yields

LN−1(x j) =
2N+ 1

N
LN(x j)−

N+ 1

N
LN+1(x j)

=
2N+ 1

N
LN(x j)−

N+ 1

N


LN−1(x j)+ (2N+ 1)LN(x j)



=−(2N+ 1)LN(x j)−
N+ 1

N
LN−1(x j),

which leads to

LN−1(x j) =−NLN(x j), 1≤ j ≤ N−1.

Consequently,

(1− x2
j)J

1,1
N−2(x j)∂xJ

1,1
N−1(x j) = 4NL2

N(x j).

Plugging it into the second formula of (3.183) gives the desired result.

3.3.2 Computation of Nodes and Weights

As a special case of (3.142), the interior Legendre-Gauss-type nodes are the eigen-

values of the following Jacobian matrix:

AM+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

√
b1

√
b1 a1

√
b2

. . .
. . .

. . .

√
bM−1 aM−1

√
bM

√
bM aM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.184)

where

• For LG: a j = 0, b j =
j2

4 j2− 1
, M = N.

• For LGR: a j =
1

(2 j+1)(2 j+ 3)
, b j =

j( j+1)

(2 j+1)2
, M = N− 1.

• For LGL: a j = 0, b j =
j( j+2)

(2 j+1)(2 j+ 3)
, M = N− 2.

The quadrature weights can be evaluated by using the formulas in Theorem 3.29.

Alternatively, as a consequence of (3.144), the quadrature weights can be computed

from the first component of the orthonormal eigenvectors of AM+1.
The eigenvalue method is well-suited for the Gauss-quadratures of low or mod-

erate order. However, for high-order quadratures, the eigenvalue method may suffer
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from round-off errors, so it is advisable to use a root-finding iterative approach. To

fix the idea, we restrict our attention to the commonly used Legendre-Gauss-Lobatto

case and compute the zeros of LN(x). In this case, the Newton method (3.31) reads

⎧
⎪⎨
⎪⎩

xk+1
j = xk

j−
LN(x

k
j)

LN(x
k
j)
, k≥ 0,

given x0
j , 1≤ j ≤ N− 1.

(3.185)

To avoid evaluating the values of LN , we use (3.171) to derive that

LN(x)
LN(x)

=
(1− x2)LN(x)

2xLN(x)−N(N + 1)LN(x)
.

For an iterative method, it is essential to start with a good initial approximation. In

Lether (1978), an approximation of the zeros of LN(x) is given by

σk =


1− N− 1

8N3
− 1

384N4


39− 28

sin2 θk


cosθk +O(N−5), (3.186)

where

θk =
4k− 1

4N + 2
π , 1≤ k≤ N.

Notice from Corollary 3.4 (the interlacing property) that there exists exactly one

zero of LN(x) between two consecutive zeros of LN(x). Therefore, we can take the

initial guess as

x0
j =

σ j +σ j+1

2
, 1≤ j ≤ N− 1. (3.187)

We point out that due to LN(−x)= (−1)N+1LN(x), the computational cost of (3.185)

can be halved.

After finding the nodes {x j}N
j=0, we can compute the corresponding weights by

the formula (3.180):

w(x) =
2

N(N +1)

1

L2
N(x)

. (3.188)

It is clear that w(x j) = 0 for 1 ≤ j ≤ N − 1. In other words, the interior nodes

are the extremes of w(x). We plot the graph of w(x) with N = 8 in Fig. 3.6a. As

a consequence, for a small perturbation of the nodes, we can obtain very accurate

values ω j = w(x j) even for very large N.
In Fig. 3.6b, we depict the locations of the Legendre-Gauss-Lobatto nodes

{x j}8
j=0, and {θ j = arccosx j}8

j=0. We see that {θ j} distribute nearly equidistantly
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along the upper half unit circle (i.e., in [0,π ]). The projection of {θ j} onto [−1,1]
yields the clustering of points {x j} near the endpoints x =±1 with spacing O(N−2).
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Fig. 3.6 (a) Behavior of w(x) in (3.188) with N = 8; (b) Distribution of the Legendre-Gauss-

Lobatto nodes with N = 8

We tabulate in Table 3.2 some samples of the LGL nodes and weights with

N = 8,16 (note that xN− j = −x j and ωN− j = ω j) computed by the aforementioned

method.

Table 3.2 LGL nodes and weights
Nodes x j Weights ω j

1.000000000000000e+00 2.777777777777778e-02

8.997579954114601e-01 1.654953615608056e-01

6.771862795107377e-01 2.745387125001617e-01

3.631174638261782e-01 3.464285109730462e-01

0.000000000000000e+00 3.715192743764172e-01

1.000000000000000e+00 7.352941176470588e-03

9.731321766314184e-01 4.492194054325414e-02

9.108799959155736e-01 7.919827050368709e-02

8.156962512217703e-01 1.105929090070281e-01

6.910289806276847e-01 1.379877462019266e-01

5.413853993301015e-01 1.603946619976215e-01

3.721744335654770e-01 1.770042535156577e-01

1.895119735183174e-01 1.872163396776192e-01

0.000000000000000e+00 1.906618747534694e-01

3.3.3 Interpolation and Discrete Legendre Transforms

Given a set of Legendre-Gauss-type quadrature nodes and weights {x j,ω j}N
j=0, we

define the associated interpolation operator IN , discrete inner product ·, ·N and

discrete norm  · N, as in Sect. 3.1.5.
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Thanks to the exactness of the Legendre-Gauss-type quadrature (cf. (3.181)), we

have

u,vN = (u,v), ∀u · v ∈ P2N+δ , (3.189)

where δ = 1,0,−1 for LG, LGR and LGL, respectively. Consequently,

uN = u, ∀u ∈ PN for LG and LGR. (3.190)

Although the above formula does not hold for LGL, we derive from Lemma 3.3

with α = β = 0 the following equivalence:

u ≤ uN ≤


2+N−1u, ∀u ∈ PN . (3.191)

Moreover, as a direct consequence of (3.154), we have


LN ,LN


N
=

2

N
. (3.192)

We now turn to the discrete Legendre transforms. The Lagrange interpolation

polynomial INu ∈ PN , so we write

(INu)(x) =
N

∑
n=0

ũnLn(x),

where the (discrete) Legendre coefficients {ũn} are determined by the forward dis-

crete Legendre transform:

ũn =
1

γn

N

∑
j=0

u(x j)Ln(x j)ω j =
u,LnN
Ln2

N

, 0≤ n≤ N, (3.193)

where γn =
2

2n+1
for 0 ≤ n ≤ N, except for LGL case, γN = 2

N
. On the other hand,

given the expansion coefficients {ũn}, the physical values {u(x j)} can be computed

by the backward discrete Legendre transform:

u(x j) = (INu)(x j) =
N

∑
n=0

ũnLn(x j), 0≤ j ≤ N. (3.194)

Assuming that

Ln(x j)


j,n=0,1,...,N

have been precomputed, the discrete Legendre

transforms (3.194) and (3.193) can be carried out by a standard matrix–vector mul-

tiplication routine in about N2 flops. The cost of the discrete Legendre transforms

can be halved, due to the symmetry: Ln(x j) = (−1)nLn(xN− j).
To illustrate the convergence of Legendre interpolation approximations, we con-

sider the test function: u(x) = sin(kπx). Writing

sin(kπx) =
∞

∑
n=0

ûnLn(x), x ∈ [−1,1], (3.195)
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we can derive from the property of the Bessel functions (cf. Watson (1966)) that

ûn =
1√
2k

(2n+1)Jn+1/2(kπ)sin(nπ/2), n≥ 0, (3.196)

where Jn+1/2(·) is the Bessel function of the first kind. Using the asymptotic formula

Jν(x)∼
1

2πν

 ex

2ν

ν
, ν  1, ν ∈ R, (3.197)

we find that the exponential decay of the expansion coefficients occurs when the

mode

n >
ekπ

2
− 1

2
. (3.198)

We now approximate u by INu = ∑N
n=0 ũnLn(x), and consider the error in the

coefficients |ûn− ũn

. We observe from Fig. 3.7a that the errors between the exact

and discrete expansion coefficients decay exponentially when N > ekπ/2, and it

verifies the estimate

max
0≤n≤N

ûn− ũn

∼ ûN+1 for N  1. (3.199)

In Fig. 3.7b, we depict the exact expansion coefficients ûn (marked by “◦”) and

the discrete expansion coefficients ũn (marked by “�”) against the subscript n, and

in Fig. 3.7c, we plot the exact solution versus its interpolation. Observe that INu

provides an accurate approximation to u as long as N > ekπ/2.

As with the Fourier case, when a discontinuous function is expanded in Legen-

dre series, the Gibbs phenomena occur in the neighborhood of a discontinuity. For

example, the Legendre series expansion of the sign function sgn(x) is

sgn(x) =
∞

∑
n=0

(−1)n(4n+3)(2n)!

22n+1(n+1)!n!
L2n+1(x). (3.200)

One verifies readily that the expansion coefficients behave like

|û2n+1|=
(4n+3)(2n)!

22n+1(n+1)!n!
 1√

n
, n 1. (3.201)

In Fig. 3.7d, we plot the numerical approximation INu(x) and sgn(x) in the interval

[−0.3,0.3], which indicates a Gibbs phenomenon near x = 0.
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Fig. 3.7 (a) Error max0≤n≤N |ûn− ũn| & ûN+1 (solid line) vs. N/(kπ) with k = 16,24,32; (b) ûn

vs. ũn with k = 32 and N = 128; (c) u(x) vs. INu(x), x ∈ [−0.3,0.3] with k = 32 and N = 128;

(d) u(x) = sgn(x) vs. INu(x), x ∈ [−0.3,0.3] with k = 32 and N = 64

3.3.4 Differentiation in the Physical Space

Given u ∈ PN and its values at a set of Legendre-Gauss-type points {x j}N
j=0, let

{h j}N
j=0 be the associated Lagrange basis polynomials. According to the general

approach described in Sect. 3.1.6, we have

u(m) = Dmu, m≥ 1, (3.202)

where

D =

dk j = hj(xk)


0≤k, j≤N

, u(m) =

u(m)(x0), . . . ,u

(m)(xN)
T

, u= u(0).

We derive below explicit representations of the entries of D for the three different

cases by using the general formulas of the Jacobi polynomials in Sect. 3.2.5.

• For the Legendre-Gauss-Lobatto case (x0 =−1 and xN = 1): The general formu-

las (3.160)–(3.162) for JGL in Sect. 3.2.5 with α = β = 0 lead to the reduced
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formulas involving (1−x2)∂xJ
1,1
N−1 and (1±x)∂xJ

1,1
N−1. Using (3.100) and (3.172)

leads to

(1− x2
j)∂xJ

1,1
N−1(x j) =

2

N + 1
(1− x2

j)∂
2
x LN(x j)

=−2NLN(x j), 1≤ j ≤ N−1,

and

(1± x j)∂xJ
1,1
N−1(x j) =−2N

LN(x j)

1∓ x j
, 1≤ j ≤ N− 1.

Plugging the above in (3.160)–(3.162) with α = β = 0, we derive

dk j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−N(N + 1)

4
, k = j = 0,

LN(xk)

LN(x j)

1

xk− x j

, k = j, 0≤ k, j ≤ N,

0, 1≤ k = j ≤ N−1,

N(N + 1)

4
k = j = N.

(3.203)

• For the Legendre-Gauss-Radau case (x0 = −1): The general formula (3.163) in

the case of α = β = 0 can be simplified to

dk j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−N(N +2)

4
, k = j = 0,

xk

1− x2
k

+
(N +1)LN(xk)

(1− x2
k)Q

(xk)
, 1≤ k = j ≤ N,

Q(xk)

Q(x j)

1

xk− x j

, k = j,

(3.204)

where Q(x) = LN(x) + LN+1(x) (which is proportional to (1 + x)J0,1
N (x)). For

k = j, we derive from Theorem 3.11 that

dkk =
Q(xk)

2Q(xk)
, 0≤ k ≤ N.

To avoid computing the second-order derivatives, we obtain from (3.172) that

Q(xk) =
2xkQ

(xk)+ 2(N+ 1)LN(xk)

1− x2
k

, 1≤ k ≤ N.

For k = j = 0, we can work out the constants by using (3.177).
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• For the Legendre-Gauss case: The general formula (3.164) in the case of α =
β = 0 reduces to

dk j =

⎧
⎪⎪⎨
⎪⎪⎩

LN+1(xk)

LN+1(x j)

1

xk− x j

, k = j,

xk

1− x2
k

, k = j.

(3.205)

In all cases, the differentiation matrix D is a full matrix, so O(N2) flops are

needed to compute


u(x j)
N

j=0
from


u(x j)

N

j=0
.Also note that since u(N+1)(x)≡ 0

for any u ∈ PN , we have DN+1u = 0 for any u ∈ R
N+1. Hence, the only eigenvalue

of D is zero which has a multiplicity N +1.

3.3.5 Differentiation in the Frequency Space

Given u ∈ PN , we write

u(x) =
N

∑
k=0

ûkLk(x) ∈ PN ,

and

u(x) =
N

∑
k=1

ûkL

k(x) =

N

∑
k=0

û
(1)
k Lk(x) with û

(1)
N = 0.

Thanks to (3.176a), we find

u =
N

∑
k=0

û
(1)
k Lk = û

(1)
0 +

N−1

∑
k=1

û
(1)
k

1

2k+ 1
(Lk+1−Lk−1)

=
û
(1)
N−1

2N− 1
LN +

N−1

∑
k=1


û
(1)
k−1

2k− 1
−

û
(1)
k+1

2k+ 3


Lk.

Since {Lk} are orthogonal polynomials (cf. (3.174b)), comparing the coefficients of

Lk leads to the backward recursive relation:

û
(1)
k−1 = (2k−1)


ûk +

û
(1)
k+1

2k+ 3


, k = N−1,N− 2, . . . ,1,

û
(1)
N = 0, û

(1)
N−1 = (2N− 1)ûN.

(3.206)

Higher-order differentiations can be performed by the above formula recursively.
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3.4 Chebyshev Polynomials

In this section, we consider another important special case of the Jacobi polynomi-

als – Chebyshev polynomials (of the first kind), which are proportional to Jacobi

polynomials {J−1/2,−1/2
n } and are orthogonal with respect to the weight function

ω(x) = (1− x2)−1/2.
The three-term recurrence relation for the Chebyshev polynomials reads:

Tn+1(x) = 2xTn(x)−Tn−1(x), n≥ 1, (3.207)

with T0(x) = 1 and T1(x) = x.

The Chebyshev polynomials are eigenfunctions of the Sturm-Liouville problem:


1− x2


1− x2T n(x)


+ n2Tn(x) = 0, (3.208)

or equivalently,

(1− x2)T n (x)− xT n(x)+ n2Tn(x) = 0. (3.209)

While we can derive the properties of Chebyshev polynomials from the gen-

eral properties of Jacobi polynomials with (α,β ) = (−1/2,−1/2), it is more con-

venient to explore the relation between Chebyshev polynomials and trigonometric

functions. Indeed, using the trigonometric relation

cos((n+ 1)θ )+ cos((n−1)θ ) = 2cosθ cos(nθ ),

and taking θ = arccosx, we find that cos(narccosx) satisfies the three-term recur-

rence relation (3.207), and it is 1,x for n = 0,1, respectively. Thus, by an induction

argument, cos(narccosx) is also a polynomial of degree n with the leading coeffi-

cient 2n−1 (Fig. 3.8). We infer from Theorem 3.1 of the uniqueness that

Tn(x) = cosnθ , θ = arccosx, n≥ 0, x ∈ I. (3.210)

This explicit representation enables us to derive many useful properties.

An immediate consequence is the recurrence relation

2Tn(x) =
1

n+ 1
T n+1(x)−

1

n− 1
T n−1(x), n≥ 2. (3.211)

One can also derive from (3.210) that

Tn(−x) = (−1)nT (x), Tn(±1) = (±1)n, (3.212a)

|Tn(x)| ≤ 1, |T n(x)| ≤ n2, (3.212b)

(1− x2)T n(x) =
n

2
Tn−1(x)−

n

2
Tn+1(x), (3.212c)

2Tm(x)Tn(x) = Tm+n(x)+Tm−n(x), m≥ n≥ 0, (3.212d)
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and

T n(±1) = (±1)n−1n2, (3.213a)

T n (±1) =
1

3
(±1)nn2(n2− 1). (3.213b)

It is also easy to show that

 1

−1
Tn(x)Tm(x)

1√
1− x2

dx =
cnπ

2
δmn, (3.214)

where c0 = 2 and cn = 1 for n≥ 1. Hence, we find from (3.208) that

 1

−1
T n(x)T


m(x)


1− x2dx =

n2cnπ

2
δmn, (3.215)

i.e., {T n(x)} are mutually orthogonal with respect to the weight function
√

1− x2.

We can obtain from (3.211) that

T n(x) = 2n
n−1

∑
k=0

k+n odd

1

ck

Tk(x), (3.216a)

T n (x) =
n−2

∑
k=0

k+n even

1

ck

n(n2− k2)Tk(x). (3.216b)
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T12 (x+0.5)

Fig. 3.8 Left: curves of T12(x+ 1.5) and cos(12θ ); Right: we plot Tn(x) radially, increase the

radius for each value of n, and fill in the areas between the curves (Trott (1999), pp. 10 and 84)

Another remarkable consequence of (3.210) is that the Gauss-type quadrature

nodes and weights can be derived explicitly.
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Theorem 3.30. Let {x j,ω j}N
j=0 be a set of Chebyshev-Gauss-type quadrature nodes

and weights.

• For Chebyshev-Gauss (CG) quadrature,

x j =−cos
(2 j+1)π

2N + 2
, ω j =

π

N + 1
, 0≤ j ≤ N.

• For Chebyshev-Gauss-Radau (CGR) quadrature,

x j =−cos
2π j

2N+ 1
, 0≤ j ≤ N,

ω0 =
π

2N + 1
, ω j =

2π

2N+ 1
, 1≤ j ≤ N.

• For Chebyshev-Gauss-Lobatto (CGL) quadrature,

x j =−cos
π j

N
, ω j =

π

c̃ jN
, 0≤ j ≤ N.

where c̃0 = c̃N = 2 and c̃ j = 1 for j = 1,2, . . . ,N− 1.

With the above choices, there holds

 1

−1
p(x)

1√
1− x2

dx =
N

∑
j=0

p(x j)ω j, ∀p ∈ P2N+δ , (3.217)

where δ = 1,0,−1 for the CG, CGR and CGL, respectively.

In the Chebyshev case, the nodes {θ j = arccos(x j)} are equally distributed on

[0,π ], whereas {x j} are clustered in the neighborhood of x = ±1 with density

O(N−2), for instance, for the CGL points

1− x1 = 1− cos
π

N
= 2sin2 π

2N
 π2

2N2
for N  1.

For more properties of Chebyshev polynomials, we refer to Rivlin (1974).

3.4.1 Interpolation and Discrete Chebyshev Transforms

Given a set of Chebyshev-Gauss-type quadrature nodes and weights {x j,ω j}N
j=0, we

define the associated interpolation operator IN , discrete inner product ·, ·N,ω and

discrete norm  · N,ω , as in Sect. 3.1.5.

Thanks to the exactness of the Chebyshev-Gauss-type quadrature, we have

u,vN,ω = (u,v)ω , ∀uv ∈ P2N+δ , (3.218)
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where δ = 1,0,−1 for CG, CGR and CGL, respectively. Consequently,

uN,ω = uω , ∀u ∈ PN , for CG and CGR. (3.219)

Although the above identity does not hold for the CGL, the following equivalence

follows from Lemma 3.3:

uω ≤ uN,ω ≤
√

2uω , ∀u ∈ PN . (3.220)

Moreover, a direct computation leads to

TN ,TNN,ω =
π

N

N

∑
j=0

cos2 jπ

c̃ j

= π . (3.221)

We now turn to the discrete Chebyshev transforms. To fix the idea, we only

consider the Chebyshev-Gauss-Lobatto case. As a special family of Jacobi poly-

nomials, the transforms can be performed via a matrix–vector multiplication with

O(N2) operations as usual. However, thanks to (3.210), they can be carried out with

O(N log2 N) operations via FFT.

Given u ∈ C[−1,1], let INu be its Lagrange interpolation polynomial relative to

the CGL points, and we write

(INu)(x) =
N

∑
n=0

ũnTn(x) ∈ PN ,

where {ũn} are determined by the forward discrete Chebyshev transform (cf.

Theorem 3.9):

ũn =
2

c̃nN

N

∑
j=0

1

c̃ j

u(x j)cos
n jπ

N
, 0≤ n≤ N. (3.222)

On the other hand, given the expansion coefficients {ũn}, the physical values

{u(x j)} are evaluated by the backward discrete Chebyshev transform:

u(x j) = (INu)(x j) =
N

∑
n=0

ũnTn(x j) =
N

∑
n=0

ũn cos
n jπ

N
, 0≤ j ≤ N. (3.223)

Hence, it is clear that both the forward transform (3.222) and backward transform

(3.223) can be computed by using FFT in O(N log2 N) operations.

Let us conclude this part with a discussion of point-per-wavelength required for

the approximation using Chebyshev polynomials. We have

sin(kπx) =
∞

∑
n=0

ûnTn(x), x ∈ [−1,1], (3.224)

with

ûn := ûn(k) =
2

cn

Jn(kπ)sin(nπ/2), n≥ 0, (3.225)
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where Jn(·) is again the Bessel function of the first kind. Hence, using the asymptotic

formula (3.197), we find that the exponential decay of the expansion coefficients

occurs when

n >
ekπ

2
, (3.226)

which is similar to (3.198) for the Legendre expansion.

3.4.2 Differentiation in the Physical Space

Given u ∈ PN and its values at a set of Chebyshev-Gauss-type collocation points

{x j}N
j=0, let {h j(x)}N

j=0 be the associated Lagrange basis polynomials. According

to the general results stated in Sect. 3.1.6, we have

u(m) = Dmu, m≥ 1, (3.227)

where

D =

dk j = hj(xk)


0≤k, j≤N

, u(m) =

u(m)(x0), . . . ,u

(m)(xN)
T

, u= u(0).

The entries of the first-order differentiation matrix D can be determined by the ex-

plicit formulas below.

• For the Chebyshev-Gauss-Lobatto case (x0 =−1 and xN = 1):

dk j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2N2 + 1

6
, k = j = 0,

c̃k

c̃ j

(−1)k+ j

xk− x j

, k = j, 0≤ k, j ≤ N,

− xk

2(1− x2
k)
, 1≤ k = j ≤ N− 1,

2N2 + 1

6
, k = j = N,

(3.228)

where c̃0 = c̃N = 2 and c̃ j = 1 for 1≤ j ≤ N− 1.
• For the Chebyshev-Gauss-Radau case (x0 =−1):

dk j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−N(N + 1)

3
, k = j = 0,

xk

2(1− x2
k)

+
(2N+1)TN(xk)

2(1− x2
k)Q

(xk)
, 1≤ k = j ≤ N,

Q(xk)

Q(x j)

1

xk− x j
, k = j,

(3.229)
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where Q(x) = TN(x)+TN+1(x). To derive (3.229), we find from Theorem 3.26

that {x j}N
j=0 are the zeros of (1+ x)J

−1/2,1/2
N (x). In view of the correspondence:

J
−1/2,−1/2
N (x) = J

−1/2,−1/2
N (1)TN(x), (3.230)

one verifies by using (3.116b) that

(1+ x)J
−1/2,1/2
N (x) = J

−1/2,−1/2
N (1)


TN(x)+TN+1(x)


.

Hence, for k = j, we find from Theorem 3.11 that

dkk =
Q(xk)

2Q(xk)
, 0≤ k ≤ N.

To avoid evaluating the second-order derivatives, we derive from (3.209) and the

fact Q(xk) = 0 that

Q(xk) =
xkQ

(xk)+ (2N+ 1)TN(xk)

1− x2
k

, 1≤ k ≤ N.

Hence,

dkk =
xk

2(1− x2
k)

+
(2N +1)TN(xk)

2(1− x2
k)Q

(xk)
, 1≤ k ≤ N.

The formula for the entry d00 follows directly from the Jacobi-Gauss-Radau case

with α = β = 0.
• For the Chebyshev-Gauss case:

dk j =

⎧
⎪⎪⎨
⎪⎪⎩

T N+1(xk)

T N+1(x j)

1

xk− x j

, k = j,

xk

2(1− x2
k)
, k = j.

(3.231)

3.4.3 Differentiation in the Frequency Space

Now, we describe the FFT algorithm for Chebyshev spectral differentiation. Let us

start with the conventional approach. Given

u(x) =
N

∑
k=0

ûkTk(x) ∈ PN , (3.232)
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we derive from (3.211) that

u =
N

∑
k=1

ûkT

k =

N

∑
k=0

û
(1)
k

Tk (with û
(1)
N = 0)

= û
(1)
0 + û

(1)
1 T1 +

N−1

∑
k=2

û
(1)
k

 T k+1

2(k+1)
−

T k−1

2(k−1)



=
û
(1)
N−1

2N
T N +

N−1

∑
k=1

1

2k


ck−1û

(1)
k−1− û

(1)
k+1


T k ,

(3.233)

where c0 = 2 and ck = 1 for k≥ 1. Since {T k} are mutually orthogonal, we compare

the expansion coefficients in terms of {T k} and find that {û(1)k } can be computed

from {ûk} via the backward recurrence relation:

û
(1)
N = 0, û

(1)
N−1 = 2NûN ,

û
(1)
k−1 =


2kûk + û

(1)
k+1


/ck−1, k = N−1, . . . ,1.

(3.234)

Higher-order derivatives can be evaluated recursively by this relation.

Notice that given {u(x j)}N
j=0 at the Chebyshev-Gauss-Lobatto points {x j}N

j=0,

the computation of {u(x j)}N
j=0 through the process of differentiation in the phys-

ical space requires O(N2) operations due to the fact that the differentiation matrix

(see the previous section) is full. However, thanks to the fast discrete Chebyshev

transforms between the physical values and expansion coefficients, one can com-

pute {u(x j)}N
j=0 from {u(x j)}N

j=0 in O(N log2 N) operations as follows:

• Compute the discrete Chebyshev coefficients {ûk} from {u(x j)} using (3.222) in

O(N log2 N) operations.

• Compute the Chebyshev coefficients {û(1)k } of u using (3.234) in O(N) opera-

tions.

• Compute {u(x j)} from {û(1)k } using (3.223) (with {û(1)k ,u(x j)} in place of

{ûk,u(x j)}) in O(N log2 N) operations.

To summarize, thanks to its relation with Fourier series (cf. (3.210)), the

Chebyshev polynomials enjoy several distinct advantages over other Jacobi polyno-

mials:

• The nodes and weights of Gauss-type quadratures are given explicitly, avoiding

the potential loss of accuracy at large N when computing them through a numer-

ical procedure.

• The discrete Chebyshev transforms can be carried out using FFT in O(N log2 N)
operations.

• Thanks to the fast discrete transforms, the derivatives as well as nonlinear terms

can also be evaluated in O(N log2 N) operations.

However, the fact that the Chebyshev polynomials are mutually orthogonal with

respect to a weighted inner product may induce complications in analysis and/or

implementations of a Chebyshev spectral method.
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3.5 Error Estimates for Polynomial Approximations

The aim of this section is to perform error analysis, in anisotropic Jacobi-weighted

Sobolev spaces, for approximating functions by Jacobi polynomials. These results

play a fundamental role in analysis of spectral methods for PDEs. More specifically,

we shall consider:

• Inverse inequalities for Jacobi polynomials

• Estimates for the best approximation by series of Jacobi polynomials

• Error analysis of Jacobi-Gauss-type polynomial interpolations

Many results presented in this section with estimates in anisotropic Jacobi-

weighted Sobolev spaces are mainly based on the papers by Guo and Wang (2001,

2004) (also see Funaro (1992)). Similar estimates in standard Sobolev spaces can be

found in the books by Bernardi and Maday (1992a, 1997) and Canuto et al. (2006).

3.5.1 Inverse Inequalities for Jacobi Polynomials

Since all norms of a function in any finite dimensional space are equivalent, we have

∂xφ ≤CNφ, ∀φ ∈ PN ,

which is an example of inverse inequalities. The inverse inequalities are very useful

for analyzing spectral approximations of nonlinear problems. In this context, an

important issue is to derive the optimal constant CN . Recall that the notation A � B

means that there exists a generic positive constant c, independent of N and any

function, such that A≤ cB.
The first inverse inequality relates two norms weighted with different Jacobi

weight functions.

Theorem 3.31. For α,β >−1 and any φ ∈ PN , we have

∂xφωα+1,β+1 ≤


λ α ,β
N φωα,β , (3.235)

and

∂ m
x φωα+m,β+m � Nmφωα,β , m≥ 1, (3.236)

where λ α ,β
N = N(N +α +β + 1).

Proof. For any φ ∈ PN , we write

φ(x) =
N

∑
n=0

φ̂α ,β
n Jα ,β

n (x) with φ̂α ,β
n =

1

γα ,β
n

 1

−1
φJα ,β

n ωα ,β dx. (3.237)
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Hence, by the orthogonality of Jacobi polynomials,

φ2
ωα,β =

N

∑
n=0

γα ,β
n |φ̂α ,β

n |2.

Differentiating (3.237) and using the orthogonality (3.97), we obtain

φ 2
ωα+1,β+1 =

N

∑
n=1

λ α ,β
n γα ,β

n |φ̂α ,β
n |2

≤ λ α ,β
N

N

∑
n=1

γα ,β
n |φ̂α ,β

n |2 ≤ λ α ,β
N φ2

ωα,β ,

(3.238)

which yields (3.235).

Using the above inequality recursively leads to

∂ m
x φωα+m,β+m ≤

m−1

∏
k=0

λ α+k,β+k

N−k

1/2

φωα,β . (3.239)

Hence, we obtain (3.236) by using (3.91).

If the polynomial φ vanishes at the endpoints x =±1, i.e.,

φ ∈ P0
N :=


u ∈ PN : u(±1) = 0


, (3.240)

the following inverse inequality holds.

Theorem 3.32. For α,β >−1 and any φ ∈ P0
N ,

∂xφωα,β � Nφωα−1,β−1 . (3.241)

Proof. We refer to Bernardi and Maday (1992b) for the proof of α = β , and Guo

and Wang (2004) for the derivation of the general case. Here, we merely sketch the

proof of α = β = 0. Since φ/(1− x2) ∈ PN−2, we write

φ(x)/(1− x2) =
N−1

∑
n=1

φ̃nLn(x).

Thus, by (3.174b),

φ2
ω−1,−1 =

N−1

∑
n=1

n(n+1)γn|φ̃n|2,

where γn = 2/(2n+ 1). In view of (3.171), we have

φ (x) =
N−1

∑
n=1

φ̃n


(1− x2)Ln(x)


=−

N−1

∑
n=1

n(n+1)φ̃nLn(x),
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and by (3.174a),

∂xφ2 =
N−1

∑
n=1

n2(n+1)2γn|φ̃n|2.

Thus, we have

∂xφ2 ≤ N(N− 1)φ2
ω−1,−1. (3.242)

This gives (3.241) with α = β = 0.
The inverse inequality (3.236) is an algebraic analogy to the trigonometric in-

verse inequality (2.44), and both of them involve “optimal” constant CN = O(N).
However, the norms in (3.236) are weighted with different weight functions. In

most applications, we need to use inverse inequalities involving the same weighted

norms. For this purpose, we present an inverse inequality with respect to the Legen-

dre weight function ω(x)≡ 1 (cf. Canuto and Quarteroni (1982)).

Theorem 3.33. For any φ ∈ PN ,

∂xφ ≤ 1

2
(N +1)(N+ 2)φ. (3.243)

Proof. Using integration by parts, (3.174a), (3.175) and (3.177a), we obtain

 1

−1


Ln(x)

2
dx = Ln(x)L


n(x)

1
−1
−

 1

−1
Ln(x)Ln(x)dx = n(n+1). (3.244)

Hence, by (3.174a),

Ln=


n(n+1)(2n+1)

2
Ln ≤ (n+ 1)3/2Ln, n≥ 0. (3.245)

Next, for any φ ∈ PN , we write

φ(x) =
N

∑
n=0

φ̂nLn(x) with φ̂n =


n+
1

2

 1

−1
φ(x)Ln(x)dx,

so we have

φ2 =
N

∑
n=0

2

2n+ 1
|φ̂n|2.

On the other hand, we obtain from (3.244) and the Cauchy–Schwarz inequality that

∂xφ ≤
N

∑
n=0

|φ̂n|Ln ≤
N

∑
n=0

|φ̂n|


n(n+1)

≤
 N

∑
n=0

2

2n+ 1
|φ̂n|2

1/2 N

∑
n=0

n(n+1)

n+ 1/2

1/2

≤
 N

∑
n=0

(n+1)3
1/2

φ ≤ (N +1)(N+ 2)

2
φ.

This ends the proof.
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Remark 3.6. The factor N2 in (3.243) is sharp in the sense that for any positive

integer N, there exists a polynomial ψ ∈ PN and a positive constant c independent

of N such that

∂xψ ≥ cN2ψ. (3.246)

Indeed, taking ψ(x) = LN(x), one verifies readily by using integration by parts,

(3.174a), (3.177), (3.100), (3.94) and (3.107) that

 1

−1


LN(x)

2
dx =


LN(x)L


N(x)−LN (x)LN(x)


1

−1

=
1

12
(N−1)N(N+ 1)(N+2)(N2+N+3),

(3.247)

which, together with (3.244), implies

LN=
1

2
√

3


(N−1)(N+ 2)(N2 +N+3)LN.

This justifies the claim.

We now consider the extension of (3.243) to the Jacobi polynomials. We ob-

serve from the proof of Theorem 3.33 that the use of (3.244) allows for a sim-

ple derivation of (3.243). However, the explicit formula for
 1
−1


∂xJ

α ,β
n

2
ωα ,β dx

for general (α,β ) is much more involved, although one can derive them by using

(3.119)–(3.120) (and (3.216a) for the Chebyshev case). We refer to Guo (1998a) for

the following result, and leave the proof of the Chebyshev case as an exercise (see

Problem 3.21).

Theorem 3.34. For α,β >−1 and any φ ∈ PN ,

∂xφωα,β � N2φωα,β .

3.5.2 Orthogonal Projections

A common procedure in error analysis is to compare the numerical solution uN with

a suitable orthogonal projection πNu (or interpolation INu) of the exact solution u in

some appropriate Sobolev space with the norm  · S (cf. Remark 1.7), and use the

triangle inequality,

u− uNS ≤ u−πNuS + πNu− uNS.

Hence, one needs to estimate the errors u−πNuS and INu−uS. Such estimates

involving Jacobi polynomials will be the main concern of this section.
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Let I = (−1,1), and let ωα ,β (x) = (1− x)α(1+ x)β with α,β > −1, be the Jacobi

weight function as before. For any u ∈ L2
ωα,β (I), we write

u(x) =
∞

∑
n=0

ûα ,β
n Jα ,β

n (x) with ûα ,β
n =


u,J

α ,β
n


ωα,β

γα ,β
n

, (3.248)

where γα ,β
n = Jα ,β

n 2
ωα,β .

Define the L2
ωα,β -orthogonal projection πα ,β

N : L2
ωα,β (I)→ PN such that


πα ,β

N u− u, v


ωα,β = 0, ∀v ∈ PN , (3.249)

or equivalently,

(πα ,β
N u)(x) =

N

∑
n=0

ûα ,β
n Jα ,β

n (x). (3.250)

We find from Theorem 3.14 that πα ,β
N u is the best polynomial approximation of u in

L2
ωα,β (I).

To measure the truncation error πα ,β
N u− u, we introduce the non-uniformly (or

anisotropic) Jacobi-weighted Sobolev space:

Bm
α ,β (I) :=


u : ∂ k

x u ∈ L2
ωα+k,β+k (I), 0≤ k≤ m


, m ∈ N, (3.251)

equipped with the inner product, norm and semi-norm


u,v


Bm

α,β
=

m

∑
k=0


∂ k

x u,∂ k
x v


ωα+k,β+k ,

uBm
α,β

=

u,u

1/2

Bm
α,β

, |u|Bm
α,β

= ∂ m
x uωα+m,β+m .

(3.252)

The space Bm
α ,β (I) distinguishes itself from the usual weighted Sobolev space

Hm

ωα,β (I) (cf. Appendix B) by involving different weight functions for derivatives of

different orders. It is obvious that Hm

ωα,β (I) is a subspace of Bm
α ,β (I), that is, for any

m≥ 0 and α,β >−1,

uBm
α,β
≤ cuHm

ωα,β
.

Before presenting the main result, we first derive from (3.101) to (3.102) and the

orthogonality (3.109) that

 1

−1
∂ k

x Jα ,β
n (x)∂ k

x J
α ,β
l (x)ωα+k,β+k(x)dx = h

α ,β
n,k δnl, (3.253)
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where for n≥ k,

h
α ,β
n,k = (d

α ,β
n,k )2γα+k,β+k

n−k

=
2α+β+1Γ (n+α + 1)Γ (n+β + 1)Γ (n+ k+α +β + 1)

(2n+α +β + 1)(n− k)!Γ 2(n+α +β + 1)
.

(3.254)

Summing (3.253) for all 0≤ k≤ m, we find that the Jacobi polynomials are orthog-

onal in the Sobolev space Bm
α ,β (I), namely,


Jα ,β

n ,J
α ,β
l


Bm

α,β

= 0, if n = l. (3.255)

Now, we are ready to state the first fundamental result.

Theorem 3.35. Let α,β >−1. For any u ∈ Bm
α ,β (I),

• if 0≤ l ≤ m≤ N + 1, we have

∂ l
x(π

α ,β
N u− u)


ωα+l,β+l

≤ c


(N−m+ 1)!

(N− l+ 1)!
(N +m)(l−m)/2

∂ m
x u


ωα+m,β+m ,

(3.256)

• if m > N + 1, we have

∂ l
x(π

α ,β
N u− u)


ωα+l,β+l

≤ c(2πN)−1/4


e/2

N

N−l+1∂ N+1
x u


ωα+N+1,β+N+1 ,

(3.257)

where c≈ 1 for N  1.

Proof. Denote m̃ = min{m,N +1}. Thanks to the orthogonality (3.253)–(3.254),

∂ k
x u2

ωα+k,β+k =
∞

∑
n=k

h
α ,β
n,k |ûα ,β

n |2, k ≥ 0, (3.258)

so we have

∂ l
x(π

α ,β
N u− u)2

ωα+l,β+l =
∞

∑
n=N+1

h
α ,β
n,l |ûα ,β

n |2

≤ max
n≥N+1

⎧
⎨
⎩

h
α ,β
n,l

h
α ,β
n,m̃

⎫
⎬
⎭

∞

∑
n=N+1

h
α ,β
n,m̃ |ûα ,β

n |2

≤
h

α ,β
N+1,l

h
α ,β
N+1,m̃

∂ m̃
x u

2

ωα+m̃,β+m̃ .

(3.259)
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By (3.254),

h
α ,β
N+1,l

h
α ,β
N+1,m̃

=
Γ (N + l+α +β + 2)(N− m̃+1)!

Γ (N + m̃+α +β + 2)(N− l+ 1)!
. (3.260)

Using the Stirling’s formula (A.7) yields

Γ (N + l+α +β + 2)

Γ (N + m̃+α +β + 2)
∼= 1

(N + m̃+α +β + 2)m̃−l
∼= (N + m̃)l−m̃. (3.261)

Correspondingly,

h
α ,β
N+1,l

h
α ,β
N+1,m̃

≤ c2 (N− m̃+1)!

(N− l+ 1)!
(N + m̃)l−m̃, (3.262)

where c≈ 1. A combination of the above estimates leads to

∂ l
x(π

α ,β
N u− u)2

ωα+l,β+l ≤ c2 (N− m̃+1)!

(N− l+ 1)!
(N + m̃)l−m̃

∂ m̃
x u

2

ωα+m̃,β+m̃ . (3.263)

Finally, if 0 ≤ l ≤ m ≤ N + 1, then m̃ = m, so (3.256) follows. On the other hand,

if m > N + 1, then m̃ = N + 1, and the estimate (3.257) follows from (3.263) and

Stirling’s formula (A.8).

Remark 3.7. In contrast with error estimates for finite elements or finite differences,

the convergence rate of spectral approximations is only limited by the regularity of

the underlying function. Therefore, we made a special effort to characterize the

explicit dependence of the errors on the regularity index m. For any fixed m, the

estimate (3.256) becomes

∂ l
x(π

α ,β
N u− u)


ωα+l,β+l � Nl−m

∂ m
x u


ωα+m,β+m , (3.264)

which is the typical convergence rate found in the literature.

Hereafter, the factor


(N−m+ 1)!

N!
, 0≤ m≤ N + 1,

frequently appears in the characterization of the approximation errors. For a quick

reference,

N(1−m)/2 ≤


(N−m+1)!

N!
=

1
N(N−1) . . .(N− (m− 2))

≤ (N−m+ 2)(1−m)/2,

(3.265)
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so for m = o(N) (in particular, for fixed m), we have


(N−m+1)!

N!
∼= N(1−m)/2. (3.266)

Some other remarks are also in order.

• Theorem 3.35 indicates that the truncated Jacobi series πα ,β
N u is the best poly-

nomial approximation of u in both L2
ωα,β (I) and the anisotropic Jacobi-weighted

Sobolev space Bl
α ,β (I).

• It must be pointed out that the truncation error πα ,β
N u− u measured in the usual

weighted Sobolev space Hl

ωα,β (I) (with l ≥ 1) does not have an optimal order

of convergence. Indeed, one can always find a function such that its truncated

Jacobi series converges in L2
ωα,β (I), but diverges in H1

ωα,β (I). For instance, we

take u = LN+1−LN−1, and notice that π0,0
N u =−LN−1 and ∂xu = (2N +1)LN . It

is clear that

∂x(π
0,0
N u− u)= LN+1

(3.244)
=


(N +1)(N+ 2)≥

√
N

2
∂xu.

In general, we have the following estimates: for α >−1 and 0≤ l ≤ m,

πα ,α
N u− u


l,ωα,α � N2l−m−1/2∂ m

x uωα+m,α+m . (3.267)

This estimate for the Legendre and Chebyshev cases was derived in Canuto and

Quarteroni (1982), and in Guo (2000) for the general case with α,β >−1.

Since Hl

ωα,β (I) is a Hilbert space, the best approximation polynomial for u is the

orthogonal projection of u upon PN under the inner product


u,v


l,ωα,β =

l

∑
k=0


∂ k

x u,∂ k
x v


ωα,β , (3.268)

which induces the norm  · l,ωα,β of Hl

ωα,β (I). In fact, this type of approximation

results are often needed in analysis of spectral methods for second-order elliptic

PDEs. Therefore, we consider below the H1
ωα,β -orthogonal projection. Denote the

inner product in H1
ωα,β (I) by

aα ,β (u,v) :=

u,v


ωα,β +


u,v


ωα,β , ∀u,v ∈ H1

ωα,β (I),

and define the orthogonal projection π1
N,α ,β : H1

ωα,β (I)→ PN by

aα ,β (π
1
N,α ,β u− u,v) = 0, ∀v ∈ PN . (3.269)
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By definition, π1
N,α ,β u is the best approximation of u in the sense that

π1
N,α ,β u− u1,ωα,β = inf

φ∈PN

φ − u1,ωα,β . (3.270)

By using the fundamental Theorem 3.35, we can derive the following estimate.

Theorem 3.36. Let α,β >−1. If ∂xu ∈ Bm−1
α ,β (I), then for 1≤ m≤ N + 1,

π1
N,α ,β u− u1,ωα,β ≤ c


(N−m+ 1)!

N!
(N +m)(1−m)/2∂ m

x uωα+m−1,β+m−1 ,

(3.271)

where c is a positive constant independent of m,N and u.

Proof. Let πα ,β
N−1 be the L2

ωα,β -orthogonal projection upon PN−1 as defined in

(3.249). Set

φ(x) =
 x

−1
πα ,β

N−1u(y)dy+ ξ , (3.272)

where the constant ξ is chosen such that φ(0) = u(0). In view of (3.270), we derive

from the inequality (B.43) and Theorem 3.35 that

π1
N,α ,β u− u1,ωα,β ≤ φ − u1,ωα,β ≤ c(φ − u)ωα,β

≤ cπα ,β
N−1u − uωα,β ≤ c


(N−m+ 1)!

N!
(N +m)(1−m)/2∂ m

x uωα+m−1,β+m−1 .

This completes the proof.
While the estimate (3.271) is optimal in the H1

ωα,β -norm, it does not imply an

optimal order in the L2
ωα,β -norm. An optimal estimate in the L2

ωα,β -norm can be

obtained by using a duality argument, which is also known as the Aubin-Nitsche

technique (see, e.g., Ciarlet (1978)).

The first step is to show the regularity of the solution for an auxiliary problem.

Lemma 3.4. Let α,β > −1. For each g ∈ L2
ωα,β (I), there exists a unique ψ ∈

H1
ωα,β (I) such that

aα ,β (ψ ,v) = (g,v)ωα,β , ∀v ∈ H1
ωα,β (I). (3.273)

Moreover, the solution ψ ∈H2
ωα,β (I) and satisfies

ψ2,ωα,β � gωα,β . (3.274)

Proof. The bilinear form aα ,β (·, ·) is the inner product of the Hilbert space H1
ωα,β (I),

so the existence and uniqueness of the solution ψ of (3.273) follows from the Riesz

representation theorem (see Appendix B).Taking v = ψ in (3.273) and using the

Cauchy–Schwarz inequality leads to

ψ1,ωα,β � gωα,β . (3.275)
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By taking v ∈ D(I) in (3.273) (where D(I) is the set of all infinitely differentiable

functions with compact support in I, see Appendix B) and integrating by parts, we

find that, in the sense of distributions,

−

ψ ωα ,β


= (g−ψ)ωα ,β . (3.276)

Next, we show that ψ ωα ,β is continuous on [−1,1] with (ψ ωα ,β )(±1) = 0. In-

deed, integrating (3.276) over any interval (x1,x2) ⊆ [−1,1], we obtain from the

Cauchy–Schwarz inequality and (3.275) that

(ψ ωα ,β )(x1)− (ψ ωα ,β )(x2)
≤

 x2

x1

|(g−ψ)ωα ,β |dx

≤
 x2

x1

ωα ,β (x)dx
1/2

g−ψωα,β �
 x2

x1

ωα ,β (x)dx
1/2

gωα,β .

Hence, ψ ωα ,β ∈C[−1,1] and (ψ ωα ,β )(±1) are well-defined. Multiplying (3.276)

by any function v ∈ H1
ωα,β (I) and integrating the resulting equality by parts, we

derive from (3.273) that

[ψ ωα ,β v]

1

−1
= aα ,β (ψ ,v)− (g,v)ωα,β = 0, ∀v ∈ H1

ωα,β (I).

Hence, (ψ ωα ,β )(±1) = 0.
We are now ready to prove (3.274). A direct computation from (3.276) leads to

−ψ  =−

(α +β )x+(α−β )


(1− x2)−1ψ +(g−ψ). (3.277)

One verifies readily that

ψ 2
ωα,β ≤ D1 +D2, (3.278)

where D1 = D1(I1)+D1(I2) with I1 = (−1,0) and I2 = (0,1), and

D1(I j) = 8(α2 +β 2)



Ij

|ψ |2ωα−2,β−2dx, j = 1,2,

D2 = 2


 1

−1
(g−ψ)2ωα ,β dx

 .

By (3.275),

D2 � g−ψ2
ωα,β � g2

ωα,β .

Thus, it remains to estimate D1. Due to (ψ ωα ,β )(1) = 0, integrating (3.276) over

(x,1) yields

ψ  = (1− x)−α(1+ x)−β
 1

x
(g−ψ)ωα ,β dy.
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Plugging it into D1(I2) gives

D1(I2)�

 1

0
(1− x)−α−2(1+ x)−β−2

 1

x
(g−ψ)ωα ,βdy

2

dx

�

 1

0
(1− x)−α−2

 1

x
(g−ψ)ωα ,βdy

2

dx

�

 1

0
(1− x)−α

 1

1− x

 1

x
(g−ψ)ωα ,β dy

2

dx.

Since −α < 1, using the Hardy inequality (B.39) leads to

D1(I2)�

 1

0
(g−ψ)2ωα ,2β dx �

 1

0
(g−ψ)2ωα ,β dx.

A similar inequality holds for D1(I1). Therefore, a combination of the above esti-

mates leads to

ψ ωα,β � gωα,β ,

which, together with (3.275), implies (3.274).

We are now in a position to derive the optimal estimate in L2
ωα,β -norm via the

duality argument.

Theorem 3.37. Let α,β >−1. If ∂xu ∈ Bm−1
α ,β (I), then for 1≤ m≤ N + 1,

π1
N,α ,β u− uωα,β

≤ c


(N−m+1)!

N!
(N +m)−(m+1)/2∂ m

x uωα+m−1,β+m−1 ,

(3.279)

where c is a positive constant independent of m,N and u.

Proof. We have

π1
N,α ,β u− uωα,β = sup

0 =g∈L2

ωα,β
(I)

|(π1
N,α ,β u− u,g)ωα,β |
gωα,β

. (3.280)

Let ψ be the solution to the auxiliary problem (3.273) for given g∈ L2
ωα,β (I). Taking

v = π1
N,α ,β u− u in (3.273), we obtain from (3.269) that

(π1
N,α ,β u− u,g)ωα,β = aα ,β (π

1
N,α ,β u− u,ψ)

= aα ,β (π
1
N,α ,β u− u,ψ−π1

N,α ,β ψ).
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Hence, by the Cauchy–Schwarz inequality, Theorem 3.36 and the regularity

estimate (3.274), we have

|(π1
N,α ,β u− u,g)ωα,β | ≤ π1

N,α ,β u− u1,ωα,β π1
N,α ,β ψ−ψ1,ωα,β

≤ cN−1π1
N,α ,β u− u1,ωα,βψ ωα+1,β+1

≤ cN−1π1
N,α ,β u− u1,ωα,βgωα,β .

Consequently, by (3.280),

π1
N,α ,β u− uωα,β ≤ cN−1π1

N,α ,β u− u1,ωα,β .

Finally, the desired result follows from Theorem 3.36.
The approximation results in the Sobolev norms are of great importance for spec-

tral approximation of boundary value problems. Oftentimes, it is necessary to take

the boundary conditions into account and consider the projection operators onto the

space of polynomials built in homogeneous boundary data.

To this end, we assume that −1 < α,β < 1, and denote

H1
0,ωα,β (I) =


u ∈ H1

ωα,β (I) : u(±1) = 0

, P0

N =


u ∈ PN : u(±1) = 0

.

If −1 < α,β < 1, then any function in H1
ωα,β (I) is continuous on [−1,1], and there

holds

max
|x|≤1

|u(x)|� u1,ωα,β , ∀u ∈ H1
ωα,β (I). (3.281)

We leave the proof of this statement as an exercise (see Problem 3.22). Define

âα ,β (u,v) =
 1

−1
u(x)v(x)ωα ,β (x)dx,

which is the inner product of H1
0,ωα,β (I), and induces the semi-norm, equivalent to

the norm of H1
0,ωα,β (I) (see Lemma B.7).

Consider the orthogonal projection π̂1,0
N,α ,β : H1

0,ωα,β (I)→ P0
N , defined by

âα ,β (π̂
1,0
N,α ,β u− u,v) = 0, ∀v ∈ P0

N . (3.282)

The basic approximation result is stated as follows.

Theorem 3.38. Let −1 < α,β < 1. If u ∈ H1
0,ωα,β (I) and ∂xu ∈ Bm−1

α ,β (I), then for

1≤ m≤ N + 1,

π̂1,0
N,α ,β u− u


1,ωα,β

≤ c


(N−m+1)!

N!
(N +m)(1−m)/2∂ m

x uωα+m−1,β+m−1 ,
(3.283)

where c is a positive constant independent of m,N and u.
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Proof. Let πα ,β
N−1u be the L2

ωα,β - orthogonal projection as defined in (3.249). Setting

φ(x) =
 x

−1


πα ,β

N−1u − 1

2

 1

−1
πα ,β

N−1udη


dξ , (3.284)

we have φ ∈ P0
N , and

φ  = πα ,β
N−1u − 1

2

 1

−1
πα ,β

N−1udη .

Hence, by the triangle inequality,

u −φ ωα,β ≤ u −πα ,β
N−1uωα,β +

1

2


 1

−1
πα ,β

N−1udη


ωα,β

≤ u −πα ,β
N−1uωα,β +


γα ,β
0

2


 1

−1
πα ,β

N−1udη

 ,
(3.285)

where γα ,β
0 is given in (3.109). Due to u(±1) = 0, we derive from the Cauchy–

Schwarz inequality that for−1 < α,β < 1,


 1

−1
πα ,β

N−1udx

=

 1

−1
(πα ,β

N−1u − u)dx

≤


γ−α ,−β
0 πα ,β

N−1u − uωα,β . (3.286)

Hence, by definition and Theorem 3.35,

(π̂1,0
N,α ,β u− u)


ωα,β ≤ φ  − uωα,β ≤ cπα ,β

N−1u − uωα,β

≤ c


(N−m+ 1)!

N!
(N +m)(1−m)/2∂ m

x uωα+m−1,β+m−1 .
(3.287)

Finally, using the Poincaré inequality (B.41) and (3.287) leads to

π̂1,0
N,α ,β u− uωα,β ≤ c(π̂1,0

N,α ,β u− u)ωα,β

≤ c


(N−m+ 1)!

N!
(N +m)(1−m)/2∂ m

x uωα+m−1,β+m−1 .
(3.288)

This completes the proof.
As in the proof of Theorem 3.37, we can derive an optimal estimate for π̂1,0

N,α ,β u−
u in the L2

ωα,β -norm by using a duality argument. One may refer to Canuto et al.

(2006) for the Legendre and Chebyshev cases, and to Guo and Wang (2004) for

the general cases. Moreover, we shall introduce in Chap. 5 a family of generalized

Jacobi polynomials, and a concise analysis based on this notion will automatically

lead to the desired results.

When we apply the Jacobi approximation (e.g., the Chebyshev approximation)

to boundary-value problems, it is often required to use the projection operator

associated with the bilinear form
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aα ,β (u,v) =

 1

−1
∂xu(x)∂x


v(x)ωα ,β (x)


dx, (3.289)

which is closely related to the weighted Galerkin formulation for the model equation

−u(x)+ μu(x) = f (x), μ ≥ 0; u(±1) = 0.

In contrast with (3.282), we define the orthogonal projection π1,0
N,α ,β : H1

0,ωα,β (I)→
P0

N , such that

aα ,β (u−π1,0
N,α ,β u,v) = 0, ∀v ∈ P0

N . (3.290)

The bilinear form is continuous and coercive as stated in the following lemma.

Lemma 3.5. If −1 < α,β < 1, then for any u,v ∈ H1
0,ωα,β (I),

|aα ,β (u,v)| ≤C1|u|1,ωα,β |v|1,ωα,β , (3.291)

and

aα ,β (v,v)≥C2|v|21,ωα,β , (3.292)

where C1 and C2 are two positive constants independent of u and v.

Proof. Since −1 < α,β < 1, we have from (B.40) that

|aα ,β (u,v)| ≤ |(u,v)ωα,β +(u,v(ωα ,β ))|
≤ |u|1,ωα,β |v|1,ωα,β + 2|u|1,ωα,β vωα−2,β−2

≤C1|u|1,ωα,β |v|1,ωα,β .

We now prove the coercivity. A direct calculation gives

aα ,β (v,v) = |v|21,ωα,β +
1

2


v2,Wα ,β


ωα−2,β−2 ,

where

Wα ,β (x) = (α +β )(1−α−β )x2

+ 2(α−β )(1−α−β )x+α +β − (α−β )2.

By the property of quadratic polynomials, one verifies readily that Wα ,β (x) ≥ 0,
provided that ⎧

⎪⎨
⎪⎩

(α +β )(α +β − 1)≥ 0,

Wα ,β (−1) =−4β (β − 1)≥ 0,

Wα ,β (1) =−4α(α− 1)≥ 0,
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or


(α +β )(α +β − 1)≤ 0,

4(α−β )2(α +β − 1)2+ 4(α +β )(α +β − 1)(α +β − (α−β )2)≤ 0.

If 0 ≤ α,β ≤ 1, then both of them are valid, which implies (3.292) with 0 ≤ α,
β ≤ 1.

Next, let−1 < α,β < 0 and u(x) = ωα ,β (x)v(x). As 0 <−α,−β < 1, it follows

from the above shown case that

aα ,β (v,v) = a−α ,−β (u,u)≥ |u|21,ω−α,−β . (3.293)

On the other hand, by (B.40),

|v|2
1,ωα,β ≤ 2|u|2

1,ω−α,−β + 8(α2+β 2)u2
ω−α−2,−β−2 ≤ c|u|2

1,ω−α,−β . (3.294)

A combination of (3.293) and (3.294) leads to (3.292) with −1 < α,β < 0.

Now, let −1 < α ≤ 0≤ β < 1 and u(x) = (1− x)αv(x). We deduce from Corol-

lary B.1 that u ∈ H1
0,ω−α,0(I), so by (B.40),

|v|2
1,ωα,β = |(1− x)−αu|2

1,ωα,β ≤ 2|u|2
1,ω−α,β + 2α2||u||2

ω−α−2,β

≤ 2|u|2
1,ω−α,β + 8α2u2

ω−α−2,β−2 ≤ c|u|2
1,ω−α,β .

In view of −1 < α ≤ 0≤ β < 1, we have

|u|2
1,ω−α,β ≤ |u|21,ω−α,β − 2α(α + 1)u2

ω−α−2,β + 2β (1−β )u2
ω−α,β−2

=

∂x((1− x)−αu),∂x((1+ x)β u)


= aα ,β (v,v).

This leads to (3.292) with −1 < α ≤ 0≤ β < 1.

We can treat the remaining case −1 < β ≤ 0 ≤ α < 1 in the same fashion as

above.

Theorem 3.39. Let −1 < α,β < 1. If u ∈ H1
0,ωα,β (I) and ∂xu ∈ Bm−1

α ,β (I), then for

1≤ m≤ N + 1 and μ = 0,1,

u−π1,0
N,α ,βu


μ,ωα,β

≤ c


(N−m+ 1)!

N!
(N +m)μ−(m+1)/2∂ m

x uωα+m−1,β+m−1 ,
(3.295)

where c is a positive constant independent of m,N and u.

Proof. We first prove the case μ = 1. Let π̂1,0
N,α ,β be the projection operator defined

in (3.282). By the definition (3.290),

aα ,β (π
1,0
N,α ,β u− u,π1,0

N,α ,β u− u) = aα ,β (π
1,0
N,α ,β u− u, π̂1,0

N,α ,βu− u),
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which, together with Lemma 3.5, gives

|π1,0
N,α ,β u− u|2

1,ωα,β ≤ c|aα ,β (π
1,0
N,α ,β u− u, π̂1,0

N,α ,β u− u)|

≤ c|π1,0
N,α ,β u− u|1,ωα,β |π̂1,0

N,α ,β u− u|1,ωα,β .

Hence, the estimate (3.295) with μ = 1 follows from Theorem 3.38 and the inequal-

ity (B.41).

To prove the case μ = 0, we resort to the duality argument. Given g ∈
L2

ωα−1,β−1(I), we consider a auxiliary problem. It is to find v ∈ H1
0,ωα,β (I) such

that
aα ,β (v,z) = (g,z)ωα−1,β−1 , ∀z ∈ H1

0,ωα,β (I). (3.296)

Since by (B.40),

|(g,z)ωα−1,β−1 | ≤ cgωα−1,β−1zωα−2,β−2

≤ cgωα−1,β−1 |z|1,ωα,β ,

we deduce from Lemma 3.5 and the Lax-Milgram lemma (see Chap. 1 or

Appendix B) that the problem (3.296) has a unique solution in H1
0,ωα,β (I).Moreover,

in the sense of distributions, we have v(x) =−(1− x2)−1g(x). Therefore,

|v|2,ωα+1,β+1 = gωα−1,,β−1 .

Taking z = π1,0
N,α ,β u− u in (3.296), we obtain from Lemma 3.5 and Theorem 3.39

that

|(g,π1,0
N,α ,β u− u)ωα−1,β−1|= |aα ,β (v,π

1,0
N,ω u− u)|

= |aα ,β (π
1,0
N,α ,β v− v,π1,0

N,α ,β u− u)|

≤ c|π1,0
N,α ,β v− v|1,ωα,β |π1,0

N,α ,β u− u|1,ωα,β

≤ cN−1|v|2,ωα+1,β+1 |π1,0
N,α ,β u− u|1,ωα,β

≤ c


(N−m+ 1)!

N!
(N +m)−(m+1)/2gωα−1,,β−1∂ m

x uωα+m−1,β+m−1 .

Consequently,

π1,0
N,α ,β u− uωα−1,β−1 = sup

0 =g∈L2

ωα−1,β−1
(I)

|(π1,0
N,α ,β u− u,g)ωα−1,β−1|
gωα−1,,β−1

≤ c


(N−m+1)!

N!
(N +m)−(m+1)/2∂ m

x uωα+m−1,β+m−1 .

It is clear that

π1,0
N,α ,β u− uωα,β ≤ cπ1,0

N,α ,β u− uωα−1,β−1.

Thus, the desired result follows.
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3.5.3 Interpolations

This section is devoted to the analysis of polynomial interpolation on Jacobi-Gauss-

type points. The analysis essentially relies on the polynomial approximation re-

sults derived in the previous section, and the asymptotic properties of the nodes and

weights of the associated quadrature formulas.

For clarity of presentation, we start with the Chebyshev-Gauss interpolation. Re-

call the Chebyshev-Gauss nodes and weights (see Theorem 3.30):

x j = cos
2 j+ 1

2(N +1)
π , ω j =

π

N + 1
, 0≤ j ≤ N.

To this end, we denote the Chebyshev weight function by ω = (1− x2)−1/2.
An essential step is to show the stability of the interpolation operator Ic

N .

Lemma 3.6. For any u ∈ B1
−1/2,−1/2

(I), we have

Ic
Nuω ≤ uω +

π

N + 1
(1− x2)1/2uω . (3.297)

Proof. Let x = cosθ and û(θ ) = u(cosθ ). Thanks to the exactness of the

Chebyshev-Gauss quadrature (cf. (3.217)), we have

Ic
Nu2

ω = Ic
Nu2

N,ω =
π

N + 1

N

∑
j=0

u2(x j) =
π

N + 1

N

∑
j=0

û2(θ j),

where

θ j = arccos(x j) =
2 j+ 1

2(N +1)
π , 0≤ j ≤ N.

Denote

a j =
jπ

N + 1
, 0≤ j ≤ N + 1.

It is clear that

θ j ∈ Kj := [a j,a j+1], 0≤ j ≤ N,

and the length of the subinterval is |Kj| = π/(N + 1). Applying the embedding

inequality (B.34) on Kj yields

|û(θ j)| ≤ max
θ∈Kj

|û(θ )| ≤


N + 1

π
ûL2(Kj)

+


π

N + 1
∂θ ûL2(Kj)

.
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Hence,

Ic
Nuω ≤


π

N + 1

N

∑
j=0

|û(θ j)|

≤
N

∑
j=0


ûL2(Kj)

+
π

N + 1
∂θ ûL2(Kj)



≤ ûL2(0,π) +
π

N+ 1
∂θ ûL2(0,π).

Finally, the inverse change of variable θ → x leads to (3.297).
Now, we are in a position to present the main result on the Chebyshev-Gauss

interpolation error estimates.

Theorem 3.40. For any u ∈ Bm
−1/2,−1/2

(I) with m≥ 1, we have that for any 0≤ l ≤
m≤ N +1,

∂ l
x(I

c
Nu− u)ω l−1/2,l−1/2

≤ c


(N−m+ 1)!

N!
(N +m)l−(m+1)/2∂ m

x uωm−1/2,m−1/2,
(3.298)

where c is a positive constant independent m,N and u.

Proof. Let πc
N := π

−1/2,−1/2
N be the Chebyshev orthogonal projection operator de-

fined in (3.249). Since πc
Nu ∈ PN , we have Ic

N(π
c
Nu) = πc

Nu. Using Lemma 3.6 and

Theorem 3.35 with α = β =−1/2 leads to

Ic
Nu−πc

Nuω = Ic
N(u−πc

Nu)ω

≤ c

u−πc

Nuω +N−1∂x(u−πc
Nu)ω−1



≤ c


(N−m+ 1)!

N!
(N +m)−(m+1)/2∂ m

x uωm−1/2,m−1/2,

which, together with the inverse inequality (3.236), leads to

∂ l
x(I

c
Nu−πc

Nu)ω l−1/2,l−1/2 ≤ cNlIc
Nu−πc

Nuω

≤ c


(N−m+ 1)!

N!
(N +m)l−(m+1)/2∂ m

x uωm−1/2,m−1/2.

Finally, it follows from the triangle inequality and Theorem 3.35 that

∂ l
x(I

c
Nu− u)ω l−1/2,l−1/2 ≤ ∂ l

x(I
c
Nu−πc

Nu)ω l−1/2,l−1/2

+ ∂ l
x(π

c
Nu− u)ω l−1/2,l−1/2

≤ c


(N−m+ 1)!

N!
(N +m)l−(m+1)/2∂ m

x uωm−1/2,m−1/2.

This ends the proof.
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We observe that the Chebyshev-Gauss interpolation shares the same optimal

order of convergence with the orthogonal projection π−1/2,−1/2
N (cf. Theorem 3.35).

Next, we extend the above argument to the general Jacobi-Gauss-type interpola-

tions. An essential difference is that unlike the Chebyshev case, the explicit expres-

sions of the nodes and weights are not available. Hence, we have to resort to their

asymptotic expressions.

Let {x j,ω j}N
j=0 be the set of Jacobi-Gauss, Jacobi-Gauss-Radau, or Jacobi-

Gauss-Lobatto nodes and weights relative to the Jacobi weight function ωα ,β (cf.

Sect. 3.2). Assume that {x j}N
j=0 are arranged in descending order, and set {θ j =

arccos(x j)}N
j=0. For the variable transformation x = cosθ ,θ ∈ [0,π ],x ∈ [−1,1], it

is clear that

dθ

dx
=− 1√

1− x2
, 1− x = 2


sin

θ

2

2

, 1+ x = 2


cos
θ

2

2

. (3.299)

3.5.3.1 Jacobi-Gauss Interpolation

Recall the asymptotic formulas of the Jacobi-Gauss nodes and weights given by

Theorem 8.9.1 and Formula (15.3.10) of Szegö (1975).

Lemma 3.7. For α,β >−1, we have

θ j = cos−1 x j =
1

N + 1


( j+1)π +O(1)


, (3.300)

with O(1) being uniformly bounded for all values j = 0,1, . . . ,N, and

ω j
∼= 2α+β+1π

N + 1


sin

θ j

2

2α+1
cos

θ j

2

2β+1

, 0≤ j ≤ N. (3.301)

As with Lemma 3.6, we first show the stability of the Jacobi-Gauss interpolation

operator I
α ,β
N .

Lemma 3.8. For any α,β >−1, and any u ∈ B1
α ,β (I),

Iα ,β
N uωα,β � uωα,β +N−1uωα+1,β+1 . (3.302)

Proof. Let x = cosθ and û(θ ) = u(x) with θ ∈ (0,π). By the exactness of the

Jacobi-Gauss quadrature (cf. Theorem 3.25) and Lemma 3.7,

Iα ,β
N u2

ωα,β = Iα ,β
N u2

N,ωα,β =
N

∑
j=0

u2(x j)ω j

� N−1
N

∑
j=0

û2(θ j)


sin

θ j

2

2α+1
cos

θ j

2

2β+1

.
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The asymptotic formula (3.300) implies that θ j ∈ Kj ⊂ [a0,a1]⊂ (0,π), where a0 =
O(1)
N+1

, a1 =
Nπ+O(1)

N+1
and the length of each closed subinterval Kj is c

N+1
. Hence,

Iα ,β
N uωα,β � N−

1
2

N

∑
j=0

max
θ∈Kj

û(θ )


sin
θ

2

α+ 1
2


cos
θ

2

β+ 1
2

 .

For notational simplicity, we denote

χα ,β (θ ) =


sin
θ

2

α+ 1
2


cos
θ

2

β+ 1
2
.

Applying the embedding inequality (B.34) on Kj yields

Iα ,β
N uωα,β �

N

∑
j=0

ûχα ,β


L2(Kj)
+N−1

∂θ


ûχα ,β


L2(Kj)



�
ûχα ,β


L2(0,π) +N−1

∂θ


ûχα ,β


L2(a0,a1)

�
ûχα ,β


L2(0,π)

+N−1
χα ,β ∂θ û


L2(0,π)

+N−1
ûχα−1,β−1


L2(a0,a1)

.

In view of (3.299), an inverse change of variable leads to

ûχα ,β
2

L2(0,π) =

 π

0
û2(θ )


sin

θ

2

2α+1
cos

θ

2

2β+1

dθ

�

 1

−1
u2(x)(1− x)α+1/2(1+ x)β+1/2 1√

1− x2
dx

� u2
ωα,β ,

and similarly,

χα ,β ∂θ û


L2(0,π) � ∂xuωα+1,β+1 .

We treat the last term as

N−1
ûχα−1,β−1


L2(a0,a1)

�


sup
a0≤θ≤a1

1

N sinθ

ûχα ,β


L2(a0,a1)

�
ûχα ,β


L2(0,π) � uωα,β ,

where due to the fact a0 = O(N−1) and a1 = π−O(N−1), we have

sup
a0≤θ≤a1

1

N sinθ
≤ c.

A combination of the above estimates leads to the desired result.
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As a consequence of Lemma 3.8, we have the following inequality in the

polynomial space.

Corollary 3.7. For any φ ∈ PM and ψ ∈ PL,

Iα ,β
N φωα,β �


1+

M

N


φωα,β , (3.303a)

|φ ,ψN,ωα,β |�


1+
M

N


1+

L

N


φωα,β ψωα,β . (3.303b)

Proof. Using the inverse inequality (3.236) and (3.302) gives

Iα ,β
N φωα,β � φωα,β +N−1∂xφωα+1,β+1 �


1+

M

N


φωα,β .

Therefore,

|φ ,ψN,ωα,β |= |Iα ,β
N φ , Iα ,β

N ψN,ωα,β | (3.150)
= |(Iα ,β

N φ , Iα ,β
N ψ)ωα,β |

�


1+
M

N


1+

L

N


φωα,β ψωα,β .

This ends the proof.

With the aid of the stability result (3.302), we can estimate the Jacobi-Gauss

interpolation errors by using an argument similar to that for Theorem 3.40.

Theorem 3.41. Let α,β > −1. For any u ∈ Bm
α ,β (I) with m ≥ 1, we have that for

0≤ l ≤ m≤ N +1,

∂ l
x(I

α ,β
N u− u)


ωα+l,β+l

≤ c


(N−m+1)!

N!
(N +m)l−(m+1)/2∂ m

x uωα+m,β+m ,
(3.304)

where c is a positive constant independent of m,N and u.

Similar to (3.267), the Jacobi-Gauss interpolation errors measured in the norms

of the usual Sobolev spaces Hl

ωα,β (I)(l ≥ 1) are not optimal. For instance, a standard

argument using (3.302), Theorem 3.34, and Theorem 3.36 leads to that for any u ∈
Bm

α ,β (I) with 1≤ m≤ N +1,

Iα ,β
N u− u1,ωα,β

≤ c


(N−m+ 1)!

N!
(N +m)(3−m)/2∂ m

x uωα+m−1,β+m−1 .
(3.305)

Now, we consider the Jacobi-Gauss-Radau and Jacobi-Gauss-Lobatto interpolations.
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3.5.3.2 Jacobi-Gauss-Radau Interpolation

In view of (3.140), the N interior Jacobi-Gauss-Radau nodes {x j}N
j=1 turn out to

be the Jacobi-Gauss nodes with the parameter (α,β + 1). Hence, by (3.300) and

(3.301),

θ j = arccos(x j) =
1

N


jπ +O(1)


, 1≤ j ≤ N, (3.306)

and

ω j
∼= 2α+β+2π

N

1

1+ x j


sin

θ j

2

2α+1
cos

θ j

2

2β+3

∼= 2α+β+1π

N


sin

θ j

2

2α+1
cos

θ j

2

2β+1

, 1≤ j ≤ N.

(3.307)

Moreover, applying the Stirling’s formula (A.7) to (3.134a) yields

ω0 = O

N−2β−2


. (3.308)

Similar to Lemma 3.8, we have the following stability of the Jacobi-Gauss-Radau

interpolation operator.

Lemma 3.9. For any u ∈ B1
α ,β (I),

Iα ,β
N uωα,β � N−β−1|u(−1)|+ uωα,β +N−1|u|1,ωα+1,β+1 . (3.309)

Proof. By the exactness of the Jacobi-Gauss-Radau quadrature (cf. Theorem 3.26),

Iα ,β
N u2

ωα,β = Iα ,β
N u2

N,ωα,β = u2(−1)ω0 +
N

∑
j=1

u2(x j)ω j.

Thanks to (3.306) and (3.307), using the same argument as for Lemma 3.8 leads to

N

∑
j=1

u2(x j)ω j � u2
ωα,β +N−2|u|2

1,ωα+1,β+1 .

Hence, a combination of the above two results and (3.308) yields (3.309).
As a direct consequence of Lemma 3.9, we have the following results.

Corollary 3.8. For any φ ∈ PM and ψ ∈ PL with φ(−1) = ψ(−1) = 0,

Iα ,β
N φωα,β �


1+

M

N


φωα,β , (3.310a)

|φ ,ψN,ωα,β |�


1+
M

N


1+

L

N


φωα,β ψωα,β . (3.310b)

In order to deal with the boundary term in Lemma 3.9, we need to estimate the

projection errors at the endpoints.
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Lemma 3.10. Let α,β >−1. For u ∈ Bm
α ,β (I),

• if α + 1 < m≤ N+1, we have

(πα ,β
N u− u)(1)

≤ cm−1/2N1+α−m∂ m
x uωα+m,β+m , (3.311)

• if β + 1 < m≤ N +1, we have

(πα ,β
N u− u)(−1)

≤ cm−1/2N1+β−m∂ m
x uωα+m,β+m , (3.312)

where c is a positive constant independent of m,N and u.

Proof. Let h
α ,β
n,k be the constant defined in (3.254) and let m̃ = min{m,N + 1}. By

the Cauchy–Schwarz inequality and (3.258),

(πα ,β
N u− u)(1)

≤
∞

∑
n=N+1

|ûα ,β
n ||Jα ,β

n (1)|

≤


∞

∑
n=N+1

|Jα ,β
n (1)|2(hα ,β

n,m̃ )−1

1/2
∞

∑
n=N+1

|ûα ,β
n |2h

α ,β
n,m̃

1/2

≤


∞

∑
n=N+1

|Jα ,β
n (1)|2(hα ,β

n,m̃ )−1

1/2

∂ m̃
x uωα+m̃,β+m̃ .

By (3.94), (3.254) and the Stirling’s formula (A.7), we find

|Jα ,β
n (1)|2

h
α ,β
n,m̃

≤ ce−m̃ (n− m̃)!

n!

n1+2α

nm̃
, ∀n≥ N + 1 1.

Moreover, by (A.8) and the inequality: 1− x≤ e−x for x ∈ [0,1],

e−m̃ (n− m̃)!

n!
≤ c

e−m̃

nm̃


1− m̃

n

n−m̃+1/2

≤ cn−m̃.

Hence, for m̃ > α + 1,

∞

∑
n=N+1

|Jα ,β
n (1)|2

h
α ,β
n,m̃

≤ c
∞

∑
n=N+1

n2α+1−2m̃ ≤ c

 ∞

N
x2α+1−2m̃dx≤ c

m̃
N2(1+α−m̃).

A combination of the above estimates leads to

|(πα ,β
N u− u)(1)| ≤ c√

m̃
N1+α−m̃∂ m̃

x uωα+m̃,β+m̃ , m̃ > α + 1. (3.313)

This gives (3.311).

Thanks to (3.105), we derive (3.312) easily.
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Thanks to Lemma 3.9, Lemma 3.10 and Theorem 3.35, we can derive the

following result by an argument analogous to that for Theorem 3.40.

Theorem 3.42. For α,β >−1 and any u∈ Bm
α ,β (I), we have that for 0≤ l ≤m and

β + 1 < m≤ N+1,

∂ l
x(I

α ,β
N u− u)


ωα+l,β+l ≤ c


(N−m+1)!

N!
Nl−(m+1)/2∂ m

x uωα+m,β+m , (3.314)

where c is a positive constant independent m,N and u.

3.5.3.3 Jacobi-Gauss-Lobatto Interpolation

The relation (3.141) indicates that the N− 1 interior JGL nodes {x j}N−1
j=1 are the JG

nodes with the parameter (α + 1,β + 1). Hence, by (3.300),

θ j = arccos(x j) =
1

N− 1


jπ +O(1)


, 1≤ j ≤ N− 1. (3.315)

Moreover, we find from (3.141) and (3.301) that the associated weights have the

asymptotic property:

ω j
∼= 2α+β+1π

N− 1


sin

θ j

2

2α+1
cos

θ j

2

2β+1

, 1≤ j ≤ N− 1. (3.316)

Furthermore, applying the Stirling’s formula (A.7) to the boundary weights in

(3.139a) and (3.139b) yields

ω0 = O

N−2β−2


, ωN = O


N−2α−2


.

Hence, similar to Lemmas 3.8 and 3.9, we can derive the following stability

result.

Lemma 3.11. For any u ∈ B1
α ,β (I),

Iα ,β
N uωα,β � N−α−1|u(1)|+N−β−1|u(−1)|

+ uωα,β +N−1|u|1,ωα+1,β+1 .
(3.317)

As with Corollaries 3.7 and 3.8, the following bounds can be obtained directly

from Lemma 3.11.

Corollary 3.9. For any φ ∈ PM and ψ ∈ PL with φ(±1) = ψ(±1) = 0,

Iα ,β
N φωα,β �


1+

M

N


φωα,β , (3.318a)

|φ ,ψN,ωα,β |�


1+
M

N


1+

L

N


φωα,β ψωα,β . (3.318b)
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Similar to the Jacobi-Gauss-Radau case, we can derive the following estimates

by using Lemmas 3.11 and 3.10, and Theorem 3.35.

Theorem 3.43. For α,β >−1, and any u ∈ Bm
α ,β (I), we have

∂ l
x(I

α ,β
N u− u)


ωα+l,β+l ≤ c


(N−m+1)!

N!
Nl−(m+1)/2∂ m

x uωα+m,β+m , (3.319)

for 0 ≤ l ≤ m and max{α + 1,β + 1} < m ≤ N + 1, where c is a positive constant

independent of m,N and u.

Note that in the analysis of interpolation errors, we used the approximation re-

sults of the L2
ωα,β -projection operator πα ,β

N . This led to the estimates in the norms

of Bl
α ,β (I), but it induced the constraints m > α +1 and/or m > β +1 for the Radau

and Lobatto interpolations. As a result, for the Legendre-Gauss-Lobatto interpola-

tion, the estimate stated in Theorem 3.43 does not hold for m = 1.
In Chap. 5 (see Sect. 6.5), we shall take a different approach to derive the follow-

ing estimate for the Legendre-Gauss-Lobatto interpolation.

Theorem 3.44. For any u ∈ Bm
−1,−1(I), we have that for 1≤ m≤ N +1,

∂x(INu− u)+NINu− uω−1,−1

≤ c


(N−m+1)!

N!
(N +m)(1−m)/2∂ m

x uωm−1,m−1 ,
(3.320)

where c is a positive constant independent of m,N and u.

Problems

3.1. Derive the properties stated in Corollary 3.2.

3.2. Let {pn} be a sequence of orthogonal polynomials defined on a finite interval

(a,b), and let x
(n)
n be the largest zero of pn. Show that limn→∞ x

(n)
n exists.

3.3. Regardless of the choice of {x j,ω j}N
j=0, the quadrature formula (3.33) cannot

have degree of precision greater than 2N + 1.

3.4. Let

T =

tn j := pn(x j)


0≤n, j≤N

, S =

s jn := γ−1

n pn(x j)ω j


0≤n, j≤N

be the transform matrices associated with (3.62) and (3.64). Show that T = S−1.
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3.5. For α > ρ >−1 and β >−1, show that

 1

−1
Jα ,β

n (x)ωρ ,β (x)dx =
2β+ρ+1Γ (ρ + 1)Γ (n+β + 1)

n!Γ (α−ρ)Γ (ρ +β + n+ 2)
.

3.6. Prove the following Rodrigues-like formula:

(1− x)α(1+ x)β Jα ,β
n (x) =

(−1)m(n−m)!

2mn!
×

∂ m
x


(1− x)α+m(1+ x)β+mJ

α+m,β+m
n−m (x)


,

α,β >−1, n≥ m≥ 0.

(3.321)

3.7. Derive the formulas in Theorem 3.20.

3.8. Derive the formulas in Theorem 3.27.

3.9. Prove that the following equation holds for integers n > m,

dm

dxm


(1− x2)m dmLn

dxm


+(−1)m+1λm,nLn = 0, (3.322)

where

λm,n =
(n+m)!

(n−m)!
. (3.323)

3.10. Prove the orthogonality

 1

−1
L
(m)
n (x)L

(m)
k (x)(1− x2)mdx = λm,nLn2δnk.

3.11. Show that the Legendre polynomials satisfy

∂ m
x Ln(±1) = (±1)n−m (n+m)!

2mm!(n−m)!
. (3.324)

3.12. Let

A φ =−∂x((1− x2)∂xφ)

be the Sturm-Liouville operator. Verify that

∂ k
x (A φ) =−(1− x2)∂ k+2

x φ + 2(k+ 1)x∂ k+1
x φ + k(k+ 1)∂ k

x φ .

Hence, we have

∂ k
x (A φ)� φk+2.

3.13. Given u ∈ PN , we consider the expansions

∂ k
x u(x) =

N

∑
n=k

û
(k)
n Ln(x), 0≤ k < N.
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Prove the following relations:

û
(1)
n = (2n+1)

N

∑
p=n+1

n+p odd

û
(0)
p ;

û
(1)
n =

(2n+1)

2

N

∑
p=n+2

n+p even


p(p+ 1)−n(n+ 1)


û
(0)
p ;

1

2n− 1
û
(k)
n−1−

1

2n+ 3
û
(k)
n+1 = û

(k−1)
n .

3.14. Prove that

Ln(0) =

⎧
⎨
⎩

0, if n odd,

n!2−n

(n/2)!

−2

, if n even.

3.15. According to the formula (4.8.11) of Szegö (1975), we have that for any n∈N

and x ∈ [−1,1],

Ln(x) =

 π

0


x+ i


1− x2 cosθ

n
dθ ,

where i =
√
−1. Prove that the Legendre polynomials are uniformly bounded be-

tween the parabolas

−1+ x2

2
≤ Ln(x)≤

1+ x2

2
, ∀x ∈ [−1,1].

3.16. Given u ∈ PN , we consider the expansions

∂ k
x u(x) =

N

∑
n=k

û
(k)
n Tn(x), 0≤ k < N.

Prove the following relations:

û
(1)
n =

2

cn

N

∑
p=n+1

n+p odd

pû
(0)
p ;

û
(2)
n =

1

cn

N

∑
p=n+2

n+p even

p

p2− n2


û
(0)
p ;

û
(3)
n =

1

4cn

N

∑
p=n+3

n+p odd

p

p2(p2− 2)−2p2n2 +(n2− 1)2


û
(0)
p ;

û
(4)
n =

1

24cn

N

∑
p=n+4

n+p even

p

p2(p2− 4)2− 3p4n2 + 3p2n4− n2(n2− 4)2


û
(0)
p ,
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and the recurrence formula

cn−1û
(k)
n−1− û

(k)
n+1 = 2nû

(k−1)
n .

3.17. Show that

∂ m
x Tn(±1) = (±1)n+m

m

∏
k=0

n2− k2

2k+ 1
.

3.18. Prove that

 1

−1


Tn(x)

2
dx = 1− (4n2− 1)−1, n≥ 0.

3.19. Show that:

(a) The constants α j and β j in (3.25) are the same as the coefficients in (3.7).

(b) The characteristic polynomial of the matrix An+1 is the monic polynomial

p̄n+1(x), namely,

p̄n+1(x) = det(xIn+1−An+1), n≥−1, (3.325)

3.20. Prove the inverse inequalities

φ� Nαφωα,α , ∀φ ∈ PN , α ≥ 0,

and

φω−1,−1 � Nφ, ∀φ ∈ PN , φ(±1) = 0.

3.21. Prove Theorem 3.34 for the Chebyshev case, that is, for any φ ∈ PN ,

∂xφω � N2φω , ω(x) =
1√

1− x2
.

3.22. Show that for −1 < α,β < 1, we have H1
ωα,β (I)⊆C(Ī) and (3.281) holds.

3.23. Let IN be the Legendre-Gauss interpolation operator N + 1 Legendre-Gauss-

Lobatto points. Verify that for u = LN+1−LN−1,

INu− uH1 ≥ cN1/2u.

3.24. Let IN be the interpolation operator on N+1 Legendre-Gauss-Lobatto points.

Show that for any u ∈ H1
0 (I),

INuω−1,−1 ≤ c

uω−1,−1 +N−1∂xu


. (3.326)


