
Introduction to Spectral Element Methods

by Haijun Yu

Email: yuhaijun@gmail.com

1 One-Dimensional Spectral Element Method

We use the 1-dimensional elliptic Helmholtz equation as a model equation.

{

αu− u′′= f , x∈ I =(0, L),
u(0)= u(L)= 0.

(1)

The corresponding weak form is
{

Findu∈H0
1(I), such that

α (u, v)+ (u′, v ′) = (f , v), ∀v ∈H0
1(I).

(2)

1.1 Domain partition and Galerkin approximation

Partition to the interval I:

0= x0<x1<
 <xn=L; I =
⋃

i=1
n

Ii, with Ii= [xi−1, xi].

Approximation space

Xn,p= {u(x)∈C0(I), u|Ii∈Pp }, X0
n,p= { u∈Xn,p, u(0)= u(L) = 0 }, (3)

The corresponding Garlerkin formalution
{

Find uN ∈X0
n,p such that

α (uN , v)+ (uN
′ , v ′)= (f , v), ∀v ∈X0

n,p
.

(4)

Map every interval Ii= [xi−1, xi] to the standard interval [−1, 1] by

x=mi(ξ) =xi−1ϕ0(ξ)+ xiϕ1(ξ), (5)

where

ϕ0(ξ)=
1− ξ

2
, ϕ1(ξ) =

1+ ξ

2
. (6)

The Jocobi of this mapping is

Ji=
∂x

∂ξ
=
xi−xi−1

2
=

|Ii|

2
(7)

Boundary-inner decomposition basis:

{ φj(ξ) }j=0
p = {ϕ0(ξ), ϕ1(ξ)}∪ {φj(ξ), φj(±1)= 0 }j=2

p
(8)

The above bases are in local variable. We extend them into global variable by

ψj
i(x) =

{

φj(ξ), if x∈ Ii, ξ=mi
−1(x),

0, if x � Ii.
(9)

Note that for each i = 1, 	 , n − 1 that ψ1
i(x) and ψ0

i+1(x) are the two parts of the

linear finite element hat function defined according to the three nodes (xi−1, xi,

xi+1). By the continuous condition, the local degree of freedom corresponds to

ψ1
i(x), and ψ0

i+1(x) refer to the same global degree of freedom. So the global

basis set are

V = {ψj(x)}j=1
np−1: =

{

ψ1
i(x) + ψ0

i+1(x)
}

i=1
n−1∪ {ψj

i(x), j=2,	 , p}i=1
n (10)

1

In equation (4), we take uN = ũkψk(x), v= ψl(x), for all l=1,	 , n p− 1, we get

(αM +S)u= f , (11)

where M and S are global mass and stiff matrices, their components are given by

M(l, k)= (ψk, ψl), S(l, k)= (ψk
′ , ψl

′).

1.2 Matrices Assembling

From

M(l, k)= (ψk, ψl)=

∫

I

ψkψl dx=
∑

i=1

n ∫

Ii

ψkψl dx,

we see that the global matrix can be calculated by take summation of nonzero

local matrices in each element.

Mj,j ′

i,i′ : =

∫

I

ψj
iψj ′

i′ dx= δii′

∫

Ii

ψj
iψj ′

i dx= δii′

∫

−1

1

φj(ξ)φj ′(ξ)Jidξ= δii′Jimjj ′

and

Sj,j ′

i,i′ : =

∫

I

ψj
i ′ψj ′

i′ ′ dx= δii′

∫

Ii

dψj
i

dx

dψj ′

i

dx
dx= δii′

∫

−1

1 dφj

dξ

dφj ′

dξ

1

Ji
dξ= δii′sjj ′/Ji

where Mj,j ′

i,i′
and Sj,j ′

i,i′
are the components of the unit mass and stiff matrices on

element Ii, while mjj ′ and sjj ′ are the components of the mass and stiff matrices

on the standard reference element. Because some global bases consist parts in

different elements, which means different local DoF may link to the same global

DoF, for those kind of global DoF, we need sum up the contributions from each

elements. This procedure is called assembling. In the numerical implementation,

one usually uses a mapping link local basis DoF index to global DoF index.

Namely, k = map(i, j) stands for that the global DoF (Degree of Freedom) index of

local j-th DoF in elemnet i is k. Following algorithm describes the procedure to

build the linear system (12) by assembling.

Algorithm ASM (Assembling Procedure)
Input: {xi}i=0

n , {pi> 1}i=1
n ; matrices {mjj ′}j,j ′=0

p and {sjj ′}j,j ′=0
p , where p=maxi {pi}.

Output: Global matrices M and S

Step 1) Initialize the local to global index mapping:
for i from 1 to n

map(i, 0)=i− 1; map(i,1)=i.
end for
map(1,0):=-1; map(n,1):=-1; //boundary points, not a DoF.
k=n

for i from 1 to n
for j from 2 to pi

map(i, j)=k; k= k+1;
end for

end for
Step 2) Assembling
Set M =0 and S=0.
for i=1 to n

for all the nonzero components mjl in {mjl}j,l=0
pi

If map(i, j)> 0 and map(i, j)> 0 then M(map(i, j),map(i, l))7 mjl× (xi− xi−1)/2
end for
for all the nonzero components sjl in {sjl}j,l=0

pi

If map(i, j)> 0 and map(i, j)> 0 then S(map(i, j),map(i, l))7 sjl× 2/(xi− xi−1)

2 Section 1

end for

end for

End of the Algorithm

1.3 Choice of local basis

There are several choices of local spectral bases that results in sparse

matrices.

1. For Chebyshev weighted Galerkin approximation, one may choose

φj(ξ) =Tj(ξ)−Tj−2(ξ), j> 2. (12)

with Tj is the Chebyshev polynomial. In this case, Chebyshev weight

function (1 − ξ2)−1/2 should be added to weak Galerkin formulation. This

gives a tri-diagonal mass matrix and lower-triangular stiff matrix, with

the resulting linear system can be solved in linear time. Another choice of

Chebyshev basis is

φj(ξ)= (1− ξ2)Tj−2(ξ), for j> 2.

2. For Legendre Galerkin approximation, One can use

φj(ξ)=Lj(ξ)−Lj−2(ξ), j> 2. (13)

with Lj is the Legendre polynomial. This leads to diagonal stiff matrix and

penta-diagonal mass matrix, and the resulting linear system can be solved

in linear time. The above basis is equivalent to

φj(ξ)=
1− ξ

2

1+ ξ

2
Jj−2
1,1 (ξ) (14)

with Jj
1,1 are the Jacobi polynomials that are orthogonal respect to weight

(1− ξ2).

One may use different bases in different situations. When a lot of transform

between spectral coefficients and physcial values are involved, Chebyshev method

is a better choice, since fast transform is available. In other cases, Legendre

bases might be the better choices. They are consistent with the weak formulation

and resulting in very sparse system even in higher dimension problems.

If the degree of polynomial p is not very big in each element. One can also use

nodal basis, i.e. the Lagrange basis:

φj(ξ)= hj(ξ), j=0, 1,	 , p. (15)

where {hj}j=0
p

are Lagrange basis using Gauss-Legendre-Lobatto or Gauss-Chebyshev-

Lobatto points, define in such order

{ξ0= xi−1, ξ1= xi, xi−1< ξi<xi, i=2,	 , p }. (16)

Note that in this case, the boundary basis h0(ξ), h1(ξ) are not linear function

but polynomials of degree p. Another difference to the modal basis is that the

Lagrange basis leads to dense local mass and stiff matrix with a bad condition

number even for equation with constant coefficients. This will increase the

difficulty in solving the resulting linear algebraic system.

1.4 Solving the linear algebraic system

After the linear system (11) is built. There are two approach to solve it.

1. When p is small, but n is large, one can use well-known linear algebraic

solver (e.g. PCG, AMG) to handle it.

One-Dimensional Spectral Element Method 3

2. When p is large, n is small, we use Schur complement.

Note that in Algorithm ASM, we have put all the boundary DoF in the very

first. And we have Mj,j ′

i,i′ = 0 and Sj,j ′

i,i′ = 0, when i � i′ and j , j ′ � 0, 1. This means the

global matrix M and S has very special structures, which given as below

(

A11 A12

A21 A22

)

,

where A11 is the vertex-vertex interaction part; A22 is the inner-inner

interaction part, it is a block-diagonal matrix since inner DoF in different

elements are not related. This means A22 is very easy to invert. To solve the

linear system (11), is equivlent to solve a system

(

A11 A12

A21 A22

)(

x1
x2

)

=

(

b1
b2

)

(17)

or

A11x1+A12x2= b1 (18)

A21x1+A22x2= b2 (19)

From the second equation, we get x2 = A22

−1(b2 − A21x1), then plugging this into the

first equation, we have

A11x1+A12A22

−1b2−A12A22

−1A21x1= b1

or

(A11−A12A22

−1A21)x1= b1−A12A22

−1b2. (20)

This is a much smaller system. which can be solved more efficiently (for example

using LU or PCG method). After solving for x1, it is very easy to solve for x2
using equation (19).

1.5 Error Estimates

1. By a standard approach (Céa Lemma), we can prove that, the solution error

of the hp-Galerkin method, is bounded by projection error providing that

the right side integration is evulated sufficiently accurate. Following is

the sketch of the proof.

Denote a(u, v) = α(u, v) + (u′, v ′), then by taking difference of (2) and (4), we

get

a(u− uN , v)= 0, ∀v ∈X0
n,p

Let πN is the projection from H0
1(I)→X0

n,p
, defined by

a(u− πNu, v)= 0, ∀v ∈X0
n,p.

Since u− uN =(u−πNu) + (πNu− uN), we have

a(πNu− uN , v)= a(u− uN , v)− a(u− πNu, v) =−a(u− πNu, v), ∀v ∈X0
n,p

Then by taking v = πNu − uN ∈ X0
n,p

, and using the continuous and coercive

property of a(·, ·), we get

β‖πNu−uN‖26 a(πNu−uN , πNu− uN)<C‖u− πNu‖ · ‖πNu−uN‖ ,

or

‖πNu− uN ‖6
C

β
‖u− πNu‖.

4 Section 1

Then by triangular inequality, we have

‖u− uN‖6 ‖u− πNu‖+ ‖πNu−uN‖6

(

1+
C

β

)

‖u− πNu‖.

2. Estimating the projection error. Since πN is the projection defined by

using the bilinear form a(·, ·) and the bilinear form induced energy norm is

equivalent to the H1 norm, so there exist a constant C ′, such that

‖u− uN‖6C ′‖u− φ‖, ∀φ∈X0
n,p
.

In particular, for given u∈H0
1, let take

ψ(x)=
∑

i=1

n−1

u(xi)
(

ψ1
i(x)+ ψ0

i+1(x)
)

, and φ= ψ+
∑

i=1

n

πp
0,i(u(x)− ψ(x))|Ii,

where πp
0,i is the project from H0

1(Ii) to PN
0 (Ii). By using φ, we have

‖u− φ‖2 = ‖u′− φ′‖L2(Ω)
2 + ‖u− φ‖L2(I)

2

6 C‖u′− φ′‖L2(Ω)
2 , (Poincare inequality)

= C
∑

i=1

n

‖u′− φ′‖L2(Ii)
2

= C
∑

i=1

n
∥

∥u′− ψ ′+ [πp
0,i(u− ψ)]′

∥

∥

L2(Ii)
′

(21)

By using the Theorem 3.38 in [Shen J. et al 2011], it is easy to prove that

Lemma 1. If v ∈H0
1(Ii), and v ∈Hm(Ii),m> 1, then we have

∥

∥

(

v−πp
0,i
v
)

′
∥

∥

L2(Ii)
.

(

|Ii|

2

)

m−1
(

2

e

√

p

)

1−m

‖∂x
m‖L2(Ii), ∀p>m− 1. ♯

Taking u− ψ= v in equation (21), we get

‖u− φ‖26C
∑

i=1

n (

|Ii|

2

)

2(m−1)
(

2

e

√

p

)

2(1−m)

‖∂x
m‖L2(Ii)

2 ,

we further suppose that |Ii| ≡ h=
L

n
, then we get

‖u− πNu‖. ‖u− φ‖.

(

2

L

2

e

√

n p

)

1−m

‖∂x
m‖L2(I)

c ,

i.e.

‖u−uN‖.

(

2

L

2

e

√

n p

)

1−m

‖∂x
m‖L2(I), ∀p+1>m.

3. For p+1<m (to be finished).

2 Spectral Element Method in Higher-Dimensions

The spectral element method in 2-dimensional domains and 3-dimensional domains

are similar. For simplicity, we only consider the 2-dimensional case here. The

model equation we will use is
{

αu−∆u= f , (x1, x2)∈Ω
u|∂Ω=0.

(22)

Spectral Element Method in Higher-Dimensions 5

Here, we do not need Ω to be tensor product domain, since we can partition it

into several small elements. These small elements can be quadrilateral elements,

triangular elements or curved quadrangles or triangles. Here, we consider both

quadrilateral and triangular elements. The weak form of equation (22) is

{

Find u∈H0
1(Ω) such that

α(u, v)+ (∇u,∇v)= (f , v), ∀v ∈H0
1(Ω).

(23)

2.1 Quadrilateral elements

2.1.1 Mapping

X0,0

X1,0

X1,1

X0,1

(1,−1)

(1, 1)

ξ1

ξ2

(−1, 1)

(−1,−1)

Ωλ Σ

For a quadrilateral elements Ωλ, we use local coordinates (ξ1, ξ2) ∈ [−1, 1]2 =:
∑

in

reference (standard) domain. The global coordinates are denoted by (x1, x2) ∈ Ωλ.

The mapping between local coorinates and global coordinates on element λ are

given by
(

x1
x2

)

=mλ(ξ1, ξ2) =
∑

i,j=0,1

(

x1
0,1

x2
0,1

)

ϕi(ξ1)ϕj(ξ2), (24)

where Xi,j =
(

x1
i,j , x2

i,j
)

are the coordinates of four vertices; and the transform

matrix is given by

∂(x1, x2)

∂(ξ1, ξ2)
=





∂x1

∂ξ1

∂x1

∂ξ2
∂x2

∂ξ1

∂x2

∂ξ2



=





∑

i,j
x1
i,j
ϕi

′(ξ1)ϕj(ξ2)
∑

i,j
x1
i,j
ϕi(ξ1)ϕj

′ (ξ2)
∑

i,j
x2
i,j
ϕi

′(ξ1)ϕj(ξ2)
∑

i,j
x2
i,j
ϕi(ξ1)ϕj

′ (ξ2)



. (25)

The Jocobi determinant is given by

J =

∣

∣

∣

∣

∣

∣

∂x1

∂ξ1

∂x2

∂ξ1
∂x1

∂ξ2

∂x2

∂ξ2

∣

∣

∣

∣

∣

∣

=
∑

i,j=0,1

Ai,jϕi(ξ1)ϕj(ξ2),

with

Ai,j=
x1
1,j −x1

0,j

2

x2
i,1−x2

i,0

2
−
x1
i,1− x1

i,0

2

x2
1,j − x2

0,j

2
And also we have

∂(ξ1, ξ2)

∂(x1, x2)
=





∂ξ1

∂x1

∂ξ1

∂x2

∂ξ2

∂x1

∂ξ2

∂x2



=









∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2









−1

=
1

J





∂x2

∂ξ2
−

∂x1

∂ξ2

−
∂x2

∂ξ1

∂x1

∂ξ1



.

6 Section 2

Note that when the element is a rectangle or a parallelogram, the J determinant

is a constant, in this case, stiff matrix can be made sparse by selecting special

basis. Otherwise, J determinant is not a constant, the integral to calculate the

components of stiff matrix are integration of rational functions, are hard to

make sparse. And there are no simply formula to calculate these integration

accurately. So we need resort to numerical integration to handle this.

2.1.2 Choices of bases

1. Modal basis. We choose {φ0 = ϕ0, φ1 = ϕ1} ∪ {φi, φi(±1) = 0}i=2
p

as basis for both

ξ1 and ξ2 direction. For Legendre case φi(ξ) = Lk(ξ) − Lk−2(ξ) for k > 2; while

for Chebyshev case φi(ξ) = (1 − ξ2)Tk−2(ξ), k > 2. This will lead to sparse

system for rectangle and parallelogram elements. We denote the basis in

global variable as

ψk
λ(x1, x2)=

{

φk1
(ξ1)φk2

(ξ2), if (x1, x2)∈Ωλ

0, otherwise

Now let’s calculate the local mass matrix and stiff matrix on element λ:

Mk,k′

λ =

∫

Ωλ

ψk
λ(x1, x2)ψk′

λ (x1, x2) dx1dx2

=

∫

Σ

φk1
(ξ1)φk2

(ξ2)φk1
′(ξ1)φk2

′(ξ2)J dξ1dξ2

=
∑

i,j=0,1

Aλ
i,j

∫

−1

1

φk1
(ξ1)φk1

′(ξ1)ϕi(ξ1)dξ1

∫

−1

1

φk2
(ξ2)φk2

′(ξ2)ϕj(ξ2) dξ2

=
∑

i,j=0,1

Aλ
i,jMk1,k1

′

i Mk2,k2
′

j

with

Ml,l′
i =

∫

−1

1

φl(ξ)φl′(ξ)ϕi(ξ) dξ, i=0, 1.

On the other hand, the stiff matrix (∂x1

2 part) are given by

S
k,k′

λ,1 =

∫

Ωλ

∂x1
ψk
λ(x1, x2)∂x1

ψk′

λ (x1, x2) dx1 dx2

=

∫

Σ

[

φk1

′ (ξ1)φk2
(ξ2)

∂ξ1
∂x1

+ φk1
(ξ1)φk2

′ (ξ2)
∂ξ2
∂x1

]

×

[

φk1
′

′ (ξ1)φk2
′(ξ2)

∂ξ1
∂x1

+ φk1
′(ξ1)φk2

′

′ (ξ2)
∂ξ2
∂x1

]

J dξ1dξ2

=

∫

Σ

[

φk1

′ (ξ1)φk2
(ξ2)

∂x2
∂ξ2

− φk1
(ξ1)φk2

′ (ξ2)
∂x2
∂ξ1

]

×

[

φk1
′

′ (ξ1)φk2
′(ξ2)

∂x2
∂ξ2

− φk1
′(ξ1)φk2

′

′ (ξ2)
∂x2
∂ξ1

]

1

J
dξ1dξ2

a. When J is a constant, both mass and stiff matrix are sparse. The

nonzeros can be evaluated by using a Gauss quadrature. The matrix-

vector product of mass matrix and stiff matrix can be evaluated

efficiently using the tensor-product structure of the DoF on each

element. e.g.

∑

k

Mk,k′

λ uk
λ =

∑

i,j=0,1

Aλ
i,j





∑

k1,k2=0

p

uk1k2

λ Mk1,k1
′

i Mk2,k2
′

j





=
∑

i,j=0,1

Aλ
i,j

(

∑

k2=0

p
(

∑

k1=0

p

uk1k2

λ Mk1,k1
′

i

)

Mk2,k2
′

j

)

Spectral Element Method in Higher-Dimensions 7

b. When J is not constant, one can use a high-accurate Gauss quadrature

to pre-calculate mass matrix and stiff matrix. However the stiff

matrix S
k,k′

λ,1
can be write as a sum of few tensor-product terms, since

1/J is not separable. In this case one can use pseudo-spectral

approach. (Homeowrk: design an efficient numerical scheme to

numerically calculate the derivative of a function u, and further

design a fast matrix-vector product algorithm)

2. Nodal basis. One can use Lagrange basis {φj1(ξ1)φj2(ξ2)}j1,j2=0
p based no tensor

product Gauss-Legendre-Lobatto or Gauss-Chebyshev-Lobatto points. The

local mass matrix is a diagonal matrix

Mk,k′

λ =

∫

Ωλ

ψk
λ(x)ψk′

λ (x) dx1dx2

=

∫

Σ

hk1
(ξ1)hk2

(ξ2)hk1
′(ξ1)hk2

′(ξ2)J dξ1dξ2

D

∑

j1,j2=0

p

[hk1
(ξ1)hk2

(ξ2)hk1
′(ξ1)hk2

′(ξ2)J(ξ1, ξ2)]|ξ1=ζj1

ξ2=ζj2ωj1ωj2

=
∑

j1,j2=0

p

δk1j1δk2,j2δk1
′j1δk2

′j2J(ζj1, ζj2)ωj1ωj2

= δk,k′J(ζk1
, ζk2

)ωk1
ωk2

The stiff matrix is

S
k,k′

λ,1 =

∫

Ωλ

∂x1
ψk
λ(x)∂x1

ψk′

λ (x) dx1dx2

=

∫

Σ

[hk1

′ (ξ1)hk2
(ξ2)

∂ξ1
∂x1

+hk1
(ξ1)hk2

′ (ξ2)
∂ξ2
∂x1

]

×[hk1
′

′ (ξ1)hk2
′(ξ2)

∂ξ1
∂x1

+hk1
′(ξ1)hk2

′

′ (ξ2)
∂ξ2
∂x1

]J dξ1dξ2

=

∫

Σ

[

hk1

′ (ξ1)hk2
(ξ2)

∂x2
∂ξ2

− hk1
(ξ1)hk2

′ (ξ2)
∂x2
∂ξ1

]

×

[

hk1
′

′ (ξ1)hk2
′(ξ2)

∂x2
∂ξ2

− hk1
′(ξ1)hk2

′

′ (ξ2)
∂x2
∂ξ1

]

1

J
dξ1dξ2

The each term of the integration can be approximated by Guass quadrature.

For example,

I
k,k′

λ,1 =

∫

Σ

hk1

′ (ξ1)hk2
(ξ2)

∂x2
∂ξ2

hk1
′

′ (ξ1)hk2
′(ξ2)

∂x2
∂ξ2

1

J
dξ1 dξ2

≈
∑

j1=0

p
∑

j2=0

p

hk1

′ (ζj1)δk2,j2hk1
′

′ (ζ1)δk2
′,j2

(

∂x2
∂ξ2

(ζj1)

)

2 1

J(ζj1, ζj2)
ωj1ωj2

The corresponding matrix vector product is

∑

k

uk
λI

k,k′

λ,1 =
∑

k1,k2=0

p

uk1k2

λ





∑

j1,j2=0

p

hk1

′ (ζj1)hk1
′

′ (ζj1)

(

∂x2
∂ξ2

(ζj1)

)

2

δk2j2δk2
′j2

ωj1ωj2

J(ζj1, ζj2)





=
∑

j1,j2=0

p









∑

k1,k2=0

p

uk1k2

λ hk1

′ (ζj1)δk2j2





(

∂x2
∂ξ2

(ζj1)

)

2 ωj1ωj2

J(ζj1, ζj2)



hk1
′

′ (ζj1)δk2
′j2

This can be done in O(p3) operations by summing k1, k2 and j1, j2 successively.

8 Section 2

2.1.3 Assembling and solving the linear system

The assembling procedure is similar to the 1-dimensional case. We use mapping

function map(λ, k1, k2) = k to denote that the k1-k2-th local DoF in element λ has a

global DoF index k. When making the DoF mapping, we put all the vertex DoF

before edge DoF, and all edge DoF before inner DoF. Then the resulting linear

system has a shape




A11 A12 A13

A21 A22 A23

A31 A32 A33



,

where A11 is the vertex-vertex interaction part (has a shape of linear finite

element matrix); A22 is the edge-edge interaction part; A33 is the inner-inter

interaction part (block diagonal matrix). Let n be the number of elements, p be

the the degree of polynomials in each element, then the size of A11, A22, A33 are

O(n), O(2n (p− 1)) and O(n(p− 1)2).

1. When n is big, but p is small, we prefere using PCG or AMG method to solve

the linear system.

2. When n is small, p is large, We can use Schur complement to solve the

linear system.

2.2 Triangular Elements

2.2.1 Mapping from physical element to standard element

X0,0(A)

X1,0(B)

X0,1(C) C: (−1, 1)

B: (1,−1)A: (−1,−1)

ξ1

ξ2

∑Ωλ

(ξ1, ξ2)∈
∑

(x1, x2)∈Ωλ

(x1, x2) =mQ λ(ξ1, ξ2)

Suppose that the physical domain Ω, is partitioned to n triangular domain, i.e.

Ω = ∪λ=0
n Ωλ. We first map each element Ωλ, λ = 1, 	 , n to a standard reference

tiangle
∑

={(ξ1, ξ2):−16 ξ1, ξ26 1, ξ1+ ξ26 0 }. Suppose the coordinates of the three

vertex of Ωλ are given by X0,0, X1,0, and X0,1. Then the linear mapping function

is
(

x1
x2

)

= ϕ1(ξ1)X
1,0+ ϕ1(ξ2)X

0,1+(1− ϕ1(ξ1)− ϕ1(ξ2))X
0,0, ϕ1(ξ)=

1+ ξ

2
(26)

The Jacobi matrix is

J =
∂(x1, x2)

∂(ξ1, ξ2)
=





∂x1

∂ξ1

∂x1

∂ξ2
∂x2

∂ξ1

∂x2

∂ξ2



=





x1

1,0
− x1

0,0

2

x1

0,1
− x1

0,0

2
x
2

1,0
− x

2

0,0

2

x
2

0,1
− x

2

0,0

2





So the Jacobi determinant is a constant

|J |=

∣

∣

∣

∣

∣

∣

∂x1

∂ξ1

∂x1

∂ξ2
∂x2

∂ξ1

∂x2

∂ξ2

∣

∣

∣

∣

∣

∣

=
x1
1,0− x1

0,0

2

x2
0,1− x2

0,0

2
−
x2
1,0−x2

0,0

2

x1
0,1− x1

0,0

2
.

The inverse of Jacobi matrix can be calculated as

∂(ξ1, ξ2)

∂(x1, x2)
=





∂ξ1

∂x1

∂ξ1

∂x2

∂ξ2

∂x1

∂ξ2

∂x2



=
1

|J |





x2

0,1
− x2

0,0

2
−

x1

0,1
− x1

0,0

2

−
x2

1,0
−x2

0,0

2

x1

1,0
−x1

0,0

2



.

Spectral Element Method in Higher-Dimensions 9

Note that both the forward and backward Jacobi matrices are constant matrices,

which means the local stiff and mass matrices on physical element and reference

element has only a difference of constant matrices. i.e.
∫

Ωλ

u(x)v(x) dx=

∫

∑
u(ξ1, ξ2)v(ξ1, ξ2) |J | dξ1dξ2

∫

Ωλ

∂x1
u∂x1

v+ ∂x2
u∂x2

v dx1dx2

=

∫

∑

[

u1
∂ξ1
∂x1

+ u2
∂ξ2
∂x1

][

v1
∂ξ1
∂x1

+ v2
∂ξ2
∂x1

]

+

[

u1
∂ξ1
∂x2

+ u2
∂ξ2
∂x2

][

v1
∂ξ1
∂x2

+ v2
∂ξ2
∂x2

]

|J | dξ1dξ2

=

∫

Σ

[

u1
∂x2
∂ξ2

−u2
∂x2
∂ξ1

][

v1
∂x2
∂ξ2

− v2
∂x2
∂ξ1

]

+

[

u2
∂x1
∂ξ1

−u1
∂x1
∂ξ2

][

v2
∂x1
∂ξ1

− v1
∂x1
∂ξ2

]

1

|J |
dξ1dξ2

=
1

|J |

{

A1,1

∫

∑
u1v1 dξ1dξ2+A1,2

∫

∑
u1v2 dξ1dξ2+A2,1

∫

∑
u2v1 dξ1dξ2+A2,2

∫

∑
u2v2 dξ1dξ2

}

where u1= ∂ξ1u, u2= ∂ξ2u, and

A1,1=

(

∂x2
∂ξ2

)

2

+

(

∂x1
∂ξ2

)

2

A2,2=

(

∂x2
∂ξ1

)

2

+

(

∂x1
∂ξ1

)

2

A1,2=A2,1=−
∂x2
∂ξ1

∂x2
∂ξ2

−
∂x1
∂ξ1

∂x1
∂ξ2

.

2.2.2 Tensor product approximation using collapsed coordinates

On the standard reference element
∑

, one can use tensor-product approximation

or non-tensor-product approximation. Even though for the non-tensor product

approximation usually use less DoF and have a more uniformly distributed grid,

but tensor-product approximation has a faster matrix-vector algorithm. So in this

lecture we only consider the tensor product based approximation. To use tensor-

product approximation, we need map the standard triangular element to a square by

using collapsed coordinates.
{

ξ1=
(1+ η1)

2
(1− η2)− 1,

ξ2= η2.
(η1, η2)∈ [−1, 1]2 (27)

∑

C: (−1, 1)

B: (1,−1)

ξ2

ξ1

(ξ1, ξ2)∈
∑

mapping (27)

(η1, η2)∈�

A: (−1,−1)
A: (−1, 1) B: (1,−1)

C: (1, 1)C: (−1, 1)

�

The Jacobi matrix of this transform is

J̃ =
∂(ξ1, ξ2)

∂(η1, η2)
=





∂ξ1

∂η1

∂ξ1

∂η2

∂ξ2

∂η1

∂ξ2

∂η2



=

(

1− η2

2
−

1+ η1

2

0 1

)

.

The Jacobi determinant is
∣

∣J̃
∣

∣=
1− η2

2
.

The Jacobi matrix of inverse transform is given by

J̃
−1=





∂η1

∂ξ1

∂η1

∂ξ2
∂η2

∂ξ1

∂η2

∂ξ2



=
1
∣

∣J̃
∣

∣





1
1+ η1

2

0
1− η2

2



=

(

2

1− η2

1+ η1

1− η2

0 1

)

.

10 Section 2

Note that in the calculating of mass matrix, by using the collapsed coordinates

transform, we will get an extra term
∣

∣J̃
∣

∣, which is (1− η2)/2, is very easy to make

sparse matrix. For the stiff matrix, we need to evaluate
∫

∑
u1v1 dξ1dξ2 =

∫

�

(∂η1
u)(∂η1

v)
2

1− η2
dη1dη2

∫

∑
u1v2 dξ1dξ2 =

∫

�

(∂η1
u)

(

∂η1
v
1+ η1

2
+ ∂η2

v
1− η2

2

)

2

1− η2
dη1dη2

∫

∑
u2v2 dξ1dξ2 =

∫

�

(

∂η1
u
1+ η1

2
+ ∂η2

u
1− η2

2

)(

∂η1
v
1+ η1

2
+ ∂η2

v
1− η2

2

)

2

1− η2
dη1dη2

When expanding u(η1, η2) in tensor-product bases {φj(η1)φk(η2)}, we have those terms

∫

�

(φj
′ (η1)φk(η2))(φj ′

′ (η1)φk ′(η2))
2

1− η2
dη1dη2 = sjj ′tkk ′

∫

�

(φj
′ (η1)φk(η2))

(

φj ′

′ (η1)φk ′(η2)
1+ η1
1− η2

+ φj ′(η1)φk ′

′ (η2)

)

dη1dη2 = rjj ′tkk ′+ qjj ′ qk ′k

∫

∑
∂ξ2(φj(η1)φk(η2))∂ξ2(φj ′(η1)φk ′(η2)) dξ1dξ2= ajj ′tkk ′+mjj ′bkk ′ + cjj ′qk ′k+ cj ′jqkk ′

where

sjj ′=

∫

−1

1

φj
′ (η)φj ′

′ (η) dη, tkk ′=

∫

−1

1 2φk(η)φk ′(η)

1− η
dη,

qjj ′=

∫

−1

1

φj
′ (η)φj ′(η) dη, rjj ′=

∫

−1

1

φj
′ (η)φj ′

′ (η)
1+ η

2
dη,

ajj ′=

∫

−1

1

φj
′ (η)φj ′

′ (η)

(

1+ η

2

)

2

dη bjj ′=

∫

−1

1

φj
′ (η)φj ′

′ (η)
1− η

2
dη= sjj ′− rjj ′,

cjj ′=

∫

−1

1

φj
′ (η)φj ′(η)

1+ η

2
dη, mjj ′=

∫

−1

1

φj(η)φj ′(η) dη.

Note that only tkk ′ has a singular integration weight. To be integrable, φk(η) and

φk ′(η) should have a factor of 1 − η. The three linear bases associated with three

vertices are given by

ψ1= ϕ1(ξ1)=
1+ η1

2

1− η2
2

, ψ2= ϕ1(ξ2) =
1+ η2

2
, ψ0=1− ϕ1(ξ1)− ϕ2(ξ2) =

1− η1
2

1− η2
2

.

Like the polar coordinate transform. The expansion of function u(η1, η2) in terms

of orthogonal polynomial basis in η1 direction

u(η1, η2)=
∑

k=0

∞

ck(η2)Lk(η1)

should satifies the “pole condition”

ck(η2)∼O

((

1− η2
2

)

k
)

, as η2→ 1. (28)

This is the natural pole condition in the collapsed coorinate system. This is a

corresponding essential pole condition similar to the polar cooridnate system

ck(ηk)∼O

((

1− η2
2

))

, as η2→ 1, for k> 1. (29)

Since only the first expansion coefficent c0(η2) doesn’t has a factor of (1 − η2)/
2, we need to verify that tha stiff matrix related to c0(η2)L0(η1) = c0(η2) is

integrable. Since tjj ′ always come with factor sjj ′ and rjj ′ which involve the

integration of the derivatives of the bases and equal to zero for L0(η1) ≡ 1, so

the integration is well-defined and equals to 0.

Spectral Element Method in Higher-Dimensions 11

2.2.3 Choice of Basis

Here we only consider Modal bases. There are two choices.

1. Legendre basis with essential “pole condition”.ψ0, ψ1, ψ2 are boundary bases.

Suppose the inner basis are tensor product type {φi(η1)φj(η2)}i,j=2
p

, where

φj(η)=
1− η2

4
Jj−2
1,1 (η)=Cj (Lj(η)−Lj−2(η)).

A bases set on element Σ includes boundary bases, inner bases and also

edge bases, which are given by

edge η2=−1 :
1− η2

2
φj(η1), j=2,	 , p;

edge η1=−1 :
1− η1

2
φj(η2), j=2,	 , p;

edge η1=1 :
1+ η1

2
φj(η2), j=2,	 , p.

Note that thre are no bases on the collapsed edge: η2 = 1 except the vertex

basis ψ2=
1+ η2

2
. The overall approximation space is

Xp 6 {u(η1, η2)∈Pp×Pp :u(η1, 1)=u(−1, 1) }

= span{ { ψ0, ψ1, ψ2}∪ {ϕ0(η2)φj(η1), ϕ0(η1)ϕj(η2), ϕ1(η1)ϕj(η2)}j=0
p

∪ {φi(η1)φj(η2)}i,j=2
p }

It is not too hard to prove that by using this kind of basis, we get sparse

mass and stiff matrix. We can also use the tensor-product structure to do

the fast matrix-vector multiplication.

One can also use the Lagrange bases based on tensor product G-L-L points.

2. Jaocib bases with natural “pole condition”.

φk(η1)=Lk(η1), k=0,	 , p; φj
k(η2)=

(

1− η2
2

)

k

Jj
2k+1,0(η2),

the basis set on element � is:

{ ψkj(η1, η2)= φk(η1)φj
k(η2), k=0,	 , p, j=0,	 , p }

or

{ ψkj(η1, η2)= φk(η1)φj
k(η2), k=0,	 , p, j=0,	 , p− k }.

Note that
∫

�

ψkjψk ′j ′

1− η2
2

dη1dη2=

∫

−1

1

φk(η1)φk ′(η1) dη1

∫

−1

1

φj
k(η2)φj ′

k ′

(η2)
1− η2

2
dη2=

δkk ′δjj ′

22k+1

so this kind of basis sets is also called L2-orthogonal bases. However, the

stiff matrix is not sparse.

Remark 2. It is possible to build bases satisfies “pole condition”but also

produce sparse matrices. For example: u = c0 +
∑

k=0
p ∑

j=0
pk ukjφk(η1)φj

k(η2),

where {φk}k=0
p =

{

1− η

2
,
1+ η

2
,
1− η2

4
Jk−2
1,1

, k=2,	 , p
}

and

φj
k=



























1− η2

2
, k=0, 1; j=0,

1− η2

2

1+ η2

2
Lj−1(η2), k=0, 1; j=1,	 , pk,

(1− η2

2

)

k, k=2,	 , p; j=0,
(1− η2

2

)

k1+ η2

2
Jj−1
2k−4,0(η2), k=2,	 , p; j=1,	 , pk.

pk=

{

p− 1, k=0, 1,
p− k, k=2,	 , p.

12 Section 2

