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1 One-Dimensional Spectral Element Method

We use the 1-dimensional elliptic Helmholtz equation as a model equation.

au—u"=f, xel=(0,L), 1
u(0) =u(L)=0.
The corresponding weak form is
Findu € H§(I), suchthat )
a(u,v)+ (u'v)=(f,v), YveHi(I).
1.1 Domain partition and Galerkin approximation
Partition to the interval [:
O=xo<t1< - <xTp=1L5 I:U?:l I;, with Ii:[xi_l,xi].
Approximation space
XmP={u(z)eC°(I), u|,ePy}, XyP={ueX™P u(0)=u(L)=0}, (3)
The corresponding Garlerkin formalution
Finduy € X7 suchthat (@)
a(uy,v)+ (uy,v")=(f,v), YveX) P
Map every interval I;={[x;_1,2;] to the standard interval [—1,1] by
r=m;i(§) =xi—100(&) + zip1(§), (5)
where
1—- 1+
(=152 i) =TEE (6
2 2
The Jocobi of this mapping is
or  xi—wmi—1 ||
3 2 2 e
Boundary-inner decomposition basis:
{05(8) }i=o={w0(&), p1()} U{8;(§), ¢;(£1)=0}]_, (®)
The above bases are in local variable. We extend them into global variable by
i) =4 05(6), fwel, =m7'(x),
(1) = i 9
V(o) {0, ita¢ I, ©
Note that for each i = 1, ..., n — 1 that }(z) and ¢ '(x) are the two parts of the

linear finite element hat function defined according to the three nodes (xi,l, Ti,
Zi+1). By the continuous condition, the local degree of freedom corresponds to
Yi(z), and ¢4T!(z) refer to the same global degree of freedom. So the global
basis set are

V= {y;(@) P ={ vi(z) + i (@)} U{Wi(), =2, ..., p M (10)
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In equation (4), we take uy=upr(z), v=14(z), for all I=1,...,np—1, we get
(aM+Su=f, (11)

where M and S are global mass and stiff matrices, their components are given by

M(lak):("/)kyi/}l)v S(lak):(ﬂ)fml/fl/)

1.2 Matrices Assembling

From

M) = (o) = [ vande =3 [ nde,
=1 g

we see that the global matrix can be calculated by take summation of nonzero
local matrices in each element.

1

M= [ wiiide=sio [ wiwhde =i [ 6,©0,97dg = 8idimyy
and I I; -1

., oy dwt dat, L dd.do.s 1

S;:Z]/ :z 1/1;/ ;_; dx =6, . %%de&i/ » digjdigjidEZ(sii/Sjj//Ji
where M;:;ll and S;’,ij// are the components of the unit mass and stiff matrices on
element I;, while mj;» and Sj;- are the components of the mass and stiff matrices
on the standard reference element. Because some global bases consist parts in
different elements, which means different local DoF may link to the same global
DoF, for those kind of global DoF, we need sum up the contributions from each
elements. This procedure is called assembling. In the numerical implementation,
one usually uses a mapping link local basis DoF index to global DoF index.
Namely, k = map(i, j) stands for that the global DoF (Degree of Freedom) index of
local j-th DoF in elemnet ¢ is k. Following algorithm describes the procedure to
build the linear system (12) by assembling.

Algorithm ASM (Assembling Procedure)
Input: {z;}iio, {p:>1}iL1; matrices {my;/}} ;1_o and {sj;/}" ;/_o, where p=max; {p;}.
Output: Global matrices M and S

Step 1) Initialize the local to global index mapping:
for ¢ from 1 to n
map(i,0)=i — 1; map(i,1)=i.
end for
map(1,0):=-1; map(n,1):=-1; //boundary points, not a DoF.
k=n
for ¢ from 1 to n
for j from 2 to p;
map(i, j)=k; k=k+1;
end for
end for
Step 2) Assembling
Set M =0 and S=0.
fori=1ton
for all the nonzero components m; in {m;}7"_,
If map(i, j) >0 and map(é, j) >0 then M (map(i, j), map(i,1)) +=m; X (z; —x;-1)/2
end for
for all the nonzero components s in {s;}%"_
If map(i, j) >0 and map(i, j) >0 then S(map(7, j), map(i,1)) +=sj; X 2/(x; — x;-1)
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end for
end for
End of the Algorithm

1.3 Choice of local basis

There are several choices of local spectral bases that results in sparse
matrices.

1. For Chebyshev weighted Galerkin approximation, one may choose

¢5(6) =T5(§) = Tj-2(£), j=2. (12)
with T; is the Chebyshev polynomial. In this case, Chebyshev weight
function (1 - EQ)’UQ should be added to weak Galerkin formulation. This

gives a tri-diagonal mass matrix and lower-triangular stiff matrix, with
the resulting linear system can be solved in linear time. Another choice of
Chebyshev basis is

(&) =1 —ENT;_o(E), for j=2.

2. For Legendre Galerkin approximation, One can use

¢i(&§) =L;(&) — Lj—2(§), j=2. (13)

with L; is the Legendre polynomial. This leads to diagonal stiff matrix and
penta-diagonal mass matrix, and the resulting linear system can be solved
in linear time. The above basis is equivalent to

1-€¢1+€ 1
85(6) =152 L e (19)
with J}J are the Jacobi polynomials that are orthogonal respect to weight

(1-¢2).
One may use different bases in different situations. When a lot of transform
between spectral coefficients and physcial values are involved, Chebyshev method
is a better choice, since fast transform is available. In other cases, Legendre
bases might be the better choices. They are consistent with the weak formulation
and resulting in very sparse system even in higher dimension problems.
If the degree of polynomial p is not very big in each element. One can also use
nodal basis, i.e. the Lagrange basis:

¢5(&§) =h;(§), 7=0,1,....p. (15)

where {hj}fzo are Lagrange basis using Gauss-Legendre-Lobatto or Gauss-Chebyshev-
Lobatto points, define in such order

{Eozxi_l,&:xi, l’i_1<§i<l’i,i:2,...,p}. (16)

Note that in this case, the boundary basis ho(§), hi1(§) are not linear function
but polynomials of degree p. Another difference to the modal basis is that the
Lagrange basis leads to dense local mass and stiff matrix with a bad condition
number even for equation with constant coefficients. This will increase the
difficulty in solving the resulting linear algebraic system.

1.4 Solving the linear algebraic system
After the linear system (11) is built. There are two approach to solve it.

1. When p is small, but n is large, one can use well-known linear algebraic
solver (e.g. PCG, AMG) to handle it.
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2. When p is large, n is small, we use Schur complement.

Note that in Algorithm ASM, we have put all the boundary DoF in the very
first. And we have M;:ZJ,, =0 and S;:ij»/, =0, when ¢# ¢ and j, j'#0,1. This means the
global matrix M and S has very special structures, which given as below

A Ar

Az Ay )’
where A;; is the vertex-vertex interaction part; Agy is the inner-inner
interaction part, it is a block-diagonal matrix since inner DoF in different

elements are not related. This means Ay is very easy to invert. To solve the
linear system (11), is equivlent to solve a system

A Ar Ty b1
= 17
Can a)(2)-(3) S

Anz+ Az =by (18)

or

Ag1z1 + Agoxo =bo (19)

From the second equation, we get xy = Aggl(bg — Asix1), then plugging this into the
first equation, we have

A1z + A19Ass by — A1pAsy Agizy = by
or

(A — A12A2_21A21)£E1 =by— A12A5,'bs. (20)

This is a much smaller system. which can be solved more efficiently (for example
using LU or PCG method). After solving for z;, it is very easy to solve for z»
using equation (19).

1.5 Error Estimates

1. By a standard approach (Céa Lemma), we can prove that, the solution error
of the hp-Galerkin method, is bounded by projection error providing that
the right side integration is evulated sufficiently accurate. Following is
the sketch of the proof.

Denote a(u,v)=a(u,v)+ (u’,v’), then by taking difference of (2) and (4), we
get

a(u—un,v)=0, VveXy?
Let my is the projection from H{(I)— X,'?, defined by
alu—mnu,v)=0, YveX)?r
Since u—uny=(u—7mnu)+ (Tyu—un), we have
a(ryu —un,v)=a(u—uy,v) —alu —ryu,v) =—alu—7Nu,v), YveX)?

Then by taking v = mnyu — uny € }Yg’p, and using the continuous and coercive
property of a(-,-), we get
Bllmnu —un|® <a(myu —un, mvu —un) < Cllu — myu| - [|[mvu —un|,

or

c
v = unll < llw = mvul)
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Then by triangular inequality, we have
C
e = unll < flu=mnull +llmvu —unll < { 145 Jlle =mvu].

2. Estimating the projection error. Since my is the projection defined by
using the bilinear form a( -, -) and the bilinear form induced energy norm is
equivalent to the H! norm, so there exist a constant C’, such that

lu—unl|<C'lu—ol, VéeXgr.

In particular, for given uéEfL%, let take

I;s

W)= Y u) (W) @), and 6=+ Y wLu(e) - b))

i=1

where 70" is the project from H{(I;) to P{(I;). By using ¢, we have

P
lu=ol* = llu'= ¢ Z20)+ llu— Sll2c
< C?Hu’4—¢’H%z“D, (Poincare inequality)
= C_ '~ 'l
i=1
= O |lu' =o'+ [y (= )| o, (21)
i=1

By using the Theorem 3.38 in [Shen J. et al 2011], it is easy to prove that

meal.vae[ﬁﬂﬂ,amiveHmUﬁﬂn>l,ﬂwnwehmw

1-m
— 790 < (14l m 2 om Vo>m—1
H(’U Tp ’U) HL2(Ii)N 2 ep H T ||L2(Ii)’ bp=m . #

Taking u—1 =v in equation (21), we get

n I 2(m—1) B 2(1—m) .
u-opr<cy () ( ;p> 10 32ty
1=1

L
we further suppose that Lh|£lz:ag, then we get

1-m
2 /2 mic
= v Sl — ¢||s<f\fg np> 0 121y

1-m
2 [2 -
Ju=unll < (ff np> 07 20, Vp+1zm.

3. For p+1<m (to be finished).

2 Spectral Element Method in Higher-Dimensions

The spectral element method in 2-dimensional domains and 3-dimensional domains
are similar. For simplicity, we only consider the 2-dimensional case here. The
model equation we will use is

{(Mr—Au:f,(xthEQ

(22)
u|an=0.
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Here, we do not need () to be tensor product domain, since we can partition it
into several small elements. These small elements can be quadrilateral elements,
triangular elements or curved quadrangles or triangles. Here, we consider both
quadrilateral and triangular elements. The weak form of equation (22) is

. 1
{ Find u € Hg(2) such that (23)

a(u,v)+ (Vu, Vo) = (f,v), Ve Hi(Q).

2.1 Quadrilateral elements

2.1.1 Mapping

XO,l
(—-1,1) (1,1)
Xl,l
S — &2
O 2
0,0 5%
XY
X0 (1,1

(-1,—1) ,—1)

For a quadrilateral elements (1), we use local coordinates (&1, &) €[—1,12=: in
reference (standard) domain. The global coordinates are denoted by (zl, xg) c O,.
The mapping between local coorinates and global coordinates on element A are

given by
xr1 xml
(z )mx(&,fz) > ( 5,1)%(51)%(52), (24)
2 i,j=0,1 \T2
where X/ = (x?j, xéj) are the coordinates of four vertices; and the transform

matrix is given by

Oxr1 Oz

6(1'1,.%'2): 96 98 | _ Zi,j 1'?]:901/'(51)80]’(52) Zi,j xi’{@i(fl)@g(éﬂ . (25)
066 | 22 o2 |7\ 5 ailen @) T, i)

The Jocobi determinant is given by

Ox1 Ora

%€ .
J= 6511 65; = Z AIpi(&1)pj(62),
0, 0&, i,j=0,1

with
1,5 0,7 ,.t,1 2,0 2,1 :,0 1,7 0,5
Ai,j:xl —XyT Xy — Xy Xy Xy Ty — Ty
2 2 2 2
And also we have
-1
96 06 Oxy Oxy ows O
9(&:€2) _ | Box Ban |_| 061 0% _I e T
8(561,1'2) 082 02 Ora Oxa J Orz Oz

Oxr1 Ox2 651 862 _6_51 6_51
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Note that when the element is a rectangle or a parallelogram, the J determinant
is a constant, in this case, stiff matrix can be made sparse by selecting special

basis. Otherwise, J determinant is not a constant, the integral to calculate the

components of stiff matrix are integration of rational functions, are hard to
make sparse. And there are no simply formula to calculate these integration
accurately. So we need resort to numerical integration to handle this.

2.1.2 Choices of bases

1.

Modal basis. We choose {¢g= po, $1= @1} U {¢;, z( 1)=0}r_, as basis for both
&1 and & direction. For Legendre case ¢;(§) = Li(§) — Li—2(§) for k> 2; while
for Chebyshev case ¢;(§) = (1 — &)T,_o(¢), k > 2. This will lead to sparse

system for rectangle and parallelogram elements. We denote the basis in
global variable as

k 0, otherwise

e 962){ Dk, (€1) Pro(€2), i (21, 22) €O

Now let’s calculate the local mass matrix and stiff matrix on element \:

Mg g = V21, 2) Vi (21, 72) dardas
Qx

/Z Ors(60) D1 (£2) b1 (62) D1y (E2) J dErd

— 3 Ay / b (€0) by (E1)i(€1)d6 / Dl €2) buy(2) 05(E2) s
2,7=0,1 . -

= Z A&]M;ﬁakiMiz,ké
1,7=0,1

with
1
Miv= [ o(©on©eie)dg.i=o,1
-1
On the other hand, the stiff matrix (02 part) are given by

Sé\,’l/ :/ Oy Vi (w1, 22) O, i1, 2) Ay Ay
Qx

- /Z S (€0) () 2 +¢k1(51>¢k2(52>‘%2

35

x[m (&) 9rs(E2) gt 1+¢k (£ D) 22 }Jdgldgz

= [ k(o Ge ag — ()Rl ) g

aZL' 2
91

a. When J is a constant, both mass and stiff matrix are sparse. The
nonzeros can be evaluated by using a Gauss quadrature. The matrix-
vector product of mass matrix and stiff matrix can be evaluated
efficiently using the tensor-product structure of the DoF on each
element. e.g.

[m (€002 222 — gy(e0) oy (6) 222 ] d6des

56

p
A A 0,7 A 3 J
> Migwue = Y AV D ube M, g Mi, kg
& 4,j=0,1 Ky k=0

L. p p : j
= Z Af\’]<z <Z uélkzM?mk{)Mimké)

i,7=0,1 ko=0 \k1=0



SECTION 2

b. When J is not constant, one can use a high-accurate Gauss quadrature
to pre-calculate mass matrix and stiff matrix. However the stiff

matrix Sﬁiﬂ can be write as a sum of few tensor-product terms, since
1/J is not separable. In this case one can use pseudo-spectral
approach. (Homeowrk: design an efficient numerical scheme to
numerically calculate the derivative of a function u, and further
design a fast matrix-vector product algorithm)

. Nodal basis. One can use Lagrange basis {¢;,(&1)d;,(&2)}, ;,—o based no tensor
product Gauss-Legendre-Lobatto or Gauss-Chebyshev-Lobatto points. The
local mass matrix is a diagonal matrix

M = A Vi(x) Y (z) dvrdas
A

- / iy (60 (E2) g (€0) iy €2)T €16
P

23T [ () (E)hug (1) hug(€2) T (1, €2))[ 2w w5,

J1,52=0
p

= Y Ok Ok 1Ok (s Cia)wiiia
J1,j2=0
= Ok, krJ (Chyy Cho) Wk W,

The stiff matrix is

s, = /Q Oy (@)D V() dardry

/E Pk (€0 (€2) 5t + o (61) s €2) 22
X[hé’(fl) (52)6E
= /{hkl(&)hm(&) 5 — e, (1) iy (€2) 57~ 5}

X|:hl/cl’(§l) (52) 8:;2

852

]

Ly hig(E)hig(€2) 022 aﬁ?]Jd&d&

(€ h (&) ] dédes

5

The each term of the integration can be approximated by Guass quadrature.
For example,

(9:62 1
s J

PP P
jlzz Z (G) 5kz,]2hk (Cl)ékz,u( 22(@1)) (lel’ CjZ)wjlez

Rk = [ Wb (e 2 () 22 L derags
P

Q

The corresponding matrix vector product is

E Uk kk/

P P
Z u£1k2 Z hl/cl(gjl)h;cf (le) ( 222 (C.h) ) 6/62]26/62]2 J(bz?]l:jjéig)

k1,k2=0 j1,52=0
p /4
ox Wilds
- Z Z uglk?hllﬁ(cﬂ'l)akzh (852(Cj1)> (Cj_l éz) h;c{(le)(Skéjz
J1,52=0 k1,k2=0 Jir Sj2

This can be done in O(p®) operations by summing ki, ko and ji,jo successively.
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2.1.3 Assembling and solving the linear system

The assembling procedure is similar to the 1-dimensional case. We use mapping
function map(A, ki, ko) = k to denote that the kj-ko-th local DoF in element A has a
global DoF index k. When making the DoF mapping, we put all the vertex DoF
before edge DoF, and all edge DoF before inner DoF. Then the resulting linear
system has a shape

A Az Ags

Ao Az Aoz |,

Az Asz Ass

where Aj; is the vertex-vertex interaction part (has a shape of linear finite
element matrix); Ass is the edge-edge interaction part; Ass is the inner-inter
interaction part (block diagonal matrix). Let n be the number of elements, p be
the the degree of polynomials in each element, then the size of Aj;, Ags, Ass are
O(n),0(2n (p—1)) and O(n(p—1)?).
1. When n is big, but p is small, we prefere using PCG or AMG method to solve
the linear system.

2. When n is small, p is large, We can use Schur complement to solve the
linear system.

2.2 Triangular Elements

2.2.1 Mapping from physical element to standard element

X%1(0) C:(-1,1)
13
(21, 22) =mA(&1, €2) £
(21, 22) € (é,6)€d
2
X19(B)

XO’O(A) A: (_L_l) B: (1,—1)
Suppose that the physical domain (), is partitioned to n triangular domain, i.e.
Q = US_o2\. We first map each element 2y, A = 1, ..., n to a standard reference

tiangle > ={(&1,&2): —1<&1, &<, &+ & <0}. Suppose the coordinates of the three
vertex of (), are given by X%°, X10 and X®!. Then the linear mapping function
is

T 1+¢
(I;) =p1(E) X0+ 01(E) X0+ (1 — pi(&1) — 01(&) X0, @1(€) = (26)
The Jacobi matrix is
251 Do T G
J:a(xl,x2): g& g& = 102 0,0 012 0,0
0 R 2 L2 Ty — Ty Ty — T
(61, 2) 96 06 o A
So the Jacobi determinant is a constant
Oz1 0w 1,0 0,0 0,1 0,0 1,0 0,0 0,1 0,0
|J|= oy O |_Tr —Xy Xy Ty Ly Ty Ty — I
Ozy  Bxp 2 2 2 2
081 02

The inverse of Jacobi matrix can be calculated as

861 861 ZO,I_IO,O ZO,I_IO,O
0.8 [ oo v |_ L T T
D(wn,z2) | 2 0 |TTIT\ _ab0oadt  al0_a0

Oz Oz 2 2
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Note that both the forward and backward Jacobi matrices are constant matrices,
which means the local stiff and mass matrices on physical element and reference
element has only a difference of constant matrices. i.e.

/ u(@)o(z) dz = / (. E2)o(€r, E2) 7] dérdey
Qx b

/ Oz U0,V + Oz, u0,,v dridze
Qx

_ 961 352 061 062 '3y dEs 3 352
tA; { Yowy T *0r, ]{ 10 1+ 8x1}4[ Yory Tu axQ}[ Yox, tv }|J|d§ dé

_ / { Oy UQ%MUI%UQ%]+[ Oy “1%]{“2%“1&0} 1 gede,
Yogy 231 02 3! 3 02 23] | /|

1
_ J{A1 . / wror dérdés + Ap / wrp dérdés + As s / w1 d€rdés + Ag / Uzvzdfldfz}
] > > > >

where u;=0¢u, uz=0gu, and
(9562 2 ((91‘1)2 (3562 )2 ((91‘1)2 (9562 (9:62 8:01 (9:61

A= =) +| = Aso= == ) +| == Ajog=Ag1=— — .
b ( 3 ) ¢, 227\ %6 €, PETERIT 06 08 06 98,

2.2.2 Tensor product approximation using collapsed coordinates

On the standard reference element Y. , one can use tensor-product approximation
or non-tensor-product approximation. Even though for the non-tensor product
approximation usually use less DoF and have a more uniformly distributed grid,
but tensor-product approximation has a faster matrix-vector algorithm. So in this
lecture we only consider the tensor product based approximation. To use tensor-
product approximation, we need map the standard triangular element to a square by
using collapsed coordinates.

_ (+m)

{ 217 1+2"7 (1*772)715 (771,772)6[—1,1]2 27)
2="T2.

C:(=1.1) C: (~1,1) C:(1,1)

&2

€ mapping (27) .
Z (51362)62 (7713772)€|:|
A:(-1,-1) B:(1,-1) A:(-1,1) B:(1,-1)

The Jacobi matrix of this transform is

o6 98 1- 14
j: 6(51352) _ on o2 _( TWZ _Tnl )

5(771a 772) g_i S_Z

The Jacobi determinant is

= 1=
J|= .
[7=—5
The Jacobi matrix of inverse transform is given by
om  om 1 1 14+ 2 14+m
j*lz 061 0&2 — 2 — T—ns 1—1n2
Onz - 92 [T\ 0 1= 0 1
061 0&2 2
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Note that in the calculating of mass matrix, by using the collapsed coordinates

transform, we will get an extra term , which is (1—192)/2, is very easy to make

sparse matrix. For the stiff matrix, we need to evaluate
2

JLwmdgdes = [ @u)(@0) > dmdn,

= m L—mn2

1+ 1-— 2

/ nrpd6dey = / (%u)(%v 5+ O 2”2)1 dnidn,

> a -2

1 1—- 1 1—- 2

/ ’LLQ’Unglde = / <8mu +n1+8n2’u n2)<8mv +m+8n2v 772> d?]ldT]Q

= O 2 2 2 2 1-— 12

When expanding u(71,72) in tensor-product bases {¢;(1m1)or(n2)}, we have those terms

[ @3m)autm) (@5 ) n(m)) = st

/D((253‘(771)%(772))(¢§/(771)¢k'(772)Tr772+¢j’(771)¢1/c'(772))d771d772 = rjjtek + Qs Qe
/E 0t (D5(m) Px(n2)) Oey(D51(M1) Prr(m2)) d€rd€a = ajjtn: +myjbrrr + Cjjrqumn + Cjriqrrs

where

1 1
sipr= [ oimelin dn, o= [ 200 g,

-1

1
wy= [ o365t d, ro= [ ¢;—<n>¢;-f<n>#dn,
1 —
am'*/ P5(m)d5( )(1+77) dn bjj':/i1 d)ﬁ’(ﬁ)fb}/(n)%dn:%'*w',
1
ij/z/_l ¢9(n)¢j'(n)#dn, mjj'=/_1 o5(n) ¢ (n)d

Note that only t; has a singular integration weight. To be integrable, ¢(n) and
¢r/(n) should have a factor of 1 — 1. The three linear bases associated with three
vertices are given by

127711 2 1/12:@1(52):12772, 1/)011*%(51)*@2(52):&@-

Yr=p1(§1) = 2 2

Like the polar coordinate transform. The expansion of function w(7, 7)2) in terms
of orthogonal polynomial basis in 7); direction

u(n1, m2) Z (m2)Li(m)

should satifies the ‘‘pole condition”

177]2 k
cr(n2) ~ O — , as mp— 1. (28)

This is the natural pole condition in the collapsed coorinate system. This is a
corresponding essential pole condition similar to the polar cooridnate system

1—
ck(nk)~0<<T772>>, as mp—1, for k>1. (29)
Since only the first expansion coefficent cg(72) doesn’t has a factor of (1 — )/
2, we need to verify that tha stiff matrix related to co(n2)Lo(m) = co(n2) is
integrable. Since t;js always come with factor sj;; and r;;s which involve the
integration of the derivatives of the bases and equal to zero for Lo(m) = 1, so

the integration is well-defined and equals to O.
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2.2.3 Choice of Basis

Here we only consider Modal bases. There are two choices.

1.

Legendre basis with essential ‘‘pole condition’’.yq, ¥1, 12 are boundary bases.
Suppose the inner basis are tensor product type {¢i(n1)¢;(n2)}} j_o, where

650 =L ) = € (L) — Ly )

A bases set on element Y includes boundary bases, inner bases and also
edge bases, which are given by

edge np = —1 1;U2 ¢i(m), J=2,....,p;
edgem=—1 : 1Aén1¢j0p% i=2,...,p;
edgen =1 :1zm¢ﬂmh J=2,..,p.
Note that thre are no bases on the collapsed edge: 72 = 1 except the vertex

. 1 . . .
basis ﬁ@zz—%%g. The overall approximation space is

Xp = {u(m,n) € Ppx Py:u(m,1)=u(-1,1)}
= span{ { Yo, ¥1, Y2} U {wo(1n2)9;(m), po(m)e;(ne), e1(m)e;i(n2)} =0
LJ{¢%(U1)¢j(U2)}£j:2}

It is not too hard to prove that by using this kind of basis, we get sparse
mass and stiff matrix. We can also use the tensor-product structure to do
the fast matrix-vector multiplication.

One can also use the Lagrange bases based on tensor product G-L-L points.

. Jaocib bases with natural ‘‘pole condition’.

1— k
ér(m)=Lr(m), k=0,...,p; ¢];€'(772)=<T772) Jfkﬂ’o(m),
the basis set on element [ is:

{ i, m2) = dr(m)df(n2), k=0,....,p,5=0,...p}
or
{wkj(nla 772) = ¢k(771)¢§(772)7 k:()a "'ap7j:05 IEETY 2 k }
Note that

Okk0 50

1— ! ! o1
/Dlﬂkjwk/j/ 2772 d771d772=/_1 ¢k(771)¢k/(771)d771/_1 @5 (12) 95 (12) 2772 A1 = 57

so this kind of basis sets is also called L2—orthogonal bases. However, the
stiff matrix is not sparse.

Remark 2. It is possible to build bases satisfies ‘‘pole condition’’but also

produce sparse matrices. For example: u = ¢y + E:zzo ?io ukﬂﬁk@h)¢§@h),
where {¢k}£:0::{}{§ﬂ,léiﬂ,1;ﬁ2J2f2,k::2wn,p} and
2N k=0,1; j=0,
e %721%7721;]_71(772)7 k=0,1; j:.l,...,pk, pk{p—l, kio,l,
(_TT_) , k=2,...,p; j=0, p—k, k=2,...p
(S5 2R 0 ), k=2, =1, i



