
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2019-0168

Vol. x, No. x, pp. 1-33
xxx 20xx

Better Approximations of High Dimensional Smooth

Functions by Deep Neural Networks with Rectified

Power Units

Bo Li2,1,†, Shanshan Tang3,†,‡ and Haijun Yu1,2,∗

1 NCMIS & LSEC, Institute of Computational Mathematics and Scientific/Engineering
Computing, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China.
2 School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, China.
3 China Justice Big Data Institute, Beijing 100043, China.

Received 30 September 2019; Accepted (in revised version) 24 October 2019

Abstract. Deep neural networks with rectified linear units (ReLU) are getting more
and more popular due to their universal representation power and successful appli-
cations. Some theoretical progress regarding the approximation power of deep ReLU
network for functions in Sobolev space and Korobov space have recently been made
by [D. Yarotsky, Neural Network, 94:103-114, 2017] and [H. Montanelli and Q. Du,
SIAM J Math. Data Sci., 1:78-92, 2019], etc. In this paper, we show that deep net-
works with rectified power units (RePU) can give better approximations for smooth
functions than deep ReLU networks. Our analysis bases on classical polynomial ap-
proximation theory and some efficient algorithms proposed in this paper to convert
polynomials into deep RePU networks of optimal size with no approximation error.
Comparing to the results on ReLU networks, the sizes of RePU networks required to
approximate functions in Sobolev space and Korobov space with an error tolerance

ε, by our constructive proofs, are in general O(log 1
ε) times smaller than the sizes of

corresponding ReLU networks constructed in most of the existing literature. Compar-
ing to the classical results of Mhaskar [Mhaskar, Adv. Comput. Math. 1:61-80, 1993],
our constructions use less number of activation functions and numerically more stable,
they can be served as good initials of deep RePU networks and further trained to break
the limit of linear approximation theory. The functions represented by RePU networks
are smooth functions, so they naturally fit in the places where derivatives are involved
in the loss function.

†The first two authors contributed equally. Author list is alphabetical.
‡The work of this author is partially done during her Ph.D. study in Academy of Mathematics and Systems
Science, Chinese Academy of Sciences.
∗Corresponding author. Email addresses: libo1171309228@lsec.cc.ac.cn (B. Li),
tangshanshan@lsec.cc.ac.cn (S. Tang), hyu@lsec.cc.ac.cn (H. Yu)

http://www.global-sci.com/cicp 1 c©20xx Global-Science Press

2 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

AMS subject classifications: 65D15, 65M12, 65M15

Key words: Deep neural network, high dimensional approximation, sparse grids, rectified linear
unit, rectified power unit, rectified quadratic unit.

1 Introduction

Artificial neural network(ANN), whose origin may date back to the 1940s [1], is one of
the most powerful tools in the field of machine learning. Especially, it became domi-
nant in a lot of applications after the seminal works by Hinton et al. [2] and Bengio et
al. [3] on efficient training of deep neural networks (DNNs), which pack up multi-layers
of units with some nonlinear activation function. Since then, DNNs have greatly boosted
the developments in different areas including image classification, speech recognition,
computational chemistry and numerical solutions of high-dimensional partial differen-
tial equations and scientific problems, etc., see e.g. [4–12] to name a few.

The success of DNNs relies on two facts: 1) DNN is a powerful tool for general func-
tion approximation; 2) Efficient training methods are available to find minimizers with
good generalization ability. In this paper, we focus on the first fact. It is known that artifi-
cial neural networks can approximate any C0 and L1 functions with any given error toler-
ance, using only one hidden layer (see e.g. [13,14]). However, it was realized recently that
deep networks have better representation power(see e.g. [15–17]) than shallow networks.
One of the commonly used activation functions with DNN is the so called rectified lin-
ear unit (ReLU) [18], which is defined as σ(x)=max(0,x). Telgarsky [16] gave a simple
and elegant construction showing that for any k, there exist k-layer, O(1) wide ReLU
networks on one-dimensional data, which can express a sawtooth function on [0,1] with
O(2k) oscillations. Moreover, such a rapidly oscillating function cannot be approximated
by poly(k)-wide ReLU networks with o(k/log(k)) depth. Following this approach, sev-
eral other works proved that deep ReLU networks have better approximation power than
shallow ReLU networks [19–22]. In particular, for Cβ-differentiable d-dimensional func-
tions, Yarotsky [21] proved that the number of parameters needed to achieve an error

tolerance of ε is O(ε−
d
β log 1

ε). Petersen and Voigtlaender [22] proved that for a class of d-
dimensional piecewise Cβ continuous functions with the discontinuous interfaces being

Cβ continuous also, one can construct a ReLU neural network with O((1+ β
d)log2(2+β))

layers, O(ε−
2(d−1)

β) nonzero weights to achieve ε-approximation. The complexity bound
is sharp. For analytic functions, E and Wang [23] proved that using ReLU networks with
fixed width d+4, to achieve an error tolerance of ε, the depth of the network depends on
log 1

ε instead of ε itself. We also want to mention that the detailed relations between ReLU
networks and linear finite elements have been studied by He et al. [24]. And recent work
by Opschoor, Peterson and Schwab [25] reveals the connection between ReLU DNNs and
high-order finite element methods.

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 3

One basic fact on deep ReLU networks is that function x2 can be approximated within
any error ε> 0 by a ReLU network having the depth, the number of weights and com-
putation units all of order O(log 1

ε). This fact has been used by several groups (see
e.g. [19, 21]) to analyze the approximation property of general smooth functions using
ReLU networks. In this paper, we extend the analysis to deep neural networks using
rectified power units (RePUs), which are defined as

σs(x)=

{

xs, x≥0,

0, x<0,
s∈N0, (1.1)

where N0 denotes the set of non-negative integers. Note that σ1 is the commonly used
ReLU function, σ0 is the binary step function. We call σ2, σ3 rectified quadratic unit
(ReQU) and rectified cubic unit (ReCU), respectively. We show that deep neural net-
works using RePUs(s ≥ 2) as activation functions have better approximation property
for smooth functions than those using ReLUs. By replacing ReLU with RePU(s≥2), the
functions x, x2 and xy can be exactly represented with no approximation error using net-
works having just a few nodes and nonzero weights. Based on this, we build efficient
algorithms to explicitly convert functions from a polynomial space into RePU networks
having approximately the same number of coefficients. This allows us to obtain a bet-
ter upper bound of the best neural network approximation for general smooth functions
using classical polynomial approximation theories. Note that σs networks have been
used in the classic works by Mhaskar and his coworkers (see e.g. [26–28]), where by con-
verting spline approximations into σs DNNs, quasi-optimal theoretical upper bounds of
function approximation are obtained. However, their constructions of neural network
are not optimal for very smooth functions (the case k≫ s), the error bound obtained is
quasi-optimal due to an extra logs(k) factor, where k is related to the smoothness of the
underlying functions. Meanwhile no numerically efficient and stable algorithm is pre-
sented. In this paper, we present numerically stable and efficient constructions of RePU
network representation of polynomials which result in RePU network of different struc-
ture and remove the extra logs(k) factor in the approximation bounds. After this paper is
put on arXiv, the RePU networks and our optimal network constructions are adopted by
other authors, e.g. by using deep RePU networks instead of ReLU networks, a sharper
bound for approximating holomorphic maps in high dimension is obtained by Opschoor,
Schwab and Zech [29].

For high dimensional problems, to be tractable, the intrinsic dimension usually do not
grow as fast as the observation dimension. In other words, the problems have low dimen-
sional structure. A particular example is the class of high-dimensional smooth functions
with bounded mixed derivatives, for which sparse grid (or hyperbolic cross) approxima-
tion is a very popular approximation tool [30–34]. In the past few decades, sparse grid
method and hyperbolic cross approximations have found many applications, such as
numerical integration and interpolation [30, 35–37], solving partial differential equations
(PDE) [38–43], computational chemistry [32, 44–46], uncertainty quantification [47–49],

4 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

etc. For high dimensional problem, we will derive upper bounds of RePU DNN approxi-
mation error by converting sparse grid and hyperbolic cross spectral approximation into
RePU networks. Our work is inspired by the recent work of Montanelli and Du [50],
where the connection between linear finite element sparse grids and deep ReLU neural
networks is established. In this paper, we approximate multivariate functions in high
order Korobov space using sparse grid Chebyshev interpolation [36] for the interpola-
tion problem, and using hyperbolic cross spectral approximation for the projection prob-
lem [33, 40]. Then, we convert the high-dimensional polynomial approximations into
ReQU networks, instead of ReLU networks, to avoid adding an extra factor log 1

ε in the
size of the neural network.

In summary, we find that RePU networks have the following good properties:

• RePU neural networks provide better approximations for sufficient smooth func-
tions comparing to ReLU neural network approximations. To achieve same accu-
racy, the RePU network approximation we constructed needs less number of layers
and smaller network size than existing ReLU neural network approximations. For
example, for a function with all the partial derivatives bounded uniformly inde-
pendent of derivative order, we can construct a ReQU network with no more than

O
(
log2

(
log 1

ε

))
layers, and no more than O

(log(1/ε)
log(log1/ε)

)
nonzero weights to approx-

imate it with error ε. More results are given in Theorems 2.4, 3.3, 4.2.

• The functions represented by RePU(s≥ 2) networks are smooth functions, so they
naturally fit in the places where derivatives are involved in the loss function.

• Compared to other high-order differentiable activation functions, such as logistic,
tanh, softplus, sinc etc., RePUs are more efficient in terms of number of arithmetic
operations needed to evaluate, especially the rectified quadratic unit.

Based on the facts above, we advocate the use of deep RePU networks in places where
the functions to be approximated are smooth.

The remaining part of this paper is organized as follows. In Section 2, we first show
how to approximate univariate smooth functions using RePU networks by converting
best polynomial approximations into RePU networks. Then we use a similar approach to
analyze the ReQU network approximation for multivariate functions in weighted Sobolev
space in Section 3. After that, we show how high-dimensional functions with sparse
polynomial approximations can be well approximated by ReQU networks in Section 4.
Some preliminary numerical results are given in Section 5. We end the paper by a short
summary in Section 6.

2 Approximation of univariate functions by deep RePU

networks

We first introduce some notations related to neural networks. Denote by N the set of all
positive integers, N0 :={0}∪N. Given d,L∈N, we denote a neural network Φ with input

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 5

of dimension d, number of layer L, by a matrix-vector sequence

Φ=
(
(A1,b1),··· ,(AL,bL)

)
, (2.1)

where N0 = d, N1,··· ,NL ∈N, Ak are Nk×Nk−1 matrices, and bk ∈R
Nk . If Φ is a neural

network, and ρ :R→R is an arbitrary activation function, then define

Rρ(Φ) :Rd →R
NL , Rρ(Φ)(x)= xL, (2.2)

where Rρ(Φ)(x) is given as






x0 := x,

xk :=ρ(Akxk−1+bk), k=1,2,··· ,L−1,

xL :=ALxL−1+bL,

(2.3)

and
ρ(y) :=

(

ρ(y1),··· ,ρ(ym)
)

, ∀ y=(y1,··· ,ym)∈R
m.

We use three quantities to measure the complexity of the neural network: number of
hidden layers, number of nodes (i.e. activation units), and number of nonzero weights,
which are L−1, ∑

L−1
k=1 Nk and number of non-zeros in {(Ak,bk), k=1,··· ,L}, respectively,

for the neural network defined in (2.1). For convenience, we denote by #A the number
of nonzero components in A for a given matrix or vector A. For the neural network Φ

defined in (2.1), we also denote its number of nonzero weights as #Φ :=∑
L
k=1(#Ak+#bk).

In this paper we study the approximation property of smooth functions by deep neu-
ral networks with RePUs as activation units. It seems that σs networks were first used
in the classic works by Mhaskar and his coworkers (see e.g. [26, 27]) to obtain high-order
convergence of neural network approximation. σs is also a special case of piece-wise
polynomial activation function, which has been studied in [51] for shallow network ap-
proximation. We also note that σ3 has been used in a deep Ritz method proposed recently
to solve PDEs using variational form [52].

The construction of RePU networks adopted by Mhaskar bases on the fact that a poly-

nomial of degree n in d dimension can be represented by a linear combination of (n+d
d)

number of monomials of the form
(

Ax+b
)n

, with each one using different affine trans-
form. To represent a polynomial of degree n using σs neural network, they first compose
σs(x) for k= ⌈logs n⌉ times, which result in σsk(x). Then a neural network with one-layer

σsk(x) units of amount (n+d
d) is capable to accurately represent any polynomial of degree

n. This kind of construction give an optimal linear approximation result for neural net-
work using high order (the order is sk) sigmoidal activation functions. However, if regard
the constructed neural network as a σs neural network, it has k hidden layers. The corre-
sponding linear approximation bound is quasi-optimal due to this factor k. Moreover, to
find the corresponding network coefficients to represent a given polynomial, one needs
to solve a Vandermonde-like matrix, whose condition number is known grows geometri-
cally (see e.g. [53]). In this paper, we propose a different approach which does not involve
any Vandermonde matrix of large size.

6 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

2.1 Approximation by deep ReQU networks

Our analyses relies upon the fact: x, x2, ··· , xs, and xy all can be realized by σs neural
networks with a few number of coefficients. We first give the result for s=2 case.

Lemma 2.1. For any x,y∈R, the following identities hold:

x2=βT
2 σ2(ω2x), (2.4)

x=βT
1 σ2(ω1x+γ1), (2.5)

xy=βT
1 σ2(ω1x+γ1y), (2.6)

where

β2=[1,1]T , ω2=[1,−1]T , β1=
1

4
[1,1,−1,−1]T , ω1=[1,−1,1,−1]T , γ1=[1,−1,−1,1]T .

(2.7)
If both x and y are non-negative, the formula for x2 and xy can be simplified to the following form

x2=σ2(x), (2.8)

xy=βT
3 σ2(ω3x+γ2y), (2.9)

where

β3=
1

4
[1,−1,−1]T , ω3=[1,1,−1]T , γ2=[1,−1,1]T . (2.10)

Proof. All the identities can be obtained by straightforward calculations.

Note that the realizations given in Lemma 2.1 are not unique. For example, to realize
idR(x)= x, we may use

x=(x+1/2)2−x2−1/4=βT
2 σ2(ω2(x+1/2))−βT

2 σ2(ω2x)−1/4,

for general x∈R, and use

x=(x+1/2)2−x2−1/4=σ2(x+1/2)−σ2(x)−1/4,

for non-negative x. To have a neat presentation, we will use (2.4)-(2.10) throughout this
paper even though simpler realizations may exist for some special cases. We notice that
the realization of the identity map idR(x) given in (2.5) is a special case of (2.6) with y=1.
Furthermore, the constant function 1 can be represented by a trivial network with L= 1
and A1=0, b1=1.

Remark 2.1. Notice that in [21, 22, 50], all the analyses rely on the fact that x2 can be
approximated to an error tolerance ε by a deep ReLU networks of complexity O(log 1

ε).
In our approach, by replacing ReLU with ReQU, x2 is represented with no error using a
ReQU network with only one hidden layer and 2 hidden neurons. This simple replace-
ment greatly simplifies the proofs of some existing deep neural network approximation
bounds, improves the approximation rate and meanwhile reduces the network complex-
ity.

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 7

2.1.1 Optimal realizations of polynomials by deep ReQU networks with no error

The basic property of σ2 given in Lemma 2.1 can be used to construct deep neural network
representations of monomials and polynomials. We first show that the monomial xn,n>2
can be represented exactly by deep ReQU networks of finite size but not shallow ReQU
networks.

Theorem 2.1. A) The monomial xn,n ∈ N defined on R can be represented exactly by a σ2

network. The number of network layers, number of hidden nodes and number of nonzero weights
required to realize xn are at most ⌊log2n⌋+2, 5⌊log2 n⌋+5 and 25⌊log2n⌋+14, respectively.
Here ⌊x⌋ represents the largest integer not exceeding x for x∈R.

B) For any n > 2, xn can not be represented exactly by any ReQU network with less than
⌈log2n⌉ hidden layers.

Proof. 1) We first prove part B. For a one-layer ReQU network with N activation units,
one input and one output, the function represented by the network can be written as

fN(x)=
N

∑
k=1

ckσ2(akx+bk)+d,

where d and ak,bk,ck, k = 1,··· ,N are the parameters of the network. Obviously, fN is
a piecewise polynomial with at most N+1 pieces in the intervals divided by distinct
points of xk =−bk/ak, k = 1,··· ,N(suppose the points are in ascending order). In each
piece, fN is a polynomials of degree 2. Since a polynomial of degree at most 2 composed
with another polynomial of degree at most 2 produces a polynomial of degree at most 4,
so a ReQU network with two hidden layers can only represent piecewise polynomials of
degree at most 4. By induction, a ReQU network with m hidden layers can only represent
piecewise polynomials of degree at most 2m. So, with m<⌈log2n⌉, a ReQU network with
m hidden layers can’t exactly represent xn.

2) Now we give a constructive proof for part A. We first express n in binary system as
follows:

n= am ·2m+am−1 ·2m−1+···+a1 ·2+a0,

where aj ∈{0,1} for j=0,1,··· ,m−1, am =1, and m=⌊log2 n⌋. Then

xn = x2m ·x
m−1

∑
j=0

aj2
j

.

Introducing intermediate variables

ξ
(1)
k := x2k

, ξ
(2)
k := x

k−1

∑
j=0

aj2
j

, for 1≤ k≤m,

then
xn = ξ

(1)
m ξ

(2)
m . (2.11)

8 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

Input x

(1)

x21

xa0

(2)

x22

x2a1+a0

(m−1)

x2m−1

x

m−2

∑
j=0

2jaj

(m)

x2m

x

m−1

∑
j=0

2jaj

x

m

∑
j=0

2jaj

Figure 1: A schematic diagram for σ2 network realization of xn. (j) represents the j-th hidden layer for
intermediate variables.

We use the iteration scheme
{

ξ
(1)
1 = x2,

ξ
(2)
1 = xa0 ,

and

{

ξ
(1)
k =(ξ

(1)
k−1)

2,

ξ
(2)
k =(ξ

(1)
k−1)

ak−1ξ
(2)
k−1,

for 2≤ k≤m, (2.12)

and (2.11) to realize xn. The outline of the realization is demonstrated in Fig. 1. In each
iteration step, we need to realize two basic operations: (x)2 and (x)ak y, where x,y stands

for ξ
(1)
k−1,ξ

(2)
k−1 respectively. Note that (x)2 can be realized by Eqs. (2.4) and (2.8) in Lemma

2.1. For the operation (x)aj y, since aj ∈{0,1}, by (2.6), we have

xaj y=
(1+(−1)aj

2
+

1−(−1)aj

2
x
)

y=βT
1 σ2

(

ω1(c
+
j +c−j x)+γ1y

)

, (2.13)

where c±j := 1±(−1)
aj

2 .

Now we describe the procedure in detail. For n ≥ 3, we follow the idea given in
Eq. (2.12) and Fig. 1. The function xn is realized in m+1 steps, which are discussed below.

1) In Step 1, we calculate

ξ
(1)
1 = x2=βT

2 σ2(ω2x)≥0, (2.14)

ξ
(2)
1 = xa0 = c+0 +c−0 x= c+0 +c−0 βT

1 σ2(ω1x+γ1), (2.15)

which implies the first layer output of the neural network is:

x1=σ2(A1x+b1), where A1=

[
ω2

ω1

]

6×1

, b1=

[
0

γ1

]

6×1

, (2.16)

and
[

ξ
(1)
1

ξ
(2)
1

]

=A20x1+b20, where A20=

[
βT

2 0

0 c−0 βT
1

]

2×6

, b20=

[
0

c+0

]

2×1

. (2.17)

Since #ω1=4, #ω2=2, #γ1=4, it is easy to see that the number of nodes in the first
hidden layer is 6, and the number of non-zeros is: #A1+#b1=10.

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 9

2) In Step j, 2≤ j≤m, we calculate

ξ
(1)
j =(ξ

(1)
j−1)

2

=σ2(ξ
(1)
j−1)≥0, (2.18)

ξ
(2)
j =(ξ

(1)
j−1)

aj−1ξ
(2)
j−1

=(c+j−1+c−j−1ξ
(1)
j−1)ξ

(2)
j−1

=βT
1 σ2

(

ω1(c
+
j−1+c−j−1ξ

(1)
j−1)+γ1ξ

(2)
j−1

)

, (2.19)

which suggest the j-th layer output of the neural network is:

xj =σ2

(

Aj1

[

ξ
(1)
j−1

ξ
(2)
j−1

]

+bj1

)

, Aj1=

[
1 0

c−j−1ω1 γ1

]

5×2

, bj1=

[
0

c+j−1ω1

]

5×1

,

and
[

ξ
(1)
j

ξ
(2)
j

]

=Aj+1,0xj+bj+1,0, where Aj+1,0=

[
1 0

0 βT
1

]

2×5

, bj+1,0=0. (2.20)

We have

Aj=Aj1 Aj0, bj=Aj1bj0+bj1, j=2,··· ,m. (2.21)

By a direct calculation, we find that the number of nodes in Layer j is 5 (j=2,··· ,m),
and the number of non-zeros in Layer j, j=3,··· ,m is #Aj+#bj≤21+4=25. For j=2,
#A2+#b2=26+4=30.

3) In Step m+1, we calculate

xn = ξ
(1)
m ξ

(2)
m =βT

1 σ2

(

ω1ξ
(1)
m +γ1ξ

(2)
m

)

, (2.22)

which implies

xm+1=σ2

(

Am+1,1

[

ξ
(1)
m

ξ
(2)
m

])

, where Am+1,1=[ω1 γ1]4×2. (2.23)

So we get xm+1=σ2(Am+1xm+bm+1), with

Am+1=Am+1,1Am+1,0, bm+1=0, (2.24)

and
xm+2 := xn =βT

1 xm+1. (2.25)

10 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

By a direct calculation, we get the number of nodes in Layer m+1 is 4, the number
of non-zero weights is #Am+1=20.

For Layer m+2, which is the output layer of the overall network, Am+2 = βT
1 , and

bm+2 = 0. There are no activation units and the number of nonzero weights is
#Am+2=4.

The ReQU network we just built has m+2 layers. The total number of nodes is 6+
5(m−1)+4=5m+5. The total number of nonzero weights is 10+30+25(m−2)+20+4=
25m+14. Combining the cases n=1,2, we reach to the desired conclusion.

Now we consider how to convert univariate polynomials into σ2 networks. If we di-
rectly apply Theorem 2.1 to each monomial term in a polynomial and then combine them
together, one would obtain a network of depth O(log2 n) and size O(nlog2 n), which is
not optimal. We provide here two algorithms to convert a polynomial into a ReQU net-
work of same scale, i.e. without the extra log2n factor. The first algorithm is a direct
implementation of Horner’s method (also known as Qin Jiushao’s algorithm in China):

f (x)= a0+a1x+a2x2+a3x3+···+anxn

= a0+x

(

a1+x
(

a2+x
(

a3+···+x(an−1+xan)
))
)

. (2.26)

To describe the algorithm iteratively, we introduce the following intermediate variables

yk =

{

an−1+xan, k=n,

ak−1+xyk+1, k=n−1,n−2,··· ,1.

Then we have y1= f (x). By implementing of yk for each k, using the realizations formula
given in Lemma 2.1, and stacking the implementations of n steps up, we obtain a σ2

neural network with O(n) layers and where each layer has a constant width independent
of n.

The second construction given in the following theorem can achieve same represen-
tation power with same amount of weights but much less layers.

Theorem 2.2. If f (x) is a polynomial of degree n on R, then it can be represented exactly by a σ2

neural network with ⌊log2n⌋+1 hidden layers, and the numbers of nodes and nonzero weights
are both of order O(n). To be more precise, the number of nodes is bounded by 9n, and number of
nonzero weights is bounded by 61n.

Proof. Assume f (x)=∑
n
j=0 ajx

j, an 6=0. We first use an example with n=15 to demonstrate

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 11

the process of network construction as follows:

f (x)= a15x15+a14x14+···+a8x8+a7x7+a6x6+···+a1x+a0

= x8
︸︷︷︸

ξ3,0

{

x4
︸︷︷︸

ξ2,0

[

x2
︸︷︷︸

ξ1,0

(a15x+a14)
︸ ︷︷ ︸

ξ1,8

+(a13x+a12)
︸ ︷︷ ︸

ξ1,7

]

︸ ︷︷ ︸

ξ2,4

+

[

x2(a11x+a10)
︸ ︷︷ ︸

ξ1,6

+(a9x+a8)
︸ ︷︷ ︸

ξ1,5

]

︸ ︷︷ ︸

ξ2,3

}

︸ ︷︷ ︸

ξ3,2

+

{

x4

[

x2(a7x+a6)
︸ ︷︷ ︸

ξ1,4

+(a5x+a4)
︸ ︷︷ ︸

ξ1,3

]

︸ ︷︷ ︸

ξ2,2

+

[

x2(a3x+a2)
︸ ︷︷ ︸

ξ1,2

+(a1x+a0)
︸ ︷︷ ︸

ξ1,1

]

︸ ︷︷ ︸

ξ2,1

}

︸ ︷︷ ︸

ξ3,1

. (2.27)

Here ξ1,j1 , j1 = 0,1,2,··· ,8, ξ2,j2 , j2 = 0,1,2,··· ,4, and ξ3,j3 , j3 = 0,1,2 are the intermediate
variable output of Layer 1, 2, 3, respectively. The final output is f (x)= ξ3,0ξ3,2+ξ3,1.

We first describe the construction for the case n≥4 here.
Denote m=⌊log2n⌋. We first extend f (x) to include monomials up to degree 2m+1−1

by zero padding:

f (x) :=
2m+1−1

∑
j=0

ajx
j, where aj =0, for n+1≤ j≤2m+1−1. (2.28)

The process of building a σ2 network to represent f (x) is similar to the case n= 15. We
give details below.

1) The output of Layer 1 intermediate variables are:

ξ1,j = a2j−1x+a2j−2 = a2j−1βT
1 σ2(ω1x+γ1)+a2j−2, j=1,2,··· ,2m, (2.29)

ξ1,0= x2=βT
2 σ2(ω2x), (2.30)

which suggest

x1=σ2

(
ω1x+γ1

ω2x

)

=σ2(A1x+b1), where A1=

[
ω1

ω2

]

, b1=

[
γ1

0

]

. (2.31)

and

ξ1=A2,0x1+b2,0, where A2,0=

[
a21βT

1 0

0 βT
2

]

, b2,0=

[
a22

0

]

, (2.32)

with ξ1=[ξ1,1,ξ1,2,··· ,ξ1,2m ,ξ1,0]
T , a21 =[a1,a3,··· ,a2m+1−1]

T, a22=[a0,a2,··· ,a2m+1−2]
T.

12 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

2) The output of Layer 2 intermediate variables are:

ξ2,j = ξ1,0ξ1,2j+ξ1,2j−1

=βT
1 σ2(ω1ξ1,2j+γ1ξ1,0)+βT

1 σ2

(
ω1ξ1,2j−1+γ1

)
, j=1,2,··· ,2m−1, (2.33)

ξ2,0=(ξ1,0)
2=σ2(ξ1,0), (2.34)

which imply

x2=σ2(A21ξ1+b21), x2,b21∈R
(8·2m−1+1)×1, A21∈R

(8·2m−1+1)×(2m+1), (2.35)

and most elements in A21,b21 are zeros. The nonzero elements are given below
using a Matlab subscript style as:

A21(8j−8 :8j,[2j−1,2j,2m +1])=

[
ω1 0 0

0 ω1 γ1

]

, b21(8j−8 :8j)=

[
γ1

0

]

, (2.36)

for j= 1,2,··· ,2m−1, and the last element of A2,1 is 1. According to the result (2.32)
of Layer 1, we get

x2=σ2(A2x1+b2), A2=A2,1A2,0, b2=A2,1b2,0+b2,1. (2.37)

We also have

ξ2=A3,0x2, where A3,0=

[
I2m−1⊗[βT

1 βT
1] 0

0 1

]

, (2.38)

Here ξ2=[ξ2,1,ξ2,2,··· ,ξ2,2m−1 ,ξ2,0]T, and I2m−1 is the identity matrix in R
2m−1

. ⊗ stands
for Kronecker product.

3) The output of Layer k (3≤ k≤m) intermediate variables are:

ξk,j = ξk−1,0ξk−1,2j+ξk−1,2j−1 (j=1,2,··· ,2m−k+1)

=βT
1 σ2(ω1ξk−1,2j+γ1ξk−1,0)+βT

1 σ2

(
ω1ξk−1,2j−1+γ1

)
, (2.39)

ξk,0=(ξk−1,0)
2=σ2(ξk−1,0). (2.40)

Denote ξk =[ξk,1,ξk,2,··· ,ξk,2m−k+1,ξk,0]
T. We have

ξk=Ak+1,0xk, xk =σ2(Ak1ξk−1+bk1), (2.41)

where Ak1,bk1 have the same formula as A21,b21 given in (2.36) except that the max-
imum value of j is 2m−k+1 rather than 2m−1, and Ak+1,0 has the same formula as
A30 given in (2.38) with 12m−1×1 replaced by 12m−k+1×1 and 1n = [1,··· ,1]T ∈ R

n×1.
Combining (2.41) and (2.38), we get

xk =σ2(Akxk−1+bk), where Ak=Ak1Ak0, bk =bk1. (2.42)

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 13

4) The output of Layer m+1 intermediate variables are:

ξm+1,1= ξm,0ξm,2+ξm,1=βT
1 σ2(ω1ξm,2+γ1ξm,0)+βT

1 σ2(ω1ξm,1+γ1). (2.43)

Written into the following form

ξm+1 :=[ξm+1,1]=Am+2,0xm+1, xm+1=σ2(Am+1,1ξm+bm+1,1), (2.44)

we have

Am+1,1=

[
ω1 0 0

0 ω1 γ1

]

, bm+1,1=

[
γ1

0

]

, (2.45)

and
Am+2,0=[βT

1 βT
1], bm+2,0=0. (2.46)

The iteration formula for xm+1 is xm+1=σ2(Am+1xm+bm+1), where

Am+1=Am+1,1Am+1,0, bm+1=bm+1,1. (2.47)

5) Since ξm+1 = f (x), the network ends at Layer m+2, with xm+2 = ξm+1. So we get
Am+2=Am+2,0, and bm+2=0 from Eq. (2.44).

For n<4, the procedure can be obtained by removing some sub-steps from the cases n≥4.
From the construction process, we see that the number of layers is m+2, the numbers of
nodes in Layer 1 to Layer m+1 are 6, 8×2m−k+1+1(2≤k≤m) and 8 respectively, and the
number of nonzero weights in Aj, bj (1≤ j≤m+2) are not bigger than 10, (40×2m−1+2)+

8×2m−1, (68×2m−j+1+1)+4×2m−j+1 (3≤ j ≤m), 72, 8 respectively. Summing up these
numbers, we reach the desired bound.

Remark 2.2. Theorem 2.1 says we can use a σ2 network of scale O(log2 n) to represent xn

exactly. Theorem 2.2 says that any polynomial of degree less than n can be represented
exactly by a σ2 neural network with ⌊log2 n⌋+1 hidden layers, and no more than O(n)
nonzero weights. Such results are not available for ReLU network and neural networks
using other non-polynomial activation functions, such as logistic, tanh, softplus, sinc etc.
We note that the constants in the two theorems may not be optimal, but the orders of
number of layers and number of nonzero weights are optimal.

2.1.2 Error bounds of approximating smooth functions by deep ReQU networks

Now we analyze the error of approximating general smooth functions using ReQU net-
works. We first introduce some notations and give a brief review of some classical results
of polynomial approximation.

Let Ω⊆R
d be the domain on which the function to be approximated is defined. For

the 1-dimensional case in this section, we focus on Ω= I := [−1,1]. Similar discussions
and results can be extended to Ω = [0,∞) and (−∞,∞) as well. We denote the set of

14 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

polynomials with degree up to N defined on Ω by PN(Ω), or simply PN . Let J
α,β
n (x) be

the Jacobi polynomial of degree n, n∈ N0; the family of all these polynomials forms a
complete set of orthogonal bases in the weighted L2

ωα,β(I) space with respect to weight

ωα,β(x)= (1−x)α(1+x)β for α,β>−1. To describe functions with high order regularity,
we define the Jacobi-weighted Sobolev space Bm

α,β(I) as (see e.g. [54]):

Bm
α,β(I) :=

{

u : ∂k
xu∈L2

ωα+k,β+k(I), 0≤ k≤m
}

, m∈N, (2.48)

with norm

‖ f‖Bm
α,β

:=

(m

∑
k=0

∥
∥∂k

xu
∥
∥

2

L2

ωα+k,β+k

)1/2

. (2.49)

Define the L2
ωα,β-orthogonal projection π

α,β
N : L2

ωα,β(I)→PN by requiring

(

π
α,β
N u−u,v

)

ωα,β
=0, ∀v∈PN . (2.50)

A detailed error estimate on the projection error π
α,β
N u−u is given in Theorem 3.35 of [54],

by which we have the following theorem on the approximation error of ReQU networks.

Theorem 2.3. Let α,β>−1, N≥1. For any u∈Bm
α,β(I), there exist a ReQU network Φu

N with

⌊log2 N⌋+1 hidden layers, O(N) nodes, and O(N) nonzero weights, satisfying the following
estimates.

1) If 0≤ l≤m≤N+1, we have

∥
∥
∥∂l

x (Rσ2(Φ
u
N)−u)

∥
∥
∥

ωα+l,β+l
≤ c

√

(N−m+1)!

(N−l+1)!
(N+m)(l−m)/2‖∂m

x u‖ωα+m,β+m. (2.51)

2) If m>N+1≥ l, we have

∥
∥
∥∂l

x (Rσ2(Φ
u
N)−u)

∥
∥
∥

ωα+l,β+l
≤ c(2πN)−1/4

(√
e/2

N

)N−l+1

‖∂N+1
x u‖ωα+N+1,β+N+1 . (2.52)

Here c≈1 for N≫1.

Proof. For any given u ∈ Bm
α,β(I), the polynomial f = π

α,β
N u ∈ PN. The projection error

π
α,β
N u−u is estimated by Theorem 3.35 in [54], which is (2.51) and (2.52) with Rσ2(Φ

u
N)

replaced by π
α,β
N u. By Theorem 2.2, f can be represented exactly by a ReQU network Φu

N

with ⌊log2 N⌋+1 hidden layers, O(N) nodes, and O(N) nonzero weights, i.e. Rσ2(Φ
u
N)=

π
α,β
N u. We thus obtain estimation (2.51) and (2.52).

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 15

Remark 2.3. In (2.51) and (2.52), we allow the error measured in high-order derivatives,
i.e. l ≥ 3, because Rσ2(Φ

u
N) is an exact realization of a polynomial, which is infinitely

differentiable. In practice, if Φu
N is a trained network with numerical error, we can not

measure the error with derivatives order ≥3, since ∂3
xσ2(x) is not in L2 space.

Based on Theorem 2.3, we can analyze the network complexity of ε-approximation of
a given function with certain smoothness. For simplicity, we only consider the case with
l=0. The result is given in the following theorem.

Theorem 2.4. For any given function f (x)∈Bm
α,β(I) with norm less than 1, where m is either a

fixed positive integer or infinity, and for ε∈ (0,1) small enough, there exists a ReQU network Φ
f
ε

with number of layers L, number of nonzero weights N satisfying

• if m is a fixed positive integer, then L=O
(

1
m log2

1
ε

)
, and N=O

(
ε−

1
m

)
;

• if m=∞, i.e. f (x)∈B∞
α,β(I), then L=O

(
log2

(
log 1

ε

))
, and N=O

(
log(1/ε)

log2(log(1/ε))

)

,

that approximates f within an error tolerance ε, i.e.

‖Rσ2(Φ
f
ε)− f‖ωα,β(I)≤ ε. (2.53)

Proof. For a fixed m, or N≫m, we obtain from (2.51) that

‖Rσ2(Φ
u
N)−u‖ωα,β(I)≤ cN−m‖∂m

x u‖ωα+m,β+m. (2.54)

By above estimate, we obtain that to achieve an error tolerance ε to approximate a func-

tion with Bm
α,β(I) norm less than 1, it suffices to take N =

(
c
ε

) 1
m . For fixed m, we have

N=O
(
ε−

1
m

)
, the depth of the corresponding ReQU network is L=O

(
1
m log2

1
ε

)
.

For f ∈B∞
α,β, by taking m=∞ in Theorem 2.3, we have

‖Rσ2(Φ
u
N)−u‖ωα,β(I)≤ c(2πN)−

1
4

(√
e/2

N

)N+1

‖u‖B∞
α,β
≤ c′e−γN‖u‖B∞

α,β
, (2.55)

where c′ is a general constant, and γ ≈O(logN) can be larger than any fixed positive
number for sufficient large N. To approximate a function with B∞

α,β(I) norm less than 1

with error ε= c′e−γN, it suffices to take N= 1
γ log

(
c′
ε

)
, which means N=O

(log(1/ε)
log2(log(1/ε))

)
.

The depth of the corresponding ReQU network is L=O
(

log2

(
log 1

ε

))
. Here ε is assumed

to be small enough such that log2

(
log c′

ε

)
is no less than 1.

16 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

2.2 Approximation by deep networks using general rectified power units

The results of approximation monomials, polynomials and general smooth functions by
ReQU networks discussed in Subsection 2.1 can be extended to general RePU networks.

To keep the paper short, we only present the results on approximating monomials
with RePU in Theorem 2.5. The other results similar to ReQU networks can be obtained
but the details are quite lengthy, we report them in a separate paper [55].

Theorem 2.5. Regarding the problem of using σs(x) (2 ≤ s ∈ N) neural networks to exactly
represent monomial xn, n∈N, we have the following results:

(1) If s=n, the monomial xn can be realized exactly using a σs networks having only 1 hidden
layer with two nodes.

(2) If 1≤ n < s, the monomial xn can be realized exactly using a σs networks having only 1
hidden layer with no more than 2s nodes.

(3) If n>s≥2, the monomial xn can be realized exactly using a σs networks having ⌊logs n⌋+2
hidden layers with no more than (6s+2)(⌊logs n⌋+2) nodes, no more than O(25s2⌊logs n⌋)
nonzero weights.

Proof. (1) It is easy to check that xs has an exact σs realization given by

ρs(x) :=σs(x)+(−1)sσs(−x)= xs. (2.56)

(2) For the case of 1≤n< s, we consider the following linear combination

a0+
s

∑
k=1

akρs(x+bk)= a0+
s

∑
k=1

ak

(
s

∑
j=0

Cs
j b

s−j
k xj

)

= a0+
s

∑
j=0

Cs
j

(
s

∑
k=1

akb
s−j
k

)

xj, (2.57)

where a0,ak,bk, k= 1,··· ,s are parameters to be determined. Cs
j are binomial coefficients.

The above expression is equal to xn, provided that the parameters solve the following
linear system:

Ds+1a :=













1 1 ··· 1 0
...

...
...

...
bs−n

1 bs−n
2 ··· bs−n

s 0
...

...
...

bs−1
1 bs−1

2 ··· bs−1
s 0

bs
1 bs

2 ··· bs
s 1






















a1
...
·

as

a0










=











0
...

(Cs
n)

−1

...
0











, (2.58)

where the top-left s×s submatrix of Ds+1 is a Vandermonde matrix, which is invertible as
long as bk, k=1,··· ,s are distinct. For simplicity, we choose bk, k=0,··· ,s to be equidistant

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 17

points, then (2.58) is uniquely solvable. Solving for a0,··· ,as we obtain an exact represen-
tation of xn using (2.57), which corresponds to a neural network having one hidden layer
with no more than 2s σs units.

For example, when s= 2, we may take b1 =−1, b1 = 1. Solving Eq. (2.58) with n= 1,
we get a1=− 1

4 , a2 =
1
4 , and a0 =0. Thus

x=
1

4
ρ2(x+1)− 1

4
ρ2(x−1).

When s=3, take b1=−1, b2=0, b3=1, we obtain

x=
1

6

[
ρ3(x−1)−2ρ3(x)+ρ3(x+1)

]
,

x2=
1

6

[
ρ3(x+1)−ρ3(x−1)

]
− 1

3
.

(3) Now, we consider the case n> s≥2, n∈N. For any given numbers y,z∈R, using
the identity

yz=
1

4

[
(y+z)2−(y−z)2

]
(2.59)

and the fact that (y+z)2, (y−z)2 both can be realized exactly by a one layer σs network
with no more than 2s nodes, we conclude that the product yz can be realized by one layer
σs network with no more than 4s nodes. To realize xn by σs, we rewrite n in the following
form

n= am ·sm+am−1 ·sm−1+···+a1 ·s+a0, m=⌊logs m⌋, (2.60)

where aj ∈{0,1,··· ,s−1} for j=0,1,··· ,m−1 and am =1. So we have

xn =(xsm
)am(xsm−1

)am−1 ···(xs)a1(x)a0 . (2.61)

Define ξk = xsk
, zk+1=(ξk)

ak , k=0,1,··· ,m, and

y2= xa0 , yk+2= zk+1yk+1

(
=(xsk

)ak yk+1

)
, for k=1,··· ,m, (2.62)

we have ym+2= xn. Eq. (2.62) can be regarded as an iteration scheme, with iteration vari-
ables ξk,yk,zk, where the subscript k stands for the iteration step. A schematic diagram
for this iteration is given in Fig. 2. Different to Theorem 2.1, for s > 2, we need a deep
σs neural network with m+2 hidden layers to realize xn,n > s, due to the introduction
of intermediate variables zk. In each layer, we need no more than 2+2s+4s activation
nodes to calculate ξk+1 = ρs(ξk), zk+1 = (ξk)

ak , and yk+1 = zkyk. So in total we need no
more than (6s+2)(m+2)=O(6slogs n) nodes. A direct calculation shows that the num-
ber of nonzero weights in the network is no more than O(25s2 logs n). The theorem is
proved.

18 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

Input: x

(1)

xs1

xa0

(2)

xs2

(xs)a1

xa0

(3)

xs3

(xs2
)a2

xsa1+a0

(m−1)

xsm−1

(xsm−2
)am−2

x

m−3

∑
j=0

s jaj

(m)

xsm

(xsm−1
)am−1

x

m−2

∑
j=0

s jaj

(m+1)

xsm

x

m−1

∑
j=0

s jaj

x

m

∑
j=0

s jaj

Figure 2: A schematic diagram for σs network realization of xn, n> s. (j) represents the j-th hidden layer of
intermediate variables.

3 Approximation of multivariate functions

In this section, we discuss how to approximate multivariate smooth functions by ReQU
networks. Similar to the univariate case, we first study the representation of polynomials
then discuss the approximation error of general smooth functions.

3.1 Deep ReQU network representations of multivariate polynomials

Theorem 3.1. If f (x) is a multivariate polynomial with total degree n on R
d, then there exists

a σ2 neural network having d⌊log2 n⌋+d hidden layers with no more than O(Cn+d
d) activation

functions and nonzero weights, that can represent f with no error. We note that, here the constant
behind the big O can be bounded independent of d.

Proof. 1) We first consider the 2-dimensional case. Suppose f (x,y) = ∑
n
i+j=0 aijx

iyj and

n≥ 4 (the results for n≤ 3 are similar but easier, so skipped here). To represent f (x,y)
exactly with a σ2 neural network based on the results for the 1-dimensional case given in
Theorem 2.2, we first rewrite f (x,y) as

f (x,y)=
n

∑
i=0

(n−i

∑
j=0

aijy
j

)

xi=:
n

∑
i=0

a
y
i xi, where a

y
i =

n−i

∑
j=0

aijy
j. (3.1)

So to realize f (x,y), we can first realize a
y
i , i = 0,··· ,n−1 using n small σ2 networks Φi,

i= 0,··· ,n−1, i.e. Rσ2(Φi)(y)= a
y
i for given input y; then use a σ2 network Φn to realize

the 1-dimensional polynomials f (x,y)=∑
n
i=0 a

y
i xi. There are two places that need some

technical treatment, the details are given below.

(1) The network Φn takes a
y
i , i=0,··· ,n and x as input. So these quantities must be pre-

sented at the same layer of the overall neural network, because we do not want con-
nections over non-adjacent layers. By Theorem 2.2, the largest depth of networks

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 19

Φi, i= 0,··· ,n−1 is ⌊log2n⌋+2, so we can lift x to layer ⌊log2n⌋+2 using multiple
idR(·) operations. Similarly, we also keep a record of input y in each layer using
multiple idR(·) operations, such that Φi, i = 1,··· ,n−1 can start from appropriate
layer and generate output exactly at layer ⌊log2 n⌋+2. The overall cost for record-
ing x,y in layers 1,··· ,⌊log2n⌋+2 is O(⌊log2 n⌋+2), which is small comparing to the
number of coefficients Cn+2

2 .

(2) While realizing ∑
n
i=0 a

y
i xi, the coefficients a

y
i , i = 0,··· ,n are network input instead

of fixed parameters. So when applying the network construction given in Theorem
2.2, we need to modify the structure of the first layer of the network. More precisely,
Eq. (2.29) in Theorem 2.2 should be changed to

ξ
y
1,j = a

y
2j−1x+a

y
2j−2

=βT
1 σ2

(

ω1x+γ1a
y
2j−1

)

+βT
1 σ2

(

ω1a
y
2j−2+γ1

)

, j=1,··· ,2m. (3.2)

So the number of nodes for the first layer changed from 6 to 2+8·2m , the number
of nonzero weights for the first layer changed from 10 to 16·2m+2. So the number
of hidden layers, number of nodes and nonzero weights of Φn can be bounded by
⌊log2 n⌋+1, 17n, and 77n respectively.

Assembling Φ0,··· ,Φn, the overall network to represent f (x,y) has 2⌊log2 n⌋+3 layers
with number of nodes no more than

n−1

∑
j=0

9(n− j)+17n+8(m+2)=9
n(n+1)

2
+17n+8m+16=O(Cn+d

d),

and number of weights no more than

n−1

∑
j=0

61(n− j)+77n+16(m+2)×2+12n=61
n(n+1)

2
+89n+32m+64=O(Cn+d

d).

Thus, we proved that the theorem is true for the case d=2.

2) The case d>2 can be proved by mathematical induction using the similar procedure
as done for d=2 case. Note that we pad in some zeros in each direction in the iteration.
Since after each dimension iteration, the number of degree of freedom are geometrically
reduced, by a straightforward calculation, one can show that the constant behind the big
O can be made independent of dimension d. An improved algorithm using less padding
zeros is proposed in another paper [55].

Using a similar approach as in Theorem 3.1, one can easily prove the following theo-
rem.

Theorem 3.2. For a polynomial fN in a tensor product space Qd
N(I1×···× Id) :=PN(I1)⊗···⊗

PN(Id), there exists a σ2 network having d⌊log2 N⌋+d hidden layers with no more than O(Nd)
activation functions and nonzero weights, can represent fN with no error.

20 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

3.2 Error bounds of approximating multivariate functions by ReQU networks

Now we analyze the error of approximating general multivariate smooth functions using
ReQU networks.

For a vector x= (x1,··· ,xd)∈R
d, we define |x|1 := |x1|+···+|xd|, |x|∞ :=maxd

i=1 |xi|.
Define the high dimensional Jacobi weight as ωα,β(x):=ωα1,β1(x1)···ωαd,βd(xd). We define
the multidimensional Jacobi-weighted Sobolev space Bm

α,β(Id) as [54]:

Bm
α,β(Id) :=

{

u∈L2(Id) |∂k
xu :=∂k1

x1
···∂kd

xd
u∈L2

ωα+k,β+k(Id), k∈N
d
0, |k|1≤m

}

, m∈N0,

with norm and semi-norm

‖u‖Bm
α,β

:=
(

∑
|k|1≤m

∥
∥
∥∂k

xu
∥
∥
∥

2

L2

ωα+k,β+k

)1/2
, |u|Bm

α,β
:=
(

∑
|k|1=m

∥
∥
∥∂k

xu
∥
∥
∥

2

L2

ωα+k,β+k

)1/2
.

Define the L2
ωα,β-orthogonal projection π

α,β
N : L2

ωα,β(Id)→Qd
N(Id) by the property

(

π
α,β
N u−u,v

)

ωα,β
=0, ∀v∈Qd

N(Id). (3.3)

Then for u∈Bm
α,β(Id), we have the following error estimate (see Theorem 8.1 and Remark

8.13 in [54]):

‖π
α,β
N u−u‖L2

ωα,β (Id)≤ cN−m|u|Bm
α,β

, 1≤m≤N, (3.4)

where c is an absolute constant. Combining (3.4) and Theorem 3.2, we obtain the follow-
ing upper bound for the ε-approximation of functions in Bm

α,β(Id) space.

Theorem 3.3. For any u∈Bm
α,β(Id), with |u|Bm

α,β(Id)≤1, α,β∈(−1,∞)d, and any ε∈ (0,1) there

exists a σ2 neural network Φu
ε having O

(
d
m log2

1
ε +d

)
layers with no more than O

(
ε−d/m

)
nodes

and nonzero weights, that approximates u with L2
ωα,β(Id)-error less than ε, i.e.

‖Rσ2(Φ
u
ε)−u‖L2

ωα,β (Id)≤ ε. (3.5)

Remark 3.1. According to the classic nonlinear approximation theory by DeVore, Howard
and Micchelli [56], the results of Theorem 2.4 (first part) and Theorem 3.3 are optimal in
the case that the approximation depends on the function to be approximated continu-
ously.

Remark 3.2. Note that results for approximating functions in weighted Sobolev space
given in Theorem 3.3 can be extended to Ck if k is sufficient large, similar to the second
part of Theorem 2.4. Comparing this result with Theorem 1 in [21], we see that the num-
ber of computational units and nonzero weights needed by a ReQU network to approxi-
mate a function u∈Bm

α,β(Id) for m sufficient large, with an error tolerance ε is less than that

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 21

needed by a ReLU network. The ReLU network is log 1
ε times larger than corresponding

ReQU network. For low accuracy approximation, the factor O(log 1
ε) is not very big, but

for high accuracy approximations, this factor can be as large as several dozens, which
could make a big difference in large scale computations.

Note that, for functions with fixed lower order continuity, ReLU network can give
good approximation using less number of layers, or use very deep ReLU networks to
break the bounds given in Theorem 3.3. We refer interested readers to the recent works
by Voigtlaender and Petersen [57], and Yarotsky [58].

4 High-dimensional functions with sparse polynomial

approximations

In last section, we showed that for a d-dimensional function with partial derivatives up
to order m in L2(Id) can be approximated within error ε by a ReQU neural network with
complexity O(ε−d/m). When m is fixed or much smaller than d, the network complexity
has an exponential dependence on d. However, in a lot of applications, high-dimensional
problems may have low intrinsic dimension (see e.g. [59, 60]). One particular example
are high-dimensional tensor product functions(or linear combinations of finite terms of
tensor product functions), which can be well approximated by a hyperbolic cross or sparse
grid truncated series.

4.1 A brief review of hyperbolic cross approximations and sparse grids

Sparse grids were originally introduced by S. A. Smolyak [30] to integrate or interpolate
high dimensional functions. Hyperbolic cross approximation is a technique similar to
sparse grids but without the concept of grids. We introduce hyperbolic cross approxi-
mation by considering a tensor product function: f (x) = f1(x1)··· fd(xd). Suppose that
f1,··· , fd have similar regularity that can be well approximated by using an orthonormal
bases {φk, k=0,1,··· .}; that is,

fi(x)=
∞

∑
k=0

b
(i)
k φk(x), |b(i)k |≤ ck̄−r , i=1,··· ,d,

where c is a general constant, r ≥ 1 is a constant depending on the regularity of fi, k̄ :=
max{1,k}. So we have an expansion for f as

f (x)=
d

∏
i=1

(
∞

∑
k=0

b
(i)
k φk(xi)

)

= ∑
k∈N

d
0

bkφk(x),

where

|bk|=
∣
∣b

(1)
k1

···b(d)kd

∣
∣≤ cd(k̄1 ··· k̄d)

−r, φk(x)=φ1(x1)···φd(xd).

22 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

Thus, to have a best approximation of f (x) using finite terms, one should take

fN := ∑
k∈χd

N

bkφk(x), (4.1)

where
χd

N :=
{

k=(k1,··· ,kd)∈N
d
0 | k̄1 ··· k̄d ≤N

}

(4.2)

is the hyperbolic cross index set. We call fN defined by (4.1) a hyperbolic cross approxi-
mation of f .

For general functions defined on Id, we choose φk to be multivariate Jacobi polyno-

mials J
α,β
n , and define the hyperbolic cross polynomial space as

Xd
N :=span{ J

α,β
n , n∈χd

N}. (4.3)

Note that the definition of Xd
N doesn’t depend α and β. {J

α,β
n } is used to served as a set

of bases for Xd
N . To study the error of hyperbolic cross approximation, we define Jacobi-

weighted Korobov-type space

Km
α,β(Id) :=

{

u∈L2
ωα,β(Id) : ∂k

xu∈L2
ωα+k,β+k(Id), 0≤ |k|∞ ≤m

}

, for m∈N0, (4.4)

with norm and semi-norm

‖u‖Km
α,β

:=

(

∑
|k|∞≤m

∥
∥
∥∂k

xu
∥
∥
∥

2

L2

ωα+k,β+k

)1
2

, |u|Km
α,β

:=

(

∑
|k|∞=m

∥
∥
∥∂k

xu
∥
∥
∥

2

L2

ωα+k,β+k

) 1
2

. (4.5)

For any given u∈K0
α,β(= B0

α,β), the hyperbolic cross approximation π
α,β
N,Hu∈ Xd

N can be

defined as a projection by requiring

(π
α,β
N,Hu−u,v)ωα,β =0, ∀v∈Xd

N . (4.6)

Then we have the following error estimate about the hyperbolic cross approximation (see
Theorem 2.2 in [33]):

‖∂l
x(π

α,β
N,Hu−u)‖ωα+l,β+l ≤D1N|l|∞−m|u|Km

α,β
, 0≤ l≤m, m≥1, (4.7)

where D1 is a constant independent of N. It is known that the cardinality of χd
N is of

order O(N(logN)d−1) in [33]. The above error estimate says that to approximate a func-
tion u∈Km

α,β with an error tolerance ε, one only needs a space of Jacobi polynomials of

dimension at most O
(
ε−1/m(1

m log 1
ε)

d−1
)
, the exponential dependence on d is weakened

(cp. Theorem 3.3). To remove the exponential term (log 1
ε)

d−1, one may consider a more
general sparse polynomial space [33]:

Xd
N,γ :=span

{
J

α,β
n , (Πd

i=1n̄i)|n|−γ
∞ ≤N1−γ

}
, −∞≤γ<1. (4.8)

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 23

In particular, Xd
N,0 = Xd

N is the hyperbolic cross space defined in (4.3), and Xd
N,−∞ :=

span
{

J
α,β
n , |n|∞ ≤N

}
is the standard full grid. For 0<γ<1, it is known that (see lemma

3 in [32]):
Card(Xd

N,γ)=C(γ,d)N, 0<γ<1, (4.9)

where C(γ,d) is a constant that depends on γ and d but is independent of N. We call
Xd

N,γ,0< γ< 1 optimized hyperbolic cross polynomial space. It is proved by Shen and

Wang that the L2
ωα,β-orthogonal projection π

α,β
N,γ from Korobov space to Xd

N,γ satisfies the
following estimate (see Theorem 2.3 in [33]):

‖π
α,β
N,γu−u‖ωα,β ≤D2N−m(1−γ(1− 1

d))|u|Km
α,β

, 0<γ<1, (4.10)

where D2 is a constant independent of N. From (4.9) and (4.10), we get that to approxi-
mate a function u∈Km

α,β with an error tolerance ε, one only needs a space of Jacobi polyno-

mials of dimension at most O
(
ε−1/m(1−γ(1− 1

d))
)
. We will later use this estimate to derive

another upper bound of approximating functions in Km
α,β using deep ReQU networks.

In practice, the exact hyperbolic cross projection is not easy to calculate. An alter-
nate approach is the sparse grid, which uses hierarchical interpolation schemes to build
a hyperbolic cross-like approximation of high dimensional functions. To define sparse
grids for Id, we first define the underlying 1-dimensional interpolations. Given a se-
ries of interpolation point sets X i ={xi

1,··· ,xi
mi
}⊆ [−1,1], mi =Card(X i), i=1,2,··· , with

0<m1<m2< ··· , the interpolation on X i for f ∈C0(I) is defined as

U i(f)=
mi

∑
j=1

f (xi
j)ℓ

i
j(x), (4.11)

where ℓi
j(x)∈Pmi−1([−1,1]) (j=1,2,··· ,mi) are the Lagrange interpolation polynomials for

the interpolation points X i. The sparse grid interpolation for high-dimension function
f ∈C0(Id) is defined as [30]:

A(q,d)(f)= ∑
d≤|i|1≤q

(

∆i1⊗···⊗∆id

)

(f), q≥d, (4.12)

where ∆i=U i−U i−1, i∈N. For convenience, we define U0 :=0, m0=0, X 0=∅. Formally,
(4.12) can be defined on any grids {X i, i=1,2,··· ,q−d+1}. However, to have a one-to-one
transform between the values on interpolation points and the coefficients of linearly in-
dependent bases in the interpolation space, we need {X i, i=1,2,··· ,q−d+1} to be nested,
i.e. X 1 ⊂X 2 ⊂ ··· ⊂X q−d+1. Fast transforms between physical values and interpolation
coefficients always exist for sparse grid interpolations using nested grids [40, 41]. Define
sparse grid index set as

I q
d :=

⋃

d≤|i|1≤q

Ĩ i1×···×Ĩ id , where Ĩ k :=I k\I k−1, I k ={1,2,··· ,mk}. (4.13)

24 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

Then the set of the sparse grid interpolation points and the corresponding interpolation
space are given as

X q
d =

⋃

d≤|i|1≤q

(

(X i1\X i1−1)×···×(X i1\X i1−1)
)

, q≥d, (4.14)

V
q
d =span{φ̃k(x), k∈I q

d } q≥d, (4.15)

where φ̃k can be chosen as the hierarchical interpolation basis defined in [40], or the
Lagrange-type d-dimensional interpolation polynomial on points X q

d , which takes value
1 on k-th interpolation point and 0 on the other points.

A commonly used 1-dimensional scheme is the Chebyshev-Gauss-Lobatto scheme,
which uses the extrema of the Chebyshev polynomials as interpolation points:

xi
j =−cos

(
(j−1)π

mi−1

)

, j=1,2,··· ,mi. (4.16)

In order to obtain nested sets of points, mi are chosen as

mi =

{

1, i=1,

2i−1+1, i>1,
(4.17)

with x1
1 :=0. Define

Fk
d :={ f : [−1,1]d →R |Dα f ∈C([−1,1]d), ∀ |α|∞ ≤ k}. (4.18)

Then for any function f ∈Fk
d , with ‖ f‖Fk

d
:=max|α|∞≤k‖∂α f‖L∞ ≤1, the interpolation error

on the above Chebyshev sparse grids are bounded as Theorem 8 in [36]:

‖ f −A(q,d) f‖L∞ ≤ cd,k2−kqq2d−1≤ cd,kn−k(logn)(k+2)(d−1)+1, (4.19)

where n=Card(X q
d)=Card(I q

d)=O(2qqd−1) is the number of points in the sparse grids,
and cd,k is a constant that depends on d,k only. Note that if a different norm instead of the
L∞ norm is used, one can improve the result a little bit, but no results with error bound
smaller than O(n−k) is known.

4.2 Error bounds of deep ReQU network approximation for multivariate
functions with sparse structures

Now we discuss the ReQU network approximation of high-dimensional smooth func-
tions with sparse polynomial expansions, which takes hyperbolic cross and sparse grid
polynomial expansions as examples. We introduce the concept of downward closed poly-
nomial space first. A linear polynomial space PC is said to be downward closed if it satis-
fies the following: if d-dimensional polynomial p(x)∈PC, then ∂k

x p(x)∈PC for any k∈N
d
0,

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 25

at the same time, there exists a set of bases that is composed of monomials only. It is easy
to verify that the hyperbolic cross polynomial space Xd

N , the sparse grid polynomial in-
terpolation space V

q
d , and the optimized hyperbolic cross space Xd

N,γ are all downward
closed. For a downward closed polynomial space, we have the following ReQU network
representation results.

Theorem 4.1. Let PC be a downward closed linear space of d-dimensional polynomials with
dimension n, then for any function f ∈PC, there exists a σ2 neural network having no more than

∑
d
i=1⌊log2 Ni⌋+d hidden layers, no more than O(n) activation functions and nonzero weights,

can represent f exactly. Here Ni is the maximum polynomial degree with respect to the i-th
coordinate.

Proof. The proof is similar to Theorem 3.1. First, f can be written as a linear combination
of monomials.

f (x)= ∑
k∈χC

akxk, (4.20)

where χC is the index set of PC with cardinality n. Then we rearrange the summation as

f (x)=
Nd

∑
kd=0

a
x1 ,···,xkd−1

kd
xkd

d , a
x1 ,···,xkd−1

kd
:= ∑

(k1,···,kd−1)∈χ
kd
C

ak1 ,···,kd−1,kd
xk1

1 ···xkd−1

d−1 , (4.21)

where χkd
C are d−1 dimensional downward closed index sets that depend on the index

kd. If each a
x1 ,···,xkd−1

kd
, kd = 0,1,··· ,Nd can be exactly represented by a σ2 network with

no more than ∑
d−1
i=1 ⌊log2 Ni⌋+(d−1) hidden layers, no more than O(Card(χkd

C)) nodes
and nonzero weights, then f (x) can be exactly represented by a σ2 neural network with
no more than ∑

d
i=1⌊log2 Ni⌋+d hidden layers, no more than O(n) nodes and nonzero

weights, since the operation ∑
Nd

kd=0a
x1 ,···,xkd−1

kd
xkd

d can be realized exactly by a σ2 network

with ⌊log2 Nd⌋+1 hidden layers and no more than O(Nd) nodes and nonzero weights.
So, by mathematical induction, we only need to prove that when d = 1 the theorem is
satisfied, which is true by Theorem 2.2.

Remark 4.1. According to Theorem 4.1, we have that:

1) For any f ∈Xd
N , there exists a ReQU network with no more than d⌊log2 N⌋+d hid-

den layers, no more than O(N(logN)d−1) neurons and nonzero weights, that can
represent f with no error.

2) For any f ∈Xd
N,γ with 0<γ<1, there exists a ReQU network having no more than

d⌊log2 N⌋+d hidden layers, no more than O(N) neurons and nonzero weights, that
can represent f with no error.

3) For any f∈V
q
d , there exists a ReQU network having no more than d(q−d+2) hidden

layers, no more than O(2qqd−1) neurons and nonzero weights, that can represent f
with no error.

26 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

Combining the results in Remarks 4.1 with (4.7), (4.10) and (4.19), we obtain the fol-
lowing theorem.

Theorem 4.2. We have following results for ReQU network approximation of functions in
Km

α,β(Id), α,β∈ (−1,∞)d, m≥1 and Fk
d (Id), k≥1:

1) For any function u ∈ Km
α,β(Id), m ≥ 1 with |u|Km

α,β
≤ 1/D1, any ε > 0, there ex-

ists a ReQU network Φu
ε with no more than d

m log2
1
ε +d hidden layers, no more than

O
(
ε−1/m(1

m log 1
ε)

d−1
)

nodes and nonzero weights, such that

‖Rσ2(Φ
u
ε)−u‖ωα,β ≤ ε. (4.22)

2) For any function u∈Km
α,β(Id), m≥1 with |u|Km

α,β
≤1/D2, any ε>0, 0<γ<1, there exists

a ReQU network Φu
ε with no more than d

m(1−γ(1− 1
d))

log2
1
ε +d hidden layers, no more than

O
(
ε−1/[m(1−γ(1− 1

d))]
)

nodes and nonzero weights, such that

‖Rσ2(Φ
u
ε)−u‖ωα,β ≤ ε. (4.23)

3) For any function f∈Fk
d (Id), k≥1 with ‖ f‖Fk

d
≤1, any ε>0, there exists a ReQU network Ψ

f
ε

with no more than O
(

d
k log2

1
ε +d

)
hidden layers, no more than O

(
ε−

1+δ
k (1+δ

k log2
1
ε)

d−1
)

nodes and nonzero weights, such that

‖Rσ2(Ψ
f
ε)− f‖L∞ ≤ ε, (4.24)

where δ>0 can be taken very close to 0 for small enough ε.

Remark 4.2. Taking m=2 in Theorem 4.2, we obtain the following result: For any func-
tion u ∈K2

α,β(Id), with |u|K2
α,β

≤ 1/D1, and ε > 0 there exists a ReQU network Φu
ε with

no more than d
2 log2

1
ε +d hidden layers, no more than O

(
ε−1/2(1

2 log 1
ε)

d−1
)

nodes and
nonzero weights, that approximates u with a tolerance ε. A result of using ReLU net-
works approximating similar functions is recently given by Montanelli and Du [50]. To
approximate a function in K2

α,β(Id) with tolerance ε, they constructed a ReLU network

with O(|log2ε|log2d) layers and O(ε−
1
2 |log2ε| 3

2 (d−1)+1log2d) nonzero weights. Compar-
ing the two results, we find that, while the number of layers required by ReQU networks
might be larger than ReLU networks, the overall complexity of the ReQU network is
|log2ε|d times smaller than that of ReLU network.

Remark 4.3. When one use optimized hyperbolic cross polynomial approximation for
functions in Km

α,β(Id), with |u|Km
α,β
≤1/D2, the exponential growth on d with a base related

to 1/ε in the required ReQU network size is removed. Thus, in this case it seems that the
curse of dimensionality does not exist any more. But we note that, the constant D2 and
the implicit constant hidden in the big O notation, still depend on d. In practice, the error
bound given by the second case may not be better than the first case.

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 27

5 Some preliminary numerical results

In this section, we present some numerical results to verify that the construction algo-
rithms proposed are numerically stable and efficient. We first present the results of rep-
resenting univariate monomials in Table 1. The maximum norm error in this table is
calculated by taking the maximum difference on 100 randomly choose points in [−1,1].
The results show that the ReQU network we constructed can achieve machine accuracy,
which means our approach is numerically stable.

Table 1: Representation of monomials xn.

Degree n L #weight #node L∞-Error

3 3 38 10 4.44e-16

7 4 64 15 2.22e-16

15 5 89 20 9.99e-16

31 6 114 25 7.77e-16

63 7 139 30 6.11e-16

127 8 164 35 2.22e-16

Similar results for representing univariate polynomials are given in Table 2. Here, the
coefficients of the power series are generated randomly according to standard normal
distribution. These results also verify our approach is stable and efficient.

Table 2: Representation of univariate polynomials of degree n.

Degree n L #Weight #Node L∞-Error

3 3 66 14 1.78e-15

7 4 188 31 1.78e-15

15 5 429 64 4.44e-15

31 6 910 129 5.33e-15

63 7 1871 258 5.33e-15

127 8 3792 515 5.33e-15

Numerical tests for 2-dimensional polynomials in tensor-product space and hyper-
bolic cross space are presented in Tables 3 and 4, respectively. The coefficients of corre-
sponding power series are all randomly generated according to standard normal distri-
bution. The results verify the stability and efficiency of our method.

Next, we present some results of approximated 1-dimensional and 2-dimensional
smooth functions using our approach, and compare them with trained ReLU network
approximations. We first show the results of approximating sin(x) using ReQU network
of our approach and ReLU network with randomly initialized coefficients. The ReQU
network is constructed using proposed method based on a polynomial approximation
of degree 8 and then trained by gradient descent method. The result is shown in the left

28 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

Table 3: Representation of polynomials in tensor-product space Q2
N .

Degree N L #Weight #Node L∞-Error

3 5 378 64 1.11e-15

7 7 1570 246 8.88e-15

15 9 6376 988 1.60e-14

31 11 25758 4002 7.11e-14

63 13 103668 16168 8.88e-14

Table 4: Representation of polynomials in hyperbolic cross polynomial space.

Degree N L #Weight #Node L∞-Error

7 7 1254 217 3.55e-15

15 9 3277 554 1.24e-14

31 11 8022 1351 5.32e-14

63 13 19039 3196 2.24e-14

127 15 44052 7393 4.26e-14

plot of Fig. 3. For the ReLU network approximation, we take 5 ReLU networks with same
structure (8 layers of hidden nodes with each layer has 64 ReLU nodes, full connected)
are trained using mini-batch stochastic gradient descent method. The best result among
the 5 ReLU networks is shown in the right plot of Fig. 3. Note that the number of hidden
nodes used by the ReQU network is less than 64, and it give much better results than the
trained ReLU network. By training the constructed ReQU network, the approximation
error can be further reduced. Similar results for approximating 2-dimensional function
sin(x)sin(y) are presented in Fig. 4.

0 2000 4000 6000 8000 10000
Iteration Number

9.10

9.15

9.20

9.25

L2
 E

rro
r

1e−9

100 101 102 103 104

Iteration Number

10−4

10−3

10−2

10−1

L2
 E

rro
r

Figure 3: Approximating sin(x) function using ReQU and ReLU neural networks. Left: result of ReQU network
initialized by polynomials of degree 8 and then trained by a gradient descent method. Right: result of ReLU
network (8 fully connected hidden layers with each one has 64 ReLU nodes) with a random initialization and
trained by a mini-batch gradient descent method.

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 29

0 2000 4000 6000 8000 10000
Iteration Number

1.2

1.4

1.6

1.8

2.0
L2

 E
rro

r
1e−7

100 101 102 103 104

Iteration Number

10−2

10−1

L2
 E

rro
r

Figure 4: Approximating sin(x)sin(y) using ReQU and ReLU neural networks. Left: result of ReQU network

initialized by a 2-d polynomial in tensor-product space Q2
N (N = 9) and then trained by a gradient descent

method; Right: result of ReLU network (8 fully connected hidden layers, each one has 128 ReLU nodes) with
a random initialization and then trained by a mini-batch gradient descent method.

6 Conclusion and future work

In this paper, we gave constructive proofs of some error bounds for approximating smooth
functions by deep neural networks using RePU function as the activation functions. The
proofs rely on the fact that polynomials can be represented by RePU networks with no
approximation error. We construct several optimal algorithms for such representations,
in which polynomials of degree no more than n are converted into a ReQU network with
O(log2n) layers, and the size of the network is of the same scale as the dimension of the
polynomial space to be approximated. Then by using the classical polynomial approxi-
mation theory, we obtain upper error bounds for ReQU networks approximating smooth
functions, which show clear advantages of using ReQU activation function, comparing to
the existing results for ReLU networks. In general, the ReLU network required to approx-
imate a sufficient smooth function, is O(log 1

ε) times larger than the corresponding ReQU
network. Here ε is the approximation error. To achieve ε-approximation for f ∈B∞

α,β, the

number of layer of ReQU network required to obtain this approximation is O(log2 log 1
ε),

while the corresponding best known results is O(log 1
ε) for ReLU network. For high di-

mensional functions with bounded mixed derivatives, we give error bounds that have
a weaker exponentially dependence on d, by using hyperbolic cross/sparse grid spec-
tral approximation, in particular if optimized hyperbolic cross polynomial projections
are used, there is no term related to ε is exponentially dependent on d. Since only global
polynomial approximations are considered in this paper, the results obtained also hold
for deep networks with non-rectified power units. The use of rectified units gives the
neural network the ability to approximate piecewise smooth functions efficiently, which
will be analyzed in a separate paper.

Our constructions of RePU network also reveal the close relation between the depth of

30 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

the RePU network and the “order” of polynomial approximation. The advantage of us-
ing deep over shallow neural ReQU networks is clearly shown by our constructive proofs:
by using one hidden layer, a ReQU network can only represent piecewise quadratic poly-
nomials; by using n hidden layers, a ReQU network can represent piecewise polynomials
of degree up to O(2n). The ReQU networks we built for approximating smooth functions
all have a tree-like structure, and are sparsely connected. This may give some hints on
how to design appropriate structures of neural networks for some practical applications.

We have shown theoretically that for approximating sufficient smooth functions,
ReQU networks are superior to ReLU networks in terms of approximation error. We
also present efficient and stable algorithm to construct ReQU network based on polyno-
mial approximation. Our preliminary results demonstrated that our constructions are
numerically stable and efficient. The constructed neural network can be regarded as a
good initial of RePU network and further trained to get better results. For low dimen-
sional problems, this approach is much more accurate than the results obtained by direct
training a randomly initialized ReLU neural networks.

In practical applications, the functions to be approximated may have different kinds
of non-smoothness, which are problem dependent. The training method is another key
factor that affects the application of neural networks. We will continue our study in these
directions. In particular, we will study the approximation error of piecewise smooth func-
tions with deep ReQU networks, and investigate whether those popular training meth-
ods proposed to train ReLU networks are efficient for training RePU networks. Mean-
while, we will try deep RePU networks on some practical problems where the under-
lying functions are smooth, e.g. minimum action methods for large PDE systems [61],
PDEs with random coefficients [62], and moment closure problem in complex fluid [63]
and turbulence modeling [64], etc.

Acknowledgments

We are indebted to Prof. Jie Shen and Prof. Li-Lian Wang for their stimulating con-
versations on spectral methods. We would like also to think Prof. Christoph Schwab
and Prof. Hrushikesh N. Mhaskar for providing us some related references. This
work was partially supported by China National Program on Key Basic Research Project
2015CB856003, NNSFC Grant 11771439, 91852116, and China Science Challenge Project,
no. TZ2018001. The computations were performed on the PC clusters of State Key Labo-
ratory of Scientific and Engineering Computing of Chinese Academy of Sciences.

References

[1] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

[2] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets.
Neural Computation, 18(7):1527–1554, 2006.

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 31

[3] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep
networks. In Advances in Neural Information Processing Systems, pages 153–160, 2007.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Asso-
ciates, Inc., 2012.

[5] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, B. Kingsbury, and T. Sainath. Deep neural networks for acoustic modeling in
speech recognition. IEEE Signal Process. Mag., 29, 2012.

[6] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.
[7] J. Han, L. Zhang, R. Car, and W. E. Deep potential: A general representation of a many-body

potential energy surface. Communications in Computational Physics, 23(3), 2018.
[8] J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations using

deep learning. PNAS, 115(34):8505–8510, 2018.
[9] L. Zhang, J. Han, H. Wang, R. Car, and W. E. Deep potential molecular dynamics: A scalable

model with the accuracy of quantum mechanics. Phys. Rev. Lett., 120(14):143001, 2018.
[10] C. M. Strofer, J.-L. Wu, H. Xiao, and E. Paterson. Data-driven, physics-based feature extrac-

tion from fluid flow fields using convolutional neural networks. Communications in Compu-
tational Physics, 25(3), 2019.

[11] C. Ma, J. Wang, and W. E. Model reduction with memory and the machine learning of
dynamical systems. Communications in Computational Physics, 25(4), 2019.

[12] M. Cavaglia, K. Staats, and T. Gill. Finding the origin of noise transients in LIGO data with
machine learning. Communications in Computational Physics, 25(4), 2019.

[13] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signal
Systems, 2(4):303–314, 1989.

[14] H. N. Mhaskar. Neural networks for optimal approximation of smooth and analytic func-
tions. Neural Computation, 8(1):164–177, 1996.

[15] O. Delalleau and Y. Bengio. Shallow vs. deep sum-product networks. In NIPS, page 9, 2011.
[16] M. Telgarsky. Representation benefits of deep feedforward networks. ArXiv150908101 Cs,

2015.
[17] R. Eldan and O. Shamir. The power of depth for feedforward neural networks. JMLR Work-

shop Conf. Proc., 49:1–34, 2016.
[18] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In Proceedings

of the 14 Th International Conference on Artificial Intelligence and Statistics, volume 15, pages
315–323, Fort Lauderdal, 2011. JMLR.

[19] S. Liang and R. Srikant. Why deep neural networks for function approximation?
ArXiv161004161 Cs, 2016.

[20] M. Telgarsky. Benefits of depth in neural networks. In JMLR: Workshop and Conference Pro-
ceedings, volume 49, pages 1–23, 2016.

[21] D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Netw.,
94:103–114, 2017.

[22] P. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions using
deep ReLU neural networks. Neural Netw., 108:296–330, 2018.

[23] W. E and Q. Wang. Exponential convergence of the deep neural network approximation for
analytic functions. Sci. China Math., 61(10):1733–1740, 2018.

[24] J. He, L. Li, J. Xu, and C. Zheng. ReLU deep neural networks and linear finite elements.
ArXiv180703973 Math, 2018.

32 B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33

[25] J. A. A. Opschoor, P. C. Petersen, and Ch. Schwab. Deep ReLU networks and high-order
finite element methods. Technical Report 7, SAM ETH Zurich, 2019.

[26] H. N. Mhaskar. Approximation properties of a multilayered feedforward artificial neural
network. Adv Comput Math, 1(1):61–80, 1993.

[27] C. K. Chui, X. Li, and H. N. Mhaskar. Neural networks for localized approximation. Math.
Comp., 63(208):607–623, 1994.

[28] C. K. Chui and H. N. Mhaskar. Deep nets for local manifold learning. Front. Appl. Math.
Stat., 4, 2018.

[29] J. A. A. Opschoor, Ch. Schwab, and J. Zech. Exponential ReLU DNN expression of holomor-
phic maps in high dimension. Technical Report 35, SAM ETH Zurich, 2019.

[30] S. A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes
of functions. Dokl Akad Nauk SSSR, 148(5):1042–1045, 1963.

[31] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:1–123, 2004.
[32] M. Griebel and J. Hamaekers. Sparse grids for the Schrödinger equation. Math. Model.

Numer. Anal., 41(2):215–247, 2007.
[33] J. Shen and L.-L. Wang. Sparse spectral approximations of high-dimensional problems based

on hyperbolic cross. SIAM J Numer Anal, 48(4):1087–1109, 2010.
[34] D. Dũng, V. Temlyakov, and T. Ullrich. Hyperbolic Cross Approximation. Advanced Courses

in Mathematics. CRM Barcelona. Birkhäuser/Springer, Cham, 2018.
[35] T. Gerstner and M. Griebel. Numerical integration using sparse grids. Numer. Algorithms,

18(3):209–232, 1998.
[36] V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpolation on

sparse grids. Adv. Comput. Math., 12(4):273–288, 2000.
[37] J. Shen, L.-L. Wang, and H. Yu. Approximations by orthonormal mapped Chebyshev func-

tions for higher-dimensional problems in unbounded domains. J. Comput. Appl. Mathemaitcs,
265:264–275, 2014.

[38] H. J. Bungartz. An adaptive Poisson solver using hierarchical bases and sparse grids. In Iter-
ative Methods in Linear Algebra, pages 293–310, Brussels, Belgium, 1992. Amsterdam: North-
Holland.

[39] Q. Lin, N. Yan, and A. Zhou. A sparse finite element method with high accuracy: Part I.
Numer. Math., 88(4):731–742, 2001.

[40] J. Shen and H. Yu. Efficient spectral sparse grid methods and applications to high-
dimensional elliptic problems. SIAM J. Sci. Comput., 32(6):3228–3250, 2010.

[41] J. Shen and H. Yu. Efficient spectral sparse grid methods and applications to high-
dimensional elliptic equations II: Unbounded domains. SIAM J. Sci. Comput., 34(2):1141–
1164, 2012.

[42] Z. Wang, Q. Tang, W. Guo, and Y. Cheng. Sparse grid discontinuous Galerkin methods for
high-dimensional elliptic equations. J. Comput. Phys., 314:244–263, 2016.

[43] Z. Rong, J. Shen, and H. Yu. A nodal sparse grid spectral element method for multi-
dimensional elliptic partial differential equations. Int. J. Numer. Anal. Model., 14(4-5):762–783,
2017.

[44] H. Yserentant. The hyperbolic cross space approximation of electronic wavefunctions. Nu-
mer. Math., 105(4):659–690, 2007.

[45] G. Avila and T. Carrington. Solving the Schroedinger equation using Smolyak interpolants.
J. Chem. Phys., 139(13):134114, 2013.

[46] J. Shen, Y. Wang, and H. Yu. Efficient spectral-element methods for the electronic
Schrödinger equation. In J. Garcke and D. Pflüger, editors, Sparse Grids and Applications –

B. Li, S. Tang and H. Yu / Commun. Comput. Phys., x (20xx), pp. 1-33 33

Stuttgart 2014, Lecture Notes in Computational Science and Engineering, pages 265–289.
Springer International Publishing, 2016.

[47] Ch. Schwab and R. A. Todor. Sparse finite elements for stochastic elliptic problems – higher
order moments. Computing, 71(1):43–63, 2003.

[48] F. Nobile, R. Tempone, and C. Webster. A sparse grid stochastic collocation method for
partial differential equations with random input data. SIAM J. Numer. Anal., 46(5):2309–
2345, 2008.

[49] F. Nobile, L. Tamellini, F. Tesei, and R. Tempone. An adaptive sparse grid algorithm for
elliptic PDEs with lognormal diffusion coefficient. In J. Garcke and D. Pflüger, editors, Sparse
Grids and Applications – Stuttgart 2014, volume 109, pages 191–220. Springer International
Publishing, Cham, 2016.

[50] H. Montanelli and Q. Du. New error bounds for deep ReLU networks using sparse grids.
SIAM J. Math. Data Sci., 1(1):78–92, 2019.

[51] P. Petrushev. Approximation by ridge functions and neural networks. SIAM J. Math. Anal.,
30(1):155–189, 1998.

[52] W. E and B. Yu. The deep Ritz method: A deep learning-based numerical algorithm for
solving variational problems. Commun. Math. Stat., 6(1):1–12, 2018.

[53] W. Gautschi. Optimally scaled and optimally conditioned vandermonde and vandermonde-
like matrices. BIT Numerical Mathematics, 51(1):103–125, 2011.

[54] J. Shen, T. Tang, and L.-L. Wang. Spectral Methods : Algorithms, Analysis and Applications.
Springer, 2011.

[55] B. Li, S. Tang, and H. Yu. PowerNet: Efficient representations of polynomials and smooth
functions by deep neural networks with rectified power units. arXiv:1909.05136, 2019.

[56] R. A. DeVore, R. Howard, and C. Micchelli. Optimal nonlinear approximation. Manuscripta
Math, 63(4):469–478, 1989.

[57] F. Voigtlaender and P. Petersen. Approximation in Lp(µ) with deep ReLU neural networks.
ArXiv190404789 Cs Math, 2019.

[58] D. Yarotsky. Optimal approximation of continuous functions by very deep ReLU networks.
In Conference on Learning Theory, pages 639–649, 2018.

[59] I. H. Sloan and H. Wozniakowski. When are quasi-Monte Carlo algorithms efficient for high
dimensional integrals? J. Complex., 14(1):1–33, 1998.

[60] X. Wang and I. Sloan. Why are high-dimensional finance problems often of low effective
dimension? SIAM J. Sci. Comput., 27(1):159–183, 2005.

[61] X. Wan and H. Yu. A dynamic-solver-consistent minimum action method: With an applica-
tion to 2D Navier-Stokes equations. Journal of Computational Physics, 331:209–226, 2017.

[62] E. Musharbash, F. Nobile, and T. Zhou. Error analysis of the dynamically orthogonal ap-
proximation of time dependent random PDEs. SIAM J. Sci. Comput., 37(2):A776–A810, 2015.

[63] H. Yu, G. Ji, and P. Zhang. A nonhomogeneous kinetic model of liquid crystal polymers and
its thermodynamic closure approximation. Commun. Comput. Phys., 7(2):383, 2010.

[64] G. L. Mellor and T. Yamada. Development of a turbulence closure model for geophysical
fluid problems. Rev. Geophys., 20(4):851–875, 1982.

