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Abstract. In this work, we address the convergence of a finite element approximation of the
minimizer of the Freidlin–Wentzell (F-W) action functional for nongradient dynamical systems per-
turbed by small noise. The F-W theory of large deviations is a rigorous mathematical tool to study
small-noise-induced transitions in a dynamical system. The central task in the application of F-W
theory of large deviations is to seek the minimizer and minimum of the F-W action functional. We
discretize the F-W action functional using linear finite elements and establish the convergence of the
approximation through Γ-convergence.
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1. Introduction. We consider a general dynamical system perturbed by small
noise

(1.1) dX = b(X) dt+
√
ε dW (t),

where ε is a small positive number and W (t) is a standard Wiener process in Rn.
The long-term behavior of the perturbed system is characterized by the small-noise-
induced transitions between the equilibriums of the unperturbed system

(1.2)
dx

dt
= b(x), x ∈ Rn.

These transitions rarely occur but have a major impact. This model can describe many
critical phenomena in physical, chemical, and biological systems, such as nonequilib-
rium interface growth [10, 18], regime change in climate [29], switching in biophysical
networks [28], and hydrodynamic instability [21, 25, 24].

The Freidlin–Wentzell (F-W) theory of large deviations provides a rigorous math-
ematical framework to understand the small-noise-induced transitions in general dy-
namical systems, where the key object is the F-W action functional, and the critical
quantities include the minimizer and minimum of the F-W action functional [11].
Starting from [6], the large deviation principle given by the F-W theory has been ap-
proximated numerically, especially for nongradient systems, and the numerical meth-
ods are, in general, called minimum action methods (MAMs). More specifically, the
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following optimization problems need to be addressed:

(1.3) Problem I: ST (φ∗) = inf
φ(0)=x1,
φ(T )=x2

ST (φ)

and

(1.4) Problem II: ST∗(φ
∗) = inf

T∈R+
inf

φ(0)=x1,
φ(T )=x2

ST (φ),

where

(1.5) ST (φ) =
1

2

∫ T

0

|φ′ − b(φ)|2 dt

is called the action functional. Here φ(t) is a path connecting x1 and x2 in the phase
space on the time interval [0, T ]. The minima and minimizers of Problems I and II
characterize the difficulty of the small-noise-induced transition from x1 to the vicinity
of x2; see (2.1) and (2.3). In Problem I, the transition is restricted to a certain time
scale T , which is relaxed in Problem II. Let φ∗(t) be the minimizer of either Problem I
or Problem II, which is also called the minimal action path (MAP) or the instanton
in physical literature related to the path integral. For Problem II, we have an optimal
integration time T ∗ which can be either finite or infinite depending on the states x1

and x2.
We will focus on the MAM for nongradient systems [7, 27, 30]. For gradient

systems, the MAP is consistent with the minimum energy path, and the counter-
part version of the MAM includes the string method [6, 8], the nudged elastic band
method [15], etc., which takes advantage of the property that the MAP is parallel
to the drift term of the stochastic differential equation. For nongradient systems,
this property does not hold, and a direct optimization of the F-W action functional
needs to be considered. The main numerical difficulty comes from the separation of
slow dynamics around critical points from fast dynamics elsewhere. More specifically,
the MAP will be mainly captured by the fast dynamics subject to a finite time, but
it will take infinite time to pass a critical point. To overcome this difficulty, there
exist two basic techniques: (1) nonuniform temporal discretization and (2) reformu-
lation of the action functional with respect to arc length. Two typical techniques to
achieve nonuniform temporal discretization include the moving mesh technique and
the adaptive finite element method. The moving mesh technique starts from a uni-
form finite mesh and redistributes the grid points iteratively such that more grids
are assigned into the region of fast dynamics and fewer grids into the region of slow
dynamics. This technique is used by the adaptive minimum action method (aMAM)
[31, 20, 23, 19]. The adaptive finite element method starts from a coarse mesh and
has an inclination to refine the mesh located in the region of fast dynamics [22, 26].
The main difference between these two techniques from an efficiency point of view is
that the moving mesh technique needs a projection from fine mesh to fine mesh, i.e.,
global reparameterization, while the adaptive finite element method only needs local
projection in the elements that have been refined. To eliminate the scale separation
from dynamics, one can consider parameterization of the curves geometrically, i.e., a
change of variable from time to arc length, which is used in the geometric minimum
action method (gMAM) [14, 12, 13]. The change of variable induces two difficulties.
One is related to accuracy, and the other one is related to efficiency. The mapping
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from time to arc length is nonlinear, and the Jacobian of the transform between time
and arc length variables is singular around critical points since an infinite time domain
has been mapped to a finite arc length. Unknown critical points along the MAP may
deteriorate the approximation accuracy unless they can be identified accurately. To
use arc length for parameterization, we have that the velocity is a constant, which
means that in each iteration step a global reparameterization is needed to maintain
this constraint.

Both aMAM and gMAM target the case that T ∗ = ∞. In aMAM, a finite but
large T is used, while in gMAM, the infinite T ∗ is mapped to a finite arc length. Thus,
aMAM is not able to deal with Problem II subject to a finite T ∗ since a fixed T is
required, while gMAM is not able to deal with Problem I since T has been removed.
To deal with both Problems I and II in a more consistent way, we have developed a
MAM with optimal linear time scaling (temporal minimum action method, or tMAM)
coupled with adaptive finite element discretization [22, 26]. The method is based on
two observations: (1) for any given transition path, there exists a unique T to minimize
the action functional subject to a linear scaling of time, and (2) for transition paths
defined on a finite element approximation space, the optimal integration time T ∗ is
always finite but increases as the approximation space is refined. The first observation
removes the parameter T in Problem II, and the second observation guarantees that
the discrete problem of Problem II is well-posed after T is removed. Problem I becomes
a special case of our reformulation of Problem II. In this way, tMAM is able to deal
with both Problems I and II.

Although many techniques have been developed from the algorithm point of view,
few numerical analyses have been done for the MAM. In this paper, we want to
partially fill this gap. We consider a general stochastic ordinary differential equation
(ODE) system (1.1). The discrete action functional ST,h will be given by linear
finite elements for simplicity, where h indicates the element size. Due to the general
assumption for b(x), we will focus on the convergence of the minimizers of ST,h as
h → 0 and provide only an a priori error estimate for the approximate solution
when b(x) is a linear symmetric positive definite (SPD) system. For Problem I, the
convergence of the minimizer φ∗h to φ∗ is established by the Γ-convergence [1, 2, 4] of
the discretized action functional. For Problem II, we employ and analyze the strategy
developed in [22] to deal with the optimization with respect to T . More specifically,
we reformulate the problem from [0, T ] to [0, 1] by a linear time scaling s = t/T and
replace the integration time T with a functional T̂ (φ̄) with φ̄(s) = φ(t/T̂ ), where
T̂ (φ̄) is the optimal integration time for a given transition path φ̄. When T ∗ is finite,
the convergence of the minimizer φ̄∗h to φ̄∗(s) = φ∗(t/T ∗) can be established by the
Γ-convergence of the discretized action functional. When T ∗ =∞, the linear mapping
from t to s does not hold. We demonstrate that the sequence {φ̄∗h} still provides a
minimizing sequence as h → 0 and establish the convergence using the results from
gMAM. Due to the nonlinearity of b(x), the Euler–Lagrange (E-L) equation associated
with the action functional is, in general, a nonlinear elliptic problem for Problem I.
For Problem II subject to an optimal linear time scaling, the E-L equation retains the
same form as Problem I with the parameter T being replaced by a functional T̂ (φ̄),
which becomes a nonlocal and nonlinear elliptic equation. When b(x) is a linear SPD
system, we are able to establish the a priori error estimate for φ̄∗h, where the E-L
equation is a nonlocal and nonlinear elliptic problem of Kirchhoff type.

The remainder of this paper is organized as follows. In section 2, we describe the
problem setting. A reformulation of the F-W action functional is given in section 3 to
deal with the optimization with respect to T in Problem II. We establish the conver-
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1600 XIAOLIANG WAN, HAIJUN YU, AND JIAYU ZHAI

gence of finite element approximation in section 4 for general stochastic ODE systems.
In section 5, we apply our method to a linear stochastic ODE system and provide an a
priori error estimate of the approximation solution. Numerical illustrations are given
in section 6, followed by a summary section.

2. Problem description. We consider the small-noise-perturbed dynamical
system (1.1). Let x1 and x2 be two arbitrary points in the phase space. The F-W
theory of large deviations provides asymptotic results to estimate the transition prob-
ability from x1 to the vicinity of x2 when ε → 0. If we restrict the transition to a
certain time interval [0, T ], we have

(2.1) lim
δ↓0

lim
ε↓0
−ε log Pr(τδ ≤ T ) = inf

φ(0)=x1,
φ(T )=x2

ST (φ),

where τδ is the first entrance time of the δ-neighborhood of x2 for the random process
X(t) starting from x1. The path variable φ connecting x0 and x1, over which the action
functional is minimized, is called a transition path. If the time scale is not specified,
the transition probability can be described with respect to the quasi-potential from
x1 to x2:

(2.2) V (x1, x2):= inf
T∈R+

inf
φ(0)=x1,
φ(T )=x2

ST (φ).

The probability meaning of V (x1, x2) is

(2.3) V (x1, x2) = inf
T∈R+

lim
δ↓0

lim
ε↓0
−ε log Pr(τδ ≤ T ).

In general we refer to the asymptotic results given in (2.1) and (2.3) as the large
deviation principle (LDP). We use φ∗ to indicate the transition path that minimizes
the action functional in (2.1) or (2.3), which is also called the minimal action path
(MAP) [7]. The MAP φ∗ is the most probable transition path from x1 to x2. For
the quasi-potential, we let T ∗ indicate the optimal integration time, which can be
either finite or infinite depending on x1 and x2. The importance of LDP is that
it simplifies the computation of transition probability, which is a path integral in
a function space, to seeking the minimizers φ∗ or (T ∗, φ∗). From the application
point of view, one central task of the F-W theory of large deviations is to solve
Problems I and II, defined in (1.3) and (1.4), respectively. For Problem II, we need to
optimize the action functional with respect to the integration time T . We will present
a reformulation of ST in section 3 to deal with this case.

To analyze the convergence properties of numerical approximations for Problems I
and II, we need some assumptions on b(x).

Assumption 2.1.
(1) b(x) is Lipschitz continuous in a big ball; i.e., there exist constants K > 0

and R1 > 0, such that

(2.4) |b(x)− b(y)| ≤ K|x− y| ∀ x, y ∈ BR1
(0),

where | · | denotes the `2 norm of a vector in Rn.
(2) There exist positive numbers β,R2, such that

(2.5) 〈b(x), x〉 ≤ −β|x|2 ∀ |x| ≥ R2,
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where R2
2 ≤ R2

1 − S∗

β and

S∗ = max
x,y∈BR2

(0)

1

2

∫ 1

0

∣∣y − x− b(x+ (y − x)t
)∣∣2 dt.

(3) The solution points of b(x) = 0 are isolated.

Lemma 2.2. Let assumption (2.5) hold. If both the starting and ending points of
a MAP φ(t) are inside BR2(0), then φ(t) is located within BR1(0) for any t.

Proof. Suppose that φ(t) is a MAP outside of BR2
(0) but connecting two points

x and y on the surface of BR2
(0). Let w(t) = φ′ − b(φ). We have

(2.6) φ′ = b(φ) + w.

Taking the inner product on both sides of the above equation with 2φ, we get

(2.7)
d|φ|2

dt
= 2〈b(φ), φ〉+ 2〈w, φ〉.

Then by using Cauchy’s inequality with β, and assumption (2.5), we get

(2.8)
d|φ|2

dt
≤ −2β|φ|2 +

1

2β
|w|2 + 2β|φ|2 =

1

2β
|w|2.

Taking integration, and using the definition of minimum action, we obtain a bound
for any t along the MAP:

(2.9) |φ|2 ≤ |x|2 +

∫ t

0

1

2β
|w|2 dt ≤ R2

2 +
1

β
ST∗(φ) ≤ R2

2 +
1

β
S∗ ≤ R2

1,

which means that the whole MAP is located within BR1
(0).

Remark 2.3. The assumptions (2.4) and (2.5) allow most of the physically relevant
smooth nonlinear dynamics. It is seen from Lemma 2.2 that the second assumption
(2.5) is used to confine all MAPs of interest inside BR1

(0). For simplicity and without
loss of generality, we will assume from now on that the Lipschitz continuity of b(x)
is global, namely, R1 = ∞. For the general case given in Assumption 2.1, one can
achieve all the conclusions by confining all the MAPs inside BR1(0).

We now summarize some notation that will be used later. For φ(t) ∈ Rn defined
on ΓT = [0, T ], we let |φ|2 =

∑n
i=1 |φi|2 and |φ|2m,ΓT

=
∑n
i=1 |φi|2m,ΓT

, where φi is the

ith component of φ and |φi|2m,ΓT
=
∫

ΓT
|φ(m)
i |2 dt. We let ‖φ‖2m,ΓT

=
∑n
i=1 ‖φi‖2m,ΓT

,

where ‖φi‖2m,ΓT
=
∑
k≤m

∫
ΓT
|φ(k)
i |2 dt. For f(t), g(t) ∈ Rn defined on ΓT , we define

the inner products 〈f, g〉 =
∑n
i=1 figi and 〈f, g〉ΓT

=
∫

ΓT
(
∑n
i=1 figi) dt.

3. A reformulation of ST . We start with a necessary condition given by Mau-
pertuis’ principle of least action for the minimizer (T ∗, φ∗) of Problem II.

Lemma 3.1 ([14]). Let (T ∗, φ∗) be the minimizer of Problem II. Then φ∗ is located
on the surface H(φ, ∂L∂φ′ ) = 0, where H is the Hamiltonian given by the Legendre

transform of L(φ, φ′) := 1
2 |φ
′ − b(φ)|2. More specifically, for (1.1),

(3.1) H

(
φ,
∂L

∂φ′

)
= 0 ⇐⇒ |φ′(t)| = |b(φ(t))| ∀ t.
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We will call (3.1) the zero-Hamiltonian constraint in this paper. The zero-
Hamiltonian constraint defines a nonlinear mapping between the arc length of the
geometrically fixed lines on surface H = 0 and time t (see section 4.3.1 for more
details). We instead consider a linear time scaling on ΓT , which is simpler and more
flexible for numerical approximation. For any given transition path φ and a fixed T ,
we consider the change of variable s = t/T ∈ [0, 1] = Γ1. Let φ(t) = φ(sT ) =: φ̄(s).
Then φ̄′(s) = φ′(t)T, and we rewrite the action functional as

(3.2) ST (φ(t)) = ST (φ̄(s)) =
T

2

∫ 1

0

∣∣T−1φ̄′(s)− b(φ̄(s))
∣∣2 ds =: S(T, φ̄).

Lemma 3.2. For any given transition path φ, we have

(3.3) Ŝ(φ̄) := S(T̂ (φ̄), φ̄) = inf
T∈R+

S(T, φ̄)

if T̂ (φ̄) <∞, where

(3.4) T̂ (φ̄) =
|φ̄′|0,Γ1

|b(φ̄)|0,Γ1

.

Proof. It is easy to verify that the functional T̂ (φ̄) is nothing but the unique
solution of the optimality condition ∂TS(T, φ̄) = 0.

Corollary 3.3. Let (T ∗, φ∗) be the minimizer of Problem II. If T ∗ < ∞, we
have T ∗ = T̂ (φ̄∗), where φ̄∗(s):=φ∗(sT ∗).

Proof. From the zero-Hamiltonian constraint (3.1) and the definition of φ̄, we
have

|(φ̄∗)′| = |(φ∗)′|T ∗ = |b(φ∗)|T ∗ = |b(φ̄∗)|T ∗.

Integrating both sides on Γ1, we have the conclusion.

For any absolutely continuous path φ, it is shown in Theorem 5.6.3 in [5] that ST
can be written as

(3.5) ST (φ) =

{
ST (φ), φ ∈ H1(ΓT ;Rn),
∞ otherwise.

This means that we can seek the MAP in the Sobolev space H1(ΓT ;Rn). From now
on, we will use H1(ΓT ) to indicate H1(ΓT ;Rn) if no ambiguity arises. The same rule
will be applied to other spaces such as H1

0 (Γ;Rn) and L2(Γ;Rn).
We define the following two admissible sets consisting of transition paths:

AT =
{
φ ∈ H1(ΓT ) : φ(0) = 0, φ(T ) = x

}
,(3.6)

A1 =
{
φ̄ ∈ H1(Γ1) : φ̄(0) = 0, φ̄(1) = x

}
,(3.7)

where we let x1 = 0 and x2 = x just for convenience.

Lemma 3.4. If T ∗ <∞, we have

(3.8) ST∗(φ
∗) = Ŝ(φ̄∗) = inf

φ̄∈A1

Ŝ(φ̄)

and T ∗ = T̂ (φ̄∗) (see (3.4)), where φ∗(t) = φ̄∗(t/T ∗) (or φ̄∗(s) = φ∗(sT ∗)).
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Proof. If (T ∗, φ∗) is a minimizer of ST (φ) and T ∗ <∞, then

ST∗(φ
∗) = inf

T∈R+
inf
φ∈AT

ST (φ) = inf
φ̄∈A1

Ŝ(φ̄) ≤ Ŝ(φ̄∗)

and
Ŝ(φ̄∗) = inf

T∈R+
S(T, φ̄∗) = inf

T∈R+
ST (φ∗) ≤ ST∗(φ∗).

Thus, ST∗(φ
∗) = S(T ∗, φ̄∗) = Ŝ(φ̄∗); that is, φ̄∗ is a minimizer of Ŝ(φ̄) for φ̄ ∈ A1,

and T ∗ = T̂ (φ̄∗) from Corollary 3.3.
Conversely, if φ̄∗ is a minimizer of Ŝ(φ̄), we let T ∗ = T̂ (φ̄∗) and φ∗(t) = φ̄∗( t

T∗ )
for t ∈ [0, T ∗]. We have

ST∗(φ
∗) = S(T̂ (φ̄∗), φ̄∗) = Ŝ(φ̄∗) = inf

φ̄∈A1

Ŝ(φ̄) = inf
T∈R+

inf
φ∈AT

ST (φ)

when T ∗ <∞. Then (T ∗, φ∗) is a minimizer of ST (φ). So the minimizers of Ŝ(φ̄) and
ST (φ) have a one-to-one correspondence when the optimal integral time is finite.

Lemma 3.4 shows that for a finite T ∗ we can use (3.8) instead of Problem II to
approximate the quasi-potential such that the optimization parameter T is removed,
and we obtain a new problem

(3.9) Ŝ(φ̄∗) = inf
φ̄(0)=x1,
φ̄(1)=x2

Ŝ(φ̄)

that is equivalent to Problem II.

4. Finite element discretization of Problems I and II. The numerical
method to approximate Problems I and II is usually called the minimum action
method (MAM) [7]. Many versions of MAM have been developed, where the ac-
tion functional is discretized by either a finite difference method or a finite element
method. In this work, we consider the finite element discretization of ST (φ) and focus
on the convergence of the finite element approximation of the minimizer.

Let Th and T h be partitions of ΓT and Γ1, respectively. We define the following
approximation spaces given by linear finite elements:

Bh =
{
φh ∈ AT : φh|I is affine for each I ∈ Th

}
,

Bh =
{
φ̄h ∈ A1 : φ̄h|I is affine for each I ∈ T h

}
.

For any h, we define the following discretized action functionals:

(4.1) ST,h(φh) =

{
1
2

∫ T
0
|φ′h − b(φh)|2 dt if φh ∈ Bh,

∞ if φh 6∈ Bh

and

(4.2) Ŝh(φ̄h) =

{ T̂ (φ̄h)
2

∫ 1

0
| 1
T̂ (φ̄h)

φ̄′h − b(φ̄h)|2 dt if φ̄h ∈ Bh,
∞ if φ̄h 6∈ Bh.

We note that for a fixed integration time T , we can rewrite ST (φ) as Ŝ(φ̄) by
letting T = T̂ , such that Problem I can also be defined on Γ1. Since we intend to use
the reformulation Ŝ(φ̄) to deal with the parameter T in Problem II, we use ΓT and
Γ1 to define Problems I and II, respectively, for clarity.
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4.1. Problem I with a fixed T . For this case, our main results are summarized
in the following theorem.

Theorem 4.1. For Problem I with a fixed T , we have

min
φ∈AT

ST (φ) = lim
h→0

inf
φh∈Bh

ST,h(φh),

namely, the minima of ST,h converge to the minimum of ST (φ) as h→ 0. Moreover,
if {φh} ⊂ Bh is a sequence of minimizers of ST,h, then there is a subsequence that
converges weakly in H1(ΓT ) to some φ ∈ AT , which is a minimizer of ST .

The proof of this theorem will be split into two steps: (1) the existence of the
minimizer of ST (φ) in AT , and (2) Γ-convergence of ST,h to ST as h→ 0.

4.1.1. Solution existence in AT . We search the minimizer of ST (φ) in the
admissible set AT . The solution existence is given by the following lemma.

Lemma 4.2. There exists at least one function φ∗ ∈ AT such that

ST (φ∗) = min
φ∈AT

ST (φ).

Proof. We first establish the coerciveness of ST (φ) = 1
2

∫ T
0
|φ′−b(φ)|2 dt. In order

to do so, we define an auxiliary function g by

g(t) = φ(t)−
∫ t

0

b(φ(u)) du.

Then g′ = φ′− b(φ) and g(0) = 0. Since b(x) is globally Lipschitz continuous, we have

|φ′(t)| ≤ |b(φ(t))− b(0)|+ |b(0)|+ |g′|
≤ K|φ|+ |b(0)|+ |g′(t)|

≤ K
∫ t

0

|φ′(s)| ds+ |b(0)|+ |g′(t)|.

By Gronwall’s inequality, we have

|φ′(t)| ≤ K
∫ t

0

(|b(0)|+ |g′(s)|)eK(t−s) ds+ |b(0)|+ |g′(t)|,

from which we obtain
|φ|1,ΓT

≤ C1|b(0)|2 + C2|g|21,ΓT
,

where C1 and C2 are two positive constants depending on K and T . Thus, the action
functional satisfies

ST (φ) =
1

2
|g|21,ΓT

≥ 1

2
C−1

2 |φ|21,ΓT
− 1

2
C1C

−1
2 |b(0)|2.

The coerciveness follows. On the other hand, the integrand |φ′ − b(φ)|2 is bounded
below by 0 and convex in φ′. By Theorem 2 of [9, p. 448], ST (φ) is weakly lower
semicontinuous on H1(ΓT ).

For any minimizing sequence {φk}∞k=1, from the coerciveness, we have

sup
k
|φk|1,ΓT

<∞.
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Let φ0 ∈ AT be any fixed function, e.g., the linear function on ΓT from 0 to x. Then
φk − φ0 ∈ H1

0 (ΓT ), and

|φk|0,ΓT
≤ |φk − φ0|0,ΓT

+ |φ0|0,ΓT

≤ Cp|φk − φ0|1,ΓT
+ |φ0|0,ΓT

<∞,

by Poincaré’s inequality. Thus {φk}∞k=1 is bounded in H1(ΓT ). Then there exists a
subsequence {φkj}∞j=1 converging weakly to some φ∗ ∈ H1(ΓT ) in H1(ΓT ), which

means φkj − φ0 converges to φ∗ − φ0 weakly in H1
0 (ΓT ). By Mazur’s theorem [9],

H1
0 (ΓT ) is weakly closed. So φ∗ − φ0 ∈ H1

0 (ΓT ), i.e., φ∗ ∈ AT .
Therefore, ST (φ∗) ≤ lim infj→∞ ST (φkj ) = infφ∈AT

ST (φ). Since φ∗ ∈ AT , we
reach the conclusion.

4.1.2. Γ-convergence of ST,h. We first note the following simple property.

Property 4.3. For any sequence {φh} ⊂ Bh converging weakly to φ ∈ H1(ΓT ),
we have

lim
h→0
|b(φh)− b(φ)|0,ΓT

= 0.

Proof. Since φh converges weakly to φ in H1(ΓT ), φh → φ in L2(ΓT ); i.e., φh
converges strongly to φ in the L2 sense. By the Lipschitz continuity of b, we reach
the conclusion.

We now establish the Γ-convergence of ST,h.

Lemma 4.4 (Γ-convergence of ST,h). Let {Th} be a sequence of finite element
meshes with h→ 0. For every φ ∈ AT , the following two properties hold:

• Lim-inf inequality: for every sequence {φh} converging weakly to φ in H1(ΓT ),
we have

(4.3) ST (φ) ≤ lim inf
h→0

ST,h(φh).

• Lim-sup inequality: there exists a sequence {φh} ⊂ Bh converging weakly to
φ in H1(ΓT ), such that

(4.4) ST (φ) ≥ lim sup
h→0

ST,h(φh).

Proof. We first address the lim-inf inequality. We only need to consider a sequence
{φh} ⊂ Bh, since otherwise, (4.3) is trivial by the definition of ST,h(φ). Let {φh} ⊂ Bh
be an arbitrary sequence converging weakly to φ in H1(ΓT ). The action functional
can be written as∫ T

0

|φ′h − b(φh)|2 dt

=

∫ T

0

|φ′h|2 dt+

∫ T

0

|b(φh)|2 dt− 2

∫ T

0

〈φ′h, b(φh)〉 dt = I1 + I2 + I3.(4.5)

The functional defined by I1 is obviously weakly lower semicontinuous in H1(ΓT )
since the integrand is convex with respect to φ′.

For I2 in (4.5): Using Property 4.3, we have

lim
h→0
|b(φh)|0,ΓT

= |b(φ)|0,ΓT
.
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1606 XIAOLIANG WAN, HAIJUN YU, AND JIAYU ZHAI

For I3 in (4.5): We have∣∣∣∣∣
∫ T

0

〈φ′h, b(φh)〉 dt−
∫ T

0

〈φ′, b(φ)〉 dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

〈φ′h, b(φh)− b(φ)〉 dt+

∫ T

0

〈φ′h − φ′, b(φ)〉 dt

∣∣∣∣∣
≤ |φh|1,ΓT

|b(φh)− b(φ)|0,ΓT
+ |〈φ′h − φ′, b(φ)〉ΓT

|.

Using Property 4.3 and the fact that suph |φh|1,ΓT
< ∞, we have that the first term

of the above inequality converges to 0. Moreover, the second term also converges to
0 due to the weak convergence of φh to φ in H1(ΓT ). Thus,

lim
h→0

∫ T

0

〈φ′h, b(φh)〉 dt =

∫ T

0

〈φ′, b(φ)〉 dt.

Combining the results for I1, I2, and I3, we obtain

lim inf
h→0

∫ T

0

|φ′h − b(φh)|2 dt

= lim inf
h→0

[∫ T

0

|φ′h|2 dt+

∫ T

0

|b(φh)|2 dt− 2

∫ T

0

〈φ′h, b(φh)〉 dt

]

= lim inf
h→0

∫ T

0

|φ′h|2 dt+ lim
h→0

∫ T

0

|b(φh)|2 dt− 2 lim
h→0

∫ T

0

〈φ′h, b(φh)〉 dt

≥
∫ T

0

|φ′|2 dt+

∫ T

0

|b(φ)|2 dt− 2

∫ T

0

〈φ′, b(φ)〉 dt

=

∫ T

0

|φ′ − b(φ)|2 dt,

which yields the lim-inf inequality.
We now address the lim-sup inequality. Since H2(ΓT ) is dense in H1(ΓT ), for any

φ ∈ H1(ΓT ) and ε > 0, there exists a nonzero uε ∈ H2(ΓT ), such that ‖φ−uε‖1,ΓT
< ε.

We have
|Ihuε − uε|1,ΓT

≤ ch|uε|2,ΓT
≤ cε,

by letting

h = h(ε) = min

{
ε

|uε|1,ΓT

,
ε

|uε|2,ΓT

, ε

}
,

where Ih is an interpolation operator defined by linear finite elements. Let φh = Ihuε.
Then we have φh ∈ Bh, and

|φh − φ|1,ΓT
≤ |φh − uε|1,ΓT

+ |uε − φ|1,ΓT

= |Ihuε − uε|1,ΓT
+ |uε − φ|1,ΓT

<cε+ ε→ 0

and

|φh − φ|0,ΓT
≤ |φh − uε|0,ΓT

+ |uε − φ|0,ΓT

= |Ihuε − uε|0,ΓT
+ |uε − φ|0,ΓT

≤ ch|uε|1,ΓT
+ ε

< cε+ ε→ 0

D
ow

nl
oa

de
d 

06
/0

7/
18

 to
 1

24
.1

6.
14

8.
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE ANALYSIS OF MINIMUM ACTION METHODS 1607

as ε→ 0. So φh converges to φ in H1(ΓT ), and also converges weakly in H1(ΓT ). By
Property 4.3, we know that b(φh)→ b(φ) in L2(ΓT ). Thus,

lim
h→0

ST,h(φh) = lim
h→0

1

2
|φ′h − b(φh)|20,ΓT

= ST (φ),

which yields the lim-sup equality.

4.1.3. Proof of Theorem 4.1. With the solution existence and Γ-convergence
being proved, we need only the equicoerciveness of ST,h for the final conclusion. For
any φh ∈ Bh, we have ST,h(φh) = ST (φh). Then the equicoerciveness of ST,h in Bh
follows from the coerciveness of ST (φh) restricted to Bh ⊂ AT (see the first step in
the proof of Lemma 4.2).

4.2. Problem II with a finite T ∗. For this case, we consider the reformulation
of ST given in section 3. From Lemma 3.4, we know that Problem II with a finite T ∗

is equivalent to minimizing Ŝ in A1 (see (3.8)). Our main results are summarized in
the following theorem.

Theorem 4.5. For Problem II with a finite T ∗, we have

min
φ̄∈A1

Ŝ(φ̄) = lim
h→0

inf
φ̄h∈Bh

Ŝh(φ̄h);

namely, the minima of Ŝh converge to the minimum of Ŝ as h → 0. Moreover, if
{φ̄h} ⊂ Bh is a sequence of minimizers of Ŝh, then there is a subsequence that con-
verges weakly in H1(Γ1) to some φ̄ ∈ A1, which is a minimizer of Ŝ.

Similarly to Problem I with a fixed T , we split the proof of this theorem into two
steps: (1) the existence of the minimizer of Ŝ(φ̄) in A1, and (2) Γ-convergence of Ŝh
to Ŝ as h→ 0.

4.2.1. Solution existence in A1. We start from the following property of the
functional T̂ .

Property 4.6. There exists a constant CT̂ > 0 such that

(4.6) T̂ (φ̄) ≥ CT̂

for any φ̄ ∈ A1.

Proof. For any φ̄ ∈ A1, let φ̄ = φ̄0 + φ̄L, where φ̄0 ∈ H1
0 (Γ1) and φ̄L(s) = xs,

s ∈ [0, 1], is a linear function connecting 0 and x. We have

T̂ (φ̄) =
|φ̄′0 + x|0,Γ1

|b(φ̄0 + φ̄L)|0,Γ1

≥ |φ̄′0 + x|0,Γ1

|b(φ̄0 + φ̄L)− b(φ̄L)|0,Γ1
+ |b(φ̄L)|0,Γ1

≥ |φ̄′0 + x|0,Γ1

K|φ̄0|0,Γ1
+ |b(φ̄L)|0,Γ1

≥ |φ̄′0 + x|0,Γ1

KCp|φ̄′0|0,Γ1
+ |b(φ̄L)|0,Γ1

,
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where Cp is the constant for Poincaré’s inequality. Thus,

T̂ (φ̄)2 ≥
|φ̄′0 + x|20,Γ1

2K2C2
p |φ̄′0|20,Γ1

+ 2|b(φ̄L)|20,Γ1

=
|φ̄′0 + x|20,Γ1

C1|φ̄′0|20,Γ1
+ C2

=: J(φ̄0) > 0,

where C1 = 2K2C2
p > 0 and C2 = 2|b(φ̄L)|20,Γ1

> 0.

Let δφ̄ ∈ H1
0 (Γ1) be a perturbation function with δφ̄(0) = δφ̄(1) = 0. We have

J(φ̄0 + δφ̄)− J(φ̄0)

=
|φ̄′0 + x+ δφ̄′|20,Γ1

C1|φ̄′0 + δφ̄′|20,Γ1
+ C2

−
|φ̄′0 + x|20,Γ1

C1|φ̄′0|20,Γ1
+ C2

=
|φ̄′0 + x+ δφ̄′|20,Γ1

(C1|φ̄′0|20,Γ1
+ C2)− |φ̄′0 + x|20,Γ1

(C1|φ̄′0 + δφ̄′|20,Γ1
+ C2)

(C1|φ̄′0 + δφ̄′|20,Γ1
+ C2)(C1|φ̄′0|20,Γ1

+ C2)

=
2〈φ̄′0 + x, δφ̄′〉Γ1

(C1|φ̄′0|20,Γ1
+ C2)− 2C1〈φ̄′0, δφ̄′〉Γ1

|φ̄′0 + x|20,Γ1

(C1|φ̄′0|20,Γ1
+ C2)2

+R(φ̄′0, x, δφ̄
′),

where R is the remainder term of O(|δφ̄|21,Γ1
).

We then have the first-order variation of J as

δJ =
2〈φ̄′0, δφ̄′〉Γ1

(C1|φ̄′0|20,Γ1
+ C2 − C1|φ̄′0 + x|20,Γ1

)

(C1|φ̄′0|20,Γ1
+ C2)2

.

The optimality condition δJ = 0 yields two possible cases: φ̄′0 = 0 and C1|φ̄′0|20,Γ1
+

C2 = C1|φ̄′0 + x|20,Γ1
. For the first case, φ̄0 is a constant. But φ̄0 ∈ H1

0 (Γ1), so φ̄0 = 0.

Then J(0) = |x|2
C2

> 0. For the second case, J(φ̄0) = 1
C1

> 0. Thus,

T̂ 2(φ̄) ≥ min

{
|x|2

C2
,

1

C1

}
.

More specifically,

T̂ (φ̄) ≥ CT̂ := min

{
|x|√

2|b(φ̄L)|20,Γ1

,
1√

2KCp

}
> 0.

We search for the minimizer of Ŝ(φ̄) in the admissible set A1. The solution
existence is given by the following lemma.

Lemma 4.7. If the optimal integral time T ∗ for Problem II is finite, there exists
at least one function φ∗ ∈ AT such that

ST∗(φ
∗) = min

T∈R+,
φ∈AT

ST (φ) = min
φ̄∈A1

Ŝ(φ̄).D
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Proof. We first establish the weakly lower semicontinuity of Ŝ(φ̄) in H1(Γ1).
Rewrite Ŝ(φ̄) by substituting (3.4) to get

Ŝ(φ̄) =
T̂ (φ̄)

2

∫ 1

0

∣∣∣T̂−1(φ̄)φ̄′ − b(φ̄)
∣∣∣2 dt

= |φ̄′|0,Γ1
|b(φ̄)|0,Γ1

− 〈φ̄′, b(φ̄)〉Γ1
.

For any sequence φ̄k converging weakly to φ̄ in H1(Γ1), {φ̄′k} is bounded in L2(Γ1)
and φ̄k → φ̄ in L2(Γ1). Coupling with the global Lipschitz continuity of b, we can
obtain

lim
k→∞

|b(φ̄k)|20,Γ1
= |b(φ̄)|20,Γ1

,

lim
k→∞

〈φ̄′k, b(φ̄k)〉Γ1
= 〈φ̄′, b(φ̄)〉Γ1

.

The weakly lower semicontinuity of |φ̄′|0,Γ1
yields that

(4.7) lim inf
k→∞

|φ̄′k|0,Γ1
≥ |φ̄′|0,Γ1

.

Combining the above results, we obtain

lim inf
k→∞

Ŝk(φ̄k)

= lim inf
k→∞

(
|φ̄′k|0,Γ1

|b(φ̄k)|0,Γ1
− 〈φ̄′k, b(φ̄k)〉Γ1

)
= lim inf

k→∞
|φ̄′k|0,Γ1 |b(φ̄k)|0,Γ1 − lim

k→∞
〈φ̄′k, b(φ̄k)〉Γ1

≥ |φ̄′|0,Γ1
|b(φ̄)|0,Γ1

− 〈φ̄′, b(φ̄)〉Γ1

= Ŝ(φ̄);

that is, Ŝ(φ̄) is weakly lower semicontinuous in H1(Γ1).
We subsequently establish the coercivity of Ŝ(φ̄). Since T ∗ is finite, there exists

M ∈ (T ∗,∞), such that
inf
φ̄∈A1

Ŝ(φ̄) = inf
φ̄∈A1,

T̂ (φ̄)<M

Ŝ(φ̄).

In fact, by Lemma 3.4, a minimizing sequence {φ̄k} of Ŝ(φ̄) defines a minimizing
sequence {(T̂ (φ̄k), φ̄k)} of S(T, φ̄), which also corresponds to a minimizing sequence of
ST (φ). The assumption of T ∗ <∞ allows us to add the condition that supk T̂ (φ̄k) <
M . Otherwise, T̂ (φ̄k) must go to infinity. The continuity of S(T, φ̄) with respect to
T yields that T ∗ = ∞, which contradicts our assumption that T ∗ < ∞. Now, let
T̂−1(φ̄)φ̄′(s)− b(φ̄(s)) = ḡ′(s). Then for any φ̄ ∈ A1 with T̂ (φ̄) < M,

|φ̄′| ≤ |T̂ (φ̄)||b(φ̄)|+ |T̂ (φ̄)||g′|
≤M |b(φ̄)|+M |ḡ′|
≤MK|φ̄|+M |b(0)|+M |ḡ′|

≤MK

∫ s

0

|φ̄′(u)| du+M |b(0)|+M |ḡ′|.

By Gronwall’s inequality, we have

|φ̄′(s)| ≤
∫ s

0

M2K(|ḡ′(u)|+ |b(0)|)eKM(s−u) du+M |b(0)|+M |ḡ′(s)|,
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which yields

(4.8) |φ̄′|20,Γ1
≤ C1|b(0)|2 + C2|ḡ′|20,Γ1

,

where C1, C2 ∈ (0,∞) depend only on M and K. Thus,

Ŝ(φ̄) =
T̂ (φ̄)

2

∫ 1

0

∣∣∣T̂−1(φ̄)φ̄′(s)− b(φ̄(s))
∣∣∣2 ds

=
T̂ (φ̄)

2
|ḡ′|20,Γ1

≥
CT̂
2

(
1

C2
|φ̄′|20,Γ1

− C1

C2
|b(0)|2

)
,

where we used Property 4.6 in the last step. This is the coercivity.
For any minimizing sequence {φ̄k}∞k=1 of Ŝ(φ̄), we have

sup
k
|φ̄′k|0,Γ1 ≤

2C1

CT
|b(0)|2 +

2C2

CT
sup
k
{Ŝ(φ̄k)} <∞.

Let φ̄0 ∈ A1. Then

|φ̄k|0,Γ1 ≤ |φ̄k − φ̄0|0,Γ1 + |φ̄0|0,Γ1

≤ Cp|φ̄′k − φ̄′0|0,Γ1 + |φ̄0|0,Γ1
<∞

by Poincaré’s inequality. Thus, {φ̄k}∞k=1 is bounded in H1(Γ1). Then there is a sub-
sequence {φ̄kj}∞j=1 converging to some φ̄∗ ∈ H1(Γ1) weakly in H1(Γ1). So φ̄kj − φ̄0

converges weakly to φ̄∗− φ̄0 in H1
0 (Γ1). By Mazur’s theorem, H1

0 (Γ1) is weakly closed.
So φ̄∗−φ̄0 ∈ H1

0 (Γ1), and φ̄∗ ∈ A1. By Lemma 3.4, φ∗ ∈ AT corresponding to φ̄∗ ∈ A1

is a minimizer of ST (φ), and T ∗ = T̂ (φ̄∗).

4.2.2. Γ-convergence of Ŝh. The Γ-convergence of Ŝh with respect to param-
eter h is established in the following lemma.

Lemma 4.8 (Γ-convergence of Ŝh). Let {Th} be a sequence of finite element meshes.
For every φ̄ ∈ A1, the following two properties hold:

• Lim-inf inequality: for every sequence {φ̄h} converging weakly to φ̄ in H1(Γ1),
we have

(4.9) Ŝ(φ̄) ≤ lim inf
h→0

Ŝh(φ̄h).

• Lim-sup inequality: there exists a sequence {φ̄h} ⊂ B̂h converging weakly to
φ̄ in H1(Γ1), such that

(4.10) Ŝ(φ̄) ≥ lim sup
h→0

Ŝh(φ̄h).

Proof. We first address the lim-inf inequality. We only consider sequence {φ̄h} ⊂
Bh; otherwise, the inequality is trivial. Similarly to the proof of Lemma 4.7, rewrite
the discretized functional as

Ŝh(φ̄h) =
T̂ (φ̄h)

2

∫ 1

0

∣∣∣T̂−1(φ̄h)φ̄′h − b(φ̄h)
∣∣∣2 dt

= |φ̄′h|0,Γ1 |b(φ̄h)|0,Γ1 − 〈φ̄′h, b(φ̄h)〉Γ1 .
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By the same argument as in the proof of Lemma 4.4, we have

lim inf
h→0

|φ̄′h|0,Γ1
≥ |φ̄′|0,Γ1

,

lim
h→0
|b(φ̄h)|0,Γ1 = |b(φ̄)|0,Γ1 ,

lim
h→0
〈φ̄′h, b(φ̄h)〉Γ1

= 〈φ̄′, b(φ̄)〉Γ1
.

Combining these results, we have the lim-inf inequality. The lim-sup inequality can
be obtained by the same argument as in the proof of Lemma 4.4.

4.2.3. Proof of Theorem 4.5. Similarly to the proof of Theorem 4.1, the only
thing left is the verification of equicoerciveness of Ŝh(φ̄h), which can be obtained
directly from the coerciveness of Ŝ(φ̄) restricted to B̄h ⊂ A1 (see the second step in
the proof of Lemma 4.7).

4.3. Problem II with an infinite T ∗. When T ∗ is infinite, the integration
domain becomes the whole real space, corresponding to a degenerate case of linear
scaling. To remove the optimization parameter T , the zero-Hamiltonian constraint
(3.1) can be considered under another assumption that the total arc length of φ∗ is
finite, which is the basic idea of the geometric MAM (gMAM) [14]. However, since
the Jacobian of the transform between time and arc length variables will become
singular at critical points, the numerical accuracy will deteriorate when unknown
critical points exist along the MAP.

We will still work with the formulation with respect to time, which means that
we need to use a large but finite integration time to deal with the case T ∗ = ∞.
We discuss this case by considering a relatively simple scenario, but the numerical
difficulties are reserved. Let 0 ∈ D be an asymptotically stable equilibrium point, D
is contained in the basin of attraction of 0, and 〈b(y), n(y)〉 < 0 for any y ∈ ∂D, where
n(y) is the exterior normal to the boundary ∂D. Then starting from any point in D,
a trajectory of system (1.2) will converge to 0. We assume that the ending point x of
Problem II is located on ∂D.

4.3.1. Escape from the equilibrium point. If we consider the change of
variable in general, say α = α(t), we have (see Lemma 3.1 in [11, Chapter 4])

(4.11) ST (φ) ≥ S(φ̃) =

∫ α(T )

α(0)

(|φ̃′||b| − 〈φ̃′, b〉)dα,

where φ̃(α) = φ(t(α)), φ̃′ is the derivative with respect to α, and the equality holds
if the zero-Hamiltonian constraint (3.1) is satisfied. With respect to α, the zero-
Hamiltonian constraint can be written as

(4.12) |φ̃′|α̇(t) = |b(φ̃)|,

from which we have

(4.13) t =

∫ α(t)

0

|φ̃′|
|b(φ̃)|

dα.

If |φ̃′| ≡ const, the variable α is nothing but a rescaled arc length. Assuming that the
length of the optimal curve is finite, we can rescale the total arc length to one, i.e.,
α(T ) = 1, which yields the gMAM [14].
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We now look at any transition path φ̃(α) = φ(t(α)) that satisfies the zero-
Hamiltonian constraint. Let α correspond to the arc length with φ̃(0) = 0; then
|φ̃′| = 1. Let y be an arbitrary point on φ̃. Then the integration time from 0 to y is

t =

∫ αy

0

1

|b(φ̃)|
dα,

where αy is the arc length of the curve connecting 0 and y, i.e., the value of the arc
length variable α(t) at point y. Note that if the end point y is in a small neighborhood
of the equilibrium 0, the total arc length from 0 to y along φ̄ is small. However, from
the fact that

|b(φ̃)| = |b(φ̃)− b(0)| ≤ K|φ̃| ≤ Kα,

we get

t =

∫ αy

0

1

|b(φ̃)|
dα ≥

∫ αy

0

1

Kα
dα =∞,

as long as αy > 0. So T ∗ =∞, because 0 is a critical point.
For clarity, we include the starting and ending points of the transition path in

some notation. Let φ∗y,x indicate the minimizer of Problem II with starting point y
and ending point x, and let T ∗y,x be the corresponding optimal integration time. We
have, for any y on φ∗0,x, T ∗0,y =∞ and T ∗y,x <∞ for the exit problem as long as φ∗y,x
has a finite length.

4.3.2. Minimizing sequence for Ŝ(φ). Let φL0,y = yt be the linear function
connecting 0 and y in one time unit T = 1. Then

ST∗0,y (φ∗0,y) ≤ ST (φL0,y) =
1

2

∫ 1

0

|y − b(yt)|2 dt

≤
∫ 1

0

(|y|2 +K2|y|2t2) dt ≤ C(K)ρ2,

where |y| ≤ ρ. Although T ∗0,y =∞ for any finite ρ, the action ST∗0,y (φ∗0,y) decreases to
zero with respect to ρ. We consider a sequence of optimization problems

(4.14) Ŝ(φ̄∗,n0,x) = inf
T̂ (φ̄)≤n,
φ̄∈A1

Ŝ(φ̄), n = 1, 2, 3, . . . ,

generated by the constraint T̂ (φ̄) ≤ n. We have the following.

Lemma 4.9. {φ̄∗,n0,x}∞n=1 is a minimizing sequence of (3.9).

Proof. First, Ŝ(φ∗,n0,x) is decreasing as n increases. Pick one ρ such that x /∈ Bρ(0),

and consider a sequence of ρk = 2−kρ, k = 1, 2, . . . . Let yk be the first intersection
point of φ∗0,x and Bρk(0) when traveling along φ∗0,x from x to 0; thus |yk| = ρk. The
optimal transition time T ∗yk,x <∞. We construct a path from 0 to x as follows:

φk =

{
φL0,yk , t ∈ [−T ∗yk,x − 1,−T ∗yk,x],
φ∗yk,x, t ∈ [−T ∗yk,x, 0].

Due to the additivity, we know that φ∗yk,x is located on φ∗0,x since yk ∈ φ∗0,x. Then
{(Tk = T ∗yk,x + 1, φk)} is a minimizing sequence as ρk decreases, and

STk
(φk) ≤ ST∗0,x(φ∗0,x) + C(K)ρ2

k.
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Consider n = dTke. We have

Ŝ(φ∗,n0,x) ≤ STk
(φk) ≤ ST∗0,x(φ∗0,x) + C(K)ρ2

k,

where the first inequality is because T̂ (φk) is, in general, not equal to Tk. We then
reach the conclusion.

When T ∗ = ∞, we have T̂ (φ̄) → ∞ as φ̄ gets close to the minimizer, implying
that |φ̄′|0,Γ1

→ ∞. Thus for this case, we cannot study the convergence in H1(Γ1).
A larger space is needed, i.e., the space consisting of absolutely continuous functions.
So we use C̄x2

x1
(0, T ), the space of absolutely continuous functions connecting x1 and

x2 on [0, T ] with 0 < T ≤ ∞. To prove the convergence of the minimizing sequence
in Lemma 4.9, we use the following lemma, which is Proposition 2.1 proved in [14].

Lemma 4.10. Assume that the sequence ((Tk, φk))k∈N with Tk > 0 and φk ∈
C̄x2
x1

(0, Tk) for every k ∈ N is a minimizing sequence of (2.2) and that the lengths of
the curves of φk are uniformly bounded, i.e.,

lim
k→∞

STk
(φk) = V (x1, x2) and sup

k∈N

∫ Tk

0

|φ̇k(t)| dt <∞.

Then the action functional Ŝ has a minimizer ϕ∗, and for some subsequence (φkl)l∈N
we have that

lim
l→∞

d(φkl , ϕ
∗) = 0,

where d denotes the Fréchet distance.

Theorem 4.11. Assume that the lengths of the curves φ∗,n0,x are uniformly bounded.

Then there exists a subsequence φ∗,nl

0,x that converges to a minimizer φ∗ ∈ C̄x0 (0, T )
with respect to the Fréchet distance.

Proof. By Lemma 3.4, we have a one-to-one correspondence between {φ̄∗,n0,x}∞n=1

and {φ∗,n0,x}∞n=1. So from Lemma 4.9, we know that {(n, φ∗,n0,x)}∞n=1 defines a minimizing
sequence of Problem II. The convergence is a direct application of Lemma 4.10.

Although we just constructed {φ}∗,n0,x for an exit problem around the neighborhood
of an asymptotically stable equilibrium, it is easy to see that the idea can be applied
to a global transition, say both x1 and x2 are asymptotically stable equilibrium, as
long as there exist finitely many critical points along the minimal action path. In
(4.14), we introduced an extra constraint T̂ (φ̄) ≤ n, which implies that the infimum
may be reached at the boundary T̂ (φ̄) = n. From the optimization point of view,
such a box-type constraint is not favorable. Next, we will show that this constraint
is not needed for the discrete problem.

4.3.3. Remove the constraint T̂ (φ̄) ≤ n for a discrete problem. The key
observation is as follows.

Lemma 4.12. If φ̄∗h is the minimizer of Ŝh(φ̄h) over Bh, then T̂ (φ̄∗h)≤ Ch < ∞
for any given h.

Proof. We argue by contradiction. Note that

T̂ 2(φ̄∗h) =
|(φ̄∗h)′|20,Γ1

|b(φ̄∗h)|20,Γ1

≤ C
|φ̄∗h|20,Γ1

|b(φ̄∗h)|20,Γ1

,

where the last inequality is from the inverse inequality of finite element discretization
and the constant C depends only on the mesh [3]. If T̂(φ̄∗h) =∞, we have two possible
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cases: |b(φ̄∗h)|0,Γ1
= 0 or |φ̄∗h|0,Γ1

=∞. The first case implies that b(φ̄∗h(s)) = 0 for all
s ∈ Γ1, which contradicts statement (3) of Assumption 2.1. The second case implies
that φ̄∗h must go to infinity somewhere due to the continuity, which contradicts Lemma
2.2.

Lemma 4.12 means that for a discrete problem the constraint T̂ (φ̄) ≤ n in (4.14)
is not necessary in the sense that there always exists a number n such that T̂ (φ̄∗h) <
n. We can then consider a sequence {T h} of finite element meshes and treat the
minimization of Ŝh(φ̄h) in exactly the same way as in the case that T ∗ is finite.
Simply speaking, {(T̂ (φ̄∗h), φ̄∗h)} defines a minimizing sequence as h→ 0 regardless of
whether T ∗ is finite or infinite. The only difference between T ∗ <∞ and T ∗ =∞ is
that we address the convergence of φ̄∗h in H1(Γ1) for T ∗ <∞ and in C̄x2

x1
for T ∗ =∞.

4.3.4. The efficiency of {(T̂ (φ̄∗
h), φ̄∗

h)}. The E-L equation associated with

Ŝ(φ) is

(4.15) T̂−2(φ̄)φ̄′′ + T̂−1(φ̄)
(
(∇φ̄b)T −∇φ̄b

)
φ̄′ − (∇φ̄b)Tb = 0.

For a fixed T , the E-L equation associated with ST (φ) is the same as (4.15) except
that we need to replace T̂ (φ) with T [22]. If T ∗ = ∞, T̂ (φ̄∗h) → ∞ as h → 0, which
means that the E-L equation (4.15) eventually becomes degenerate. When h is small,
T̂ (φ∗h) is finite but large. Equation (4.15) can be regarded as a singularly perturbed
problem, which implies the possible existence of boundary/internal layers. Thus the
minimizing sequence given by a uniform refinement T h of Γ1 may not be effective.

Consider a transition from a stable fixed point to a saddle point without any
other critical points on the minimal transition path. The dynamics is slow around
the critical points and fast elsewhere, which means that for the approximation given
by a fixed large T , the path will be mainly captured in a subinterval [a, b] ∈ Γ1 with
|b− a| ∼ O(T−1) with respect to the scaled time s = t/T . Then an effective T h has
a fine mesh for [a, b] and a coarse mesh for [0, a] ∪ [b, 1]. Currently, there exist two
techniques to achieve an effective nonuniform discretization T h:

(1) Moving mesh technique. Starting from a fine uniform discretization, the grid
points will be redistributed such that more grid points will be moved from the region
of slow dynamics to the region of fast dynamics [31, 20]. This procedure needs to
be iterated until the optimal nonuniform mesh is reached with respect to a certain
criterion for the redistribution of grids.

(2) Adaptive finite element method. Starting from a coarse uniform mesh, T h
will be refined adaptively such that more elements will be put into the region of fast
dynamics and fewer elements into the region of slow dynamics [22, 26]. Numerical
experiments have shown that both techniques can recover the optimal convergence
rate with respect to the number of degrees of freedom.

5. A priori error estimate for a linear ODE system. In this section we
apply our strategy to a linear ODE system with b(x) = −Ax, where A is an SPD
matrix. Then x = 0 is a global attractor. The E-L equation associated with Ŝ(φ̄)
becomes

(5.1) − T̂−2(φ̄)φ̄′′ +A2φ̄ = 0,

which is a nonlocal elliptic problem of Kirchhoff type. For Problem I with a fixed T ,
i.e., T̂ (φ) = T , (5.1) becomes a standard diffusion-reaction equation.

Let φ̄∗ = φ̄∗0 + φL ∈ A1 be the minimizer of Ŝ(φ̄), and φ̄∗h = φ̄∗h,0 + φL ∈ Bh the

minimizer of Ŝh(φ̄h), where φL = x1 + (x2 − x1)s is a linear function connecting x1
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and x2 on Γ1. Let

Vh = {v : v|I is affine ∀ I ∈ T h, v(0) = v(1) = 0} ⊂ H1
0 (Γ1).

For a fixed T , (5.1) has a unique solution, and the standard argument shows that

(5.2)
∣∣φ̄∗ − φ̄∗h∣∣1,Γ1

=
∣∣φ̄∗0 − φ̄∗h,0∣∣1,Γ1

≤ CT 2 inf
w∈Vh

∣∣φ̄∗0 − w∣∣1,Γ1
.

If T is large enough, (5.1) can be regarded as a singularly perturbed problem, for
which the best approximation given by a uniform mesh cannot reach the optimal
convergence rate due to the existence of a boundary layer.

We now consider Problem II with a finite T ∗. The minimizer φ̄∗ of Ŝ(φ̄) satisfies
the weak form of (5.1):

(5.3)
〈(
φ̄∗
)′
, v′
〉

Γ1

= −T̂ 2
(
φ̄∗
) 〈
Aφ̄∗, Av

〉
Γ1

∀ v ∈ H1
0 (Γ1).

The minimizer φ̄∗h of Ŝh(φ̄h) satisfies the discrete weak form:

(5.4)
〈(
φ̄∗h
)′
, v′
〉

Γ1

= −T̂ 2
(
φ̄∗h
) 〈
Aφ̄∗h, Av

〉
Γ1

∀ v ∈ Vh.

We have the following a priori error estimate for Problem II with a finite T ∗.

Proposition 5.1. Consider a subsequence φ̄∗h converging weakly to φ̄∗ in H1(Γ1)
as h → 0. Assume that φ̄∗ and φ̄∗h satisfy (5.3) and (5.4), respectively. For problem
II with a finite T ∗, there exists a constant C ∼ (T ∗)2 such that

(5.5)
∣∣φ̄∗ − φ̄∗h∣∣1,Γ1

=
∣∣φ̄∗0 − φ̄∗h,0∣∣1,Γ1

≤ C inf
w∈Vh

∣∣φ̄∗0 − w∣∣1,Γ1

when h is small enough.

Proof. Let η be the best approximation of φ̄∗ on Vh ⊕ φL, i.e.,∣∣φ̄∗ − η∣∣
1,Γ1

= inf
w∈Vh⊕φL

∣∣φ̄∗ − w∣∣
1,Γ1

.

We then have

〈(φ̄∗ − η)′, w′〉 = 0 ∀ w ∈ Vh,

where φ̄∗ − η ∈ H1
0 (Γ1). Consider∣∣φ̄∗h − η∣∣21,Γ1

=
〈
(φ̄∗h − φ̄∗)′, (φ̄∗h − η)′

〉
Γ1

+
〈
(φ̄∗ − η)′, (φ̄∗h − η)′

〉
Γ1

=
〈
(φ̄∗h − φ̄∗)′, (φ̄∗h − η)′

〉
Γ1

=−
〈

(T̂ 2(φ̄∗h)φ̄∗h − T̂ 2(φ̄∗)φ̄∗), A2(φ̄∗h − η)
〉

Γ1

=−
〈

(T̂ 2(φ̄∗h)φ̄∗h − T̂ 2(η)η), A2(φ̄∗h − η)
〉

Γ1

−
〈

(T̂ 2(η)η − T̂ 2(φ̄∗)φ̄∗), A2(φ̄∗h − η)
〉

Γ1

= I1 + I2.(5.6)
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We look at I2 first. Note that

|T̂ 2(η)− T̂ 2(φ̄∗)|

=

∣∣∣∣∣ |η|21,Γ1

|Aη|20,Γ1

−
|φ̄∗|21,Γ1

|Aφ̄∗|20,Γ1

∣∣∣∣∣
=

∣∣∣∣∣ |η|21,Γ1
− |φ̄∗|21,Γ1

|Aη|20,Γ1

+
|φ̄∗|21,Γ1

(|Aφ̄∗|20,Γ1
− |Aη|20,Γ1

)

|Aη|20,Γ1
|Aφ̄∗|20,Γ1

∣∣∣∣∣
≤ CT̂ (η, φ̄∗)|η − φ̄∗|1,Γ1

,(5.7)

where

CT̂ (η, φ̄∗) =
|η|1,Γ1

+ |φ̄∗|1,Γ1

|Aη|20,Γ1

+
|φ̄∗|21,Γ1

(|Aη|0,Γ1 + |Aφ̄∗|0,Γ1)‖A‖Cp
|Aη|20,Γ1

|Aφ̄∗|20,Γ1

and Cp is the Poincaré constant. Then we have

|I2| =
∣∣∣∣〈(T̂ 2(η)η − T̂ 2(φ̄∗)φ̄∗), A2(φ̄∗h − η)

〉
Γ1

∣∣∣∣
≤
∣∣∣∣〈T̂ 2(η)(η − φ̄∗), A2(φ̄∗h − η)

〉
Γ1

∣∣∣∣
+

∣∣∣∣〈(T̂ 2(η)− T̂ 2(φ̄∗))φ̄∗, A2(φ̄∗h − η)
〉

Γ1

∣∣∣∣
≤ (T̂ 2(η)C2

p‖A‖2 + CT̂ (η, φ̄∗)|Aφ̄∗|0,Γ1‖A‖Cp)|η − φ̄∗|1,Γ1 |φ̄∗h − η|1,Γ1

=CI2(η, φ̄∗)|η − φ̄∗|1,Γ1
|φ̄∗h − η|1,Γ1

.(5.8)

By the definition of η, we have

lim
h→0
|η|1,Γ1

= |φ̄∗|1,Γ1
, lim

h→0
|Aη|0,Γ1

= |Aφ̄∗|0,Γ1
.

We then have

lim
h→0

CI2(η, φ̄∗) = 2M + 3M2,

where M = ‖A‖CpT ∗.
We now look at I1. Since limh→0 T̂ (φ̄∗h) = limh→0 T̂ (η) = T ∗ and T ∗ < ∞,

we know that when h is small enough, I1 ∼ −(T ∗)2
〈
(φ̄∗h − η), A2(φ̄∗h − η)

〉
Γ1

< 0.

Combining this fact with (5.6) and (5.8), we have that for h small enough there exists
a constant C > 2M + 3M2 such that∣∣φ̄∗h − η∣∣1,Γ1

≤ C
∣∣φ̄∗ − η∣∣

1,Γ1
= C inf

w∈Vh⊕φL

∣∣φ̄∗ − w∣∣
1,Γ1

.

To this end, we obtain an a priori error estimate similar to that for Problem I with
a fixed T . Since T ∗ can be arbitrarily large, we know that the optimal convergence
rate may degenerate when a boundary layer exists. Using Proposition 5.1, we can
easily obtain the optimal convergence rate with respect to the error of the action
functional:

(5.9) |Ŝ(φ̄∗)− Ŝ(φ̄∗h)| ∼ |δ2Ŝ(φ̄∗)| ∼ |φ̄∗h − φ̄∗|21,Γ1
,
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where the second-order variation can be obtained with respect to the perturbation
function δφ̄ = φ̄∗ − φ̄∗h.

The convergence rate for T ∗ is also optimal. For a general case, we have the
first-order variation of T̂ 2 at φ̄∗ with a test function δφ̄ as

|δ(T̂ 2)| =

∣∣∣∣∣2〈(φ̄∗)′′, δφ̄〉Γ1
+ 2(T ∗)2〈(∇b)Tb, δφ̄〉Γ1

|b(φ̄∗)|20,Γ1

∣∣∣∣∣
≤ 2|b(φ̄∗)|−2

0,Γ1

(
|φ̄∗|2,Γ1

+ (T ∗)2K|b(φ̄∗)|0,Γ1

)
|δφ|0,Γ1

.

Also note that the second-order variation has the same order as |δφ|21,Γ1
. Let δφ =

φ̄∗h − φ̄∗. From Proposition 5.1, we know the second-order variation has an optimal
convergence rate |φ̄∗h − φ̄∗|21,Γ1

∼ O(h2) when φ̄∗ ∈ H2(Γ1). If |φ̄∗h − φ̄∗|0,Γ1
can also

reach its optimal rate, which is of order O(h2), the overall convergence rate for T ∗ is
of order O(h2). We will not analyze the optimal convergence of φ̄∗h in the L2 norm
here, but only provide numerical evidence of the optimal convergence rate for T ∗ in
the next section.

6. Numerical experiments. We will use the following simple linear stochastic
ODE system to demonstrate our analysis results:

(6.1) dX(t) = AX(t) dt+
√
ε dW (t),

where

A = B−1JB =

[
a −b
b a

] [
λ1 0
0 λ2

] [
a b
−b a

]
,

with a = 1/3, b =
√

8/3, λ1 = −10, and λ2 = −2. Then z = (0, 0)T is a stable fixed
point. For the corresponding deterministic system, namely when ε = 0, and any given
point X(0) = x 6= z in the phase space, the trajectory X(t) = etAx converges to z as
t → ∞. When noise exists, this trajectory is also the MAP φ∗ from x to etAx with
T ∗ = t, since V (x, etAx) = 0. Moreover, if the ending point is z, then T ∗ =∞. This
obviously is not an exit problem, which is a typical application of MAM. However, it
includes most of the numerical difficulties of MAM, and the trajectory can serve as
an exact solution, which simplifies the discussions.

Consider the MAP from x (6= z) to etAx such that T ∗ = t. Since the MAP
corresponds to a trajectory, we can use the value of the action functional as the
measure of error with an optimal rate O(h2) ∼ O(N−2) (see (5.9)), where N is the
number of elements. We will look at the following two cases:

(i) T ∗ is finite and small. According to Theorem 4.5, φ̄h converges to φ̄∗. Since
T ∗ is small, according to Proposition 5.1, we expect an optimal convergence rate of
φ̄h as h→ 0.

(ii) T ∗ = ∞. We will compare the convergence behavior between tMAM and
MAM with a fixed large T . According to Theorem 4.11, we have the convergence in
C̄zx. However, the convergence behavior of this case is similar to that for a finite but
large T ∗, where we expect a deteriorated convergence rate.

6.1. Case (i). Let x = (1, 1). We use eAx as the ending point such that T ∗ = 1.
In Figure 1 we plot the convergence behavior of tMAM with uniform linear finite
element discretization. It is seen that the optimal convergence rate is reached for
both the action functional and T ∗ estimated by T̂ (φ̄∗h).
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Fig. 1. Convergence behavior of tMAM for Case (i). Left: Errors of the action functional.
Right: Errors of T ∗.

Fig. 2. Convergence behavior of tMAM and MAM with a fixed T for Case (ii). Left: Errors of

the action functional. Right: Estimated T ∗ of tMAM, i.e., T̂ (φ̄∗h).

6.2. Case (ii). For this case, we still use x = (1, 1) as the starting point. The
ending point is chosen as a = (0, 0)T such that T ∗ =∞. Besides tMAM, we use MAM
with a fixed T to approximate this case, where T is supposed to be large. In general,
we do not have a criterion to define how large T must be because the accuracy is
affected by two competing issues: (1) T ∗ = ∞ favors a large T , but (2) a fixed
discretization favors a small T . This implies that for any given h, an “optimal” finite
T exists. For the purpose of demonstration, we choose T = 100, which is actually too
large from an accuracy point of view. Let φ∗T (t) be the approximate MAP given by
MAM with a fixed T . We know that φ̄∗T (s) = φ∗T (t/T ) yields a smaller action with

the integration time T̂ (φ̄∗T (s)). In this sense, no matter what T is chosen, for the
same discretization tMAM will always provide a better approximation than MAM
with a fixed T . The reason we use an overlarge T is to demonstrate the deterioration
of the convergence rate. In Figure 2, we plot the convergence behavior of tMAM
and MAM with T = 100 on the left, and the estimated T ∗ given by tMAM on the
right. It is seen that the convergence is slower than O(N−2), as we have analyzed in
section 5. For the same discretization, tMAM has an accuracy that is several orders of
magnitude better than MAM with T = 100. In the right plot of Figure 2, we see that
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Fig. 3. Approximate MAPs given by tMAM and MAM with a fixed T for Case (ii).

the optimal integration time for a certain discretization is actually not large at all.
This implies that MAM with a fixed T for Case (ii) is actually not very reliable. In
Figure 3, we compare the MAPs given by tMAM and MAM with the exact solution
etAx, where all symbols indicate the nodes of finite element discretization. First,
we note that the number of effective nodes in MAM is small because of the scale
separation of fast dynamics and small dynamics. Most nodes are clustered around
the fixed point. This is called a problem of clustering (see [19, 26] for a discussion of
this issue). Second, if the chosen T is too large, oscillation is observed in the paths
given by MAM especially when the resolution is relatively low; on the other hand,
tMAM does not suffer such an oscillation by adjusting the integration time according
to the resolution. Third, although tMAM is able to provide a good approximation
even with a coarse discretization, more than enough nodes are put into the region
around the fixed point, which corresponds to the deterioration of the convergence
rate. To recover the optimal convergence rate, we need to resort to adaptivity (see
[22, 26] for the construction of the algorithm).

7. Summary. In this work, we have established some convergence results of
minimum action methods based on linear finite element discretization. In particular,
we have demonstrated that the minimum action method with optimal linear time
scaling, i.e., tMAM, converges for Problem II whether the optimal integration time is
finite or infinite.
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