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This paper discusses the necessity and strategy to unify the development of a dynamic 
solver and a minimum action method (MAM) for a spatially extended system when 
employing the large deviation principle (LDP) to study the effects of small random 
perturbations. A dynamic solver is used to approximate the unperturbed system, and a 
minimum action method is used to approximate the LDP, which corresponds to solving 
an Euler–Lagrange equation related to but more complicated than the unperturbed 
system. We will clarify possible inconsistencies induced by independent numerical 
approximations of the unperturbed system and the LDP, based on which we propose 
to define both the dynamic solver and the MAM on the same approximation space for 
spatial discretization. The semi-discrete LDP can then be regarded as the exact LDP of the 
semi-discrete unperturbed system, which is a finite-dimensional ODE system. We achieve 
this methodology for the two-dimensional Navier–Stokes equations using a divergence-
free approximation space. The method developed can be used to study the nonlinear 
instability of wall-bounded parallel shear flows, and be generalized straightforwardly to 
three-dimensional cases. Numerical experiments are presented.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

During the past two decades, there has been a widespread interest in uncertainty quantification (UQ) to develop stochas-
tic models and approaches to quantitatively describe the propagation of uncertainty of different sources in complex systems, 
and the interplay of mathematical modeling and experimental data. Thanks to the development of stochastic numerics and 
high performance computing, many successes have been achieved in UQ by recasting some classical deterministic models in 
a stochastic setting. For example, classical deterministic partial differential equations (PDEs) have been relaxed to a random 
one by taking into account the uncertainty in physical parameters, initial/boundary conditions, etc. Bayesian inference has 
been applied to deal with inverse problems in spatially extended systems. Although a deterministic inverse problem is, in 
general, ill-posed, the noisy physical observations provide a natural feedback to the mathematical model in the probabilistic 
sense, which makes the stochastic inverse problem well-posed.

In this paper we are interested in generalizing a deterministic spatially extended system by introducing a small random 
forcing term, which results in a stochastic PDE (see equation (1)). In particular, we pay attention to transitions induced by 
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the small noise. The importance of this problem is at least twofold: First, since the noise amplitude is small, the transition 
mechanism is closely related to the structure of the phase space of the deterministic system. For example, in gradient 
systems, the transition rate is determined by the saddle points of index one, which makes the search for saddle points a 
critical issue [21,9,47,32,14]. Second, such a stochastic model can be more appropriate to describe the nonlinear instability 
induced by the subcritical bifurcation. For example, in wall-bounded parallel shear flows, two or more stable solutions, 
including the laminar base flow, can exist for the same Reynolds number, where deterministic approaches, e.g., the linear 
stability theory, may not be effective to depict the instability of the base flow. Small noise in the forcing term, which can be 
regarded as background noise in experiments, establishes a random walk between the metastable solutions, which provides 
a natural probabilistic description of the nonlinear instability of the base flow [37,10,43,46].

One important technique to study the small-noise-induced transitions is to employ the Frendlin–Wentzell theory of 
large deviations, where the central task is to minimize the so-called action functional, see equations (4). The minimizer 
is the most probable transition path, which, by the large deviation principle (LDP), provides an estimate of the transition 
probability in the asymptotic sense. Depending on the structure of the phase space and the definition of transitions, the 
difficulties of minimizing the action functional (or approximating the LDP) may vary (see [16] for a review of the instanton 
method, which summarizes some scenarios in the numerical approximation of large deviation principle). We here focus on 
the problem defined by the transition between any two points in the phase space (see equations (3) and (5)), where the 
Euler–Lagrange equation of the action functional defines a boundary value problem on a space–time domain (see equation 
(12)). In [8], this problem was first studied numerically by the so-called minimum action method (MAM). Since then, many 
versions of MAM have been developed, including the adaptive MAM [49], the geometric MAM [22,13], the high-order MAM 
[38,39], the MAM with optimal linear time scaling [41], the hp-adaptive MAM [42], etc.

Except for a few works on string methods or MAMs with constraints (e.g. [5,7,48,28]), almost all the available MAMs 
focus on the numerical difficulties from the time direction. In this work, we will pay more attention to the spatial dis-
cretization in the application of the LDP to spatially extended systems, where we use a dynamic solver to approximate the 
unperturbed (or deterministic) system and the minimum action method (MAM) to approximate the LDP. One fundamen-
tal issue emerges when we treat a numerical trajectory given by a dynamic solver as a transition path for the LDP. If the 
nonlinear differentiation operator (see G in equation (1)) is not discretized in a consistent way for the dynamic solver and 
the action functional, the numerical LDP cannot discriminate between the residual induced by finite dimensional approx-
imation and the action induced by external random forcing. This implies that a numerical transition path of zero action 
does not corresponds to a numerical trajectory given by the dynamic solver, although they are the same theoretically. We 
then propose a methodology to approximate the LDP and the unperturbed system using the same spatial discretization, 
where the semi-discrete LDP can be regarded as the exact LDP of the semi-discretized unperturbed system. We achieve this 
methodology for two-dimensional Navier–Stokes (N–S) equations using a divergence-free space. Compared to the MAM for 
N–S equations developed in [40], the current approach has several advantages:

• Inconsistency between the dynamic solver and the LDP in spatial discretization has been eliminated.
• The pressure has been removed from the formulation due to the projection onto a divergence-free space, i.e., the 

Helmholtz–Hodge decomposition. Thus, the number of degrees of freedom is reduced by half for the two-dimensional 
N–S equations.

• The nonlinearity of the integrand of the action functional reduces from fourth order to second order, such that less 
quadrature points are needed to deal with the aliasing error.

This paper is organized as follows. In Section 2, we describe our target problem, where we clarify the possible discrepan-
cies between numerical approximations of the LDP and the unperturbed system. In Section 3, we propose to use the same 
spatial discretization to define the minimum action method and the dynamic solver. We achieve our methodology for two-
dimensional Navier–Stokes equations in Section 4. Numerical experiments are given in Section 5 followed by a summary 
section.

2. Problem

We start with the following general stochastic PDE:

∂t u(t, x) + G(u)(t, x) = √
εẆ (t, x), (1)

where u(t, x) : R+ × D �→ R, x ∈ D ⊂ Rd , d = 1, 2, 3, G a (nonlinear) spatial differentiation operator, ε a small positive 
number and Ẇ (t, x) a Gaussian Hilbert space valued random process that is white in time and colored in space. Let Q be 
the spatial covariance operator, which is usually assumed to be symmetric positive and of trace class. When ε = 0, equation 
(1) becomes a deterministic one:

∂t ud(t, x) + G(ud)(t, x) = 0, (2)

where the subscript d indicates that ud is a deterministic solution.
The effect of noise on dynamics is of particular interest especially when ε is small, i.e., 0 < ε � 1. The fundamental 

difference between the stochastic dynamics given by equation (1) and the deterministic dynamics given by equation (2) is 
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that there exist transitions between any two points in the phase space when noise exists. For small noise, the noise-induced 
transitions can be rigorously characterized by the large deviation principle (LDP) through the quasi-potential defined as:

W (u1, u2) = ST ∗(u∗) = inf
T >0

inf
u(0,x)=u1(x),
u(T ,x)=u2(x)

ST (u). (3)

Here T ∗ and u∗ indicate the minimizers, and ST (u) is called the action functional

ST (u) = 1

2

T∫
0

〈
∂t u + G(u),Q−1(∂t u + G(u))

〉
D

dt, (4)

where 〈·, ·〉D indicates the inner product in the Hilbert space on which the noise is defined. We call u∗ the minimal action 
path (MAP). The quasi-potential measures the difficulty of the passage from state u1 to the vicinity of state u2 in the 
following probabilistic sense [12]

lim
ε↓0

−ε log Pr(transitions from u1 to the vicinity of u2) = W (u1, u2).

The LDP also holds for a fixed time scale, i.e.,

lim
ε↓0

−ε log Pr(transitions from u1 to the vicinity of u2 at time T )

= ST (u∗
T ) = inf

u(0,x)=u1(x),
u(T ,x)=u2(x)

ST (u). (5)

The central task for the application of LDP is to solve the optimization problems in equations (3) and (5).
To approximate the deterministic equation (2) we need to specify an approximation space Vh and look for ud ≈ ud,h ∈ Vh

using a certain numerical procedure. To approximate the LDP we also need to choose an approximation space V̂h and look 
for u∗ ≈ u∗

h ∈ V̂h . The approximation of LDP can be completely independent of the approximation of deterministic system (2). 
In this paper, we will refer to the solution of an unperturbed system as a trajectory, e.g., ud and ud,h , and the functions 
studied by the LDP as a transition path, e.g., u∗ and u∗

h .
One immediate question is: Do we need a dynamic solver of equation (2) to study the numerical MAP u∗

h? The answer 
is yes. For example, if u1 and u2 are two attractors, u∗

h must pass through the separatrix between u1 and u2. To locate the 
intersection of u∗

h and the separatrix, we need to use the states on u∗
h as initial conditions of system (2) and look at the 

convergence behavior. There exists one transition state on u∗
h , across which the solution of the dynamic solver will switch 

between u1 and u2. This is a widely used strategy when tracking the laminar–turbulent boundary [33].
We then have to face a more serious question: How can we guarantee that the approximation of LDP and the dynamic 

solver are consistent? For example, if u1 and u2 are located on a trajectory ud , we should have u∗ = ud theoretically. In other 
words, regarded as a transition path, a trajectory has a zero action, and is a minimizer of the action functional. However, 
this relation is difficult to hold exactly for the numerical approximations u∗

h and ud,h . One possible issue is the residual εr :

∂t ud,h + G(ud,h) = εr = 0, (6)

which is induced by the truncation of an infinite-dimensional space to a finite-dimensional one, e.g., Vh . The residual εr

defines the inconsistency between the finite-dimensional approximations of the unperturbed system and LDP. In a dynamic 
solver, G is often replaced by its projection onto the finite-dimensional approximation space, e.g., the Galerkin approach, 
to obtain the discrete equation; however, to discretize the action functional (4), G is not necessarily projected especially 
when an optimization solver is employed. When plugging ud,h into the action functional, the residual εr is indistinguishable 
from action. If we choose two points on a numerical trajectory, it is possible that the approximated LDP yields a different 
path subject to a smaller “action”. This way, the approximated LDP and the dynamic solver do not have an agreement on 
the definition of a numerical trajectory. More observations about the negative effect of such an issue can be found in [43], 
where the nonlinear instability of two-dimensional Poiseuille flow in a short channel was studied by the minimum action 
method.

Hence it is necessary to unify the approximations of the LDP and the deterministic system such that the inconsistencies 
induced by numerical discretization can be reduced to the minimum.

2.1. Approximation of system (2)

There exist numerous methods to approximate equation (2), including finite difference method, finite volume method, 
finite element method, spectral method, as well as many other numerical methods tied to the specific character of the 
equation. Different methods may employ different strategies for discretization, spatial discretization in particular. Here we 
consider methods based on the Galerkin projection.
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Let Vh be an approximation space defined on the physical domain D . Let Ph be a projection operator onto Vh such that 
for a function f (x) ∈ L2(D) we have Ph f ∈ Vh , and

〈Ph f , v(x)〉D = 〈 f (x), v(x)〉D , ∀v ∈ Vh. (7)

Then system (2) is often approximated in the weak sense through a certain type of projection, e.g., the Galerkin projection. 
In other words, we seek ud,h ∈ Vh , such that〈

∂t ud,h, v
〉
D + 〈

G(ud,h), v
〉
D = 0, ∀v ∈ Vh. (8)

This is the weak form of equation (2), where integration by parts can often be used such that the regularity requirement 
on Vh is minimized. For example, if G = −� is a Laplace operator, we only need that Vh belongs to H1 instead of H2. We 
rewrite equation (8) as

∂t ud,h +PhG(ud,h) = 0. (9)

The residual induced by ud,h can be written as

εr(ud,h) = ∂t ud,h + G(ud,h) = (G −PhG)(ud,h). (10)

We here do not consider the error from the temporal discretization since different strategies will be used for system (2)
and the LDP due to the fact that LDP defines a boundary value problem on a space–time domain (see equation (12)). We 
have also assumed in the definition of residual εr that Vh has the regularity required by G . Otherwise, we are not able to 
define G(ud,h). This is a strong assumption for the numerical solution of system (2). However, it allows us to use the same 
approximation space for both system (2) and the LDP. This issue will be further clarified in the next section.

2.2. Approximation of LDP

Let V̂h the approximation space for the LDP. We seek u∗
h ∈ V̂h such that

ST ∗
h
(u∗

h) = min
T ∈R+,

uh(0)=u1,
uh(T )=u2

1

2

T∫
0

〈
∂t uh + G(uh),Q−1(∂t uh + G(uh))

〉
D

dt. (11)

The minimizer can be obtained by gradient-type optimization algorithms or more efficient algorithms if the computation of 
Hessian is affordable, such as Newton’s method. For a fixed integration time T , finding u∗

h corresponds to approximate the 
following Euler–Lagrange equation

(∂t + Ĝ)∗Q−1(∂t + G)(u) = 0, (t, x) ∈ [0, T ] × D, (12)

where the operator Ĝ is given by the linearization of G , and (∂t + Ĝ)∗ the adjoint operator of ∂t + Ĝ .
Mathematically, V̂h is often chosen to be different from Vh . This fact can be illustrated by assuming that G = −�, i.e., a 

Laplace operator. Then one weak from for ud,h is

〈∂t ud,h, v〉D + 〈∇u,∇v〉D − 〈∂n v, u〉∂ D = 0, ∀v ∈ Vh,

where n indicates the outward pointing normal direction on the boundary ∂ D and we used integration by parts once. It is 
seen that this weak form requires that Vh ⊂ H1(D). The definition (4) of action functional implies that V̂h ⊂ H2(D). In other 
words, the action functional requires a smoother approximation space. To remove such an inconsistency between V̂h and Vh , 
the simplest way is to let V̂h = Vh , which, however, will directly affect the numerical procedure for both the LDP and system 
(2). This is not a trivial issue from the numerical point of view. We have two options to choose: (1) Vh = V̂h ⊂ H2(D); and 
(2) Vh = V̂h ⊂ H1(D). For the first option, we may need to reconsider the approximation of system (2); for the second 
choice, we have to reconsider the discretization of the LDP.

Both options are feasible. In this work, we will consider the first option motivated by a fundamental problem in fluid 
mechanics: nonlinear instability of wall-bounded parallel shear flows. For this problem, spectral methods are widely used 
for system (2) due to the simple geometry of the physical domain. Since orthogonal polynomials used in spectral methods 
are smooth functions, we can naturally let Vh = V̂h . We then consider this special case and leave the general case for future 
study.

We now quantify some errors to measure the inconsistencies induced by the discretization of system (2) and the LDP.

Proposition 1. Let the numerical MAP u∗
h correspond to a trajectory of system (2). We have∣∣∂t u∗

h +PhG(u∗
h)

∣∣ ≤ εr(u∗
h) + ‖PhG − G‖‖u∗

h‖. (13)
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Proof. We have∣∣∂t u∗
h +PhG(u∗

h)
∣∣ = ∣∣∂t u∗

h + G(u∗
h) + (PhG − G)(u∗

h)
∣∣

≤ ∣∣∂t u∗
h + G(u∗

h)
∣∣ + ‖PhG − G‖‖u∗

h‖.

It is seen that the semi-discrete problem (11) may not provide a transition path that satisfy equation (9) exactly even if 
V̂h = Vh and zero action is reached. This is because the semi-discrete problem (11) uses G instead of PhG .

Proposition 2. Let ud,h be a numerical trajectory given by equation (9). We have

ST (ud,h) = 1

2

T∫
0

∥∥εr(ud,h)
∥∥2
Q−1 dt, (14)

where ‖v‖2
Q−1 = 〈

v,Q−1 v
〉
D defines a weighted norm of v, and εr is the residual defined in equation (10).

Proof.

ST (ud,h) = 1

2

T∫
0

∥∥(∂t +PhG + G −PhG)(ud,h)
∥∥2
Q−1 dt

= 1

2

T∫
0

∥∥(G −PhG)(ud,h)
∥∥2
Q−1 dt = 1

2

T∫
0

∥∥εr(ud,h)
∥∥2
Q−1 dt,

which is positive as long as G(ud,h) =PhG(ud,h).

Thus a numerical trajectory given by equation (9) has a positive action, which is given by the accumulation of residuals.

Remark 1. If we decompose the space GVh = Vh ⊕ V ⊥
h with respect to ‖ · ‖Q−1 , and let G(uh) = GV (uh) + G⊥(uh), where 

GV (uh) ∈ Vh and G⊥(uh) ∈ V ⊥
h , we have

ST (uh) = 1

2

T∫
0

∥∥∥(∂t + GV )(uh)

∥∥∥2

Q−1
+

∥∥∥G⊥(uh)

∥∥∥2

Q−1
dt.

If G is nonlinear, 
∥∥(∂t + GV )(uh)

∥∥
Q−1 and 

∥∥G⊥(uh)
∥∥
Q−1 usually cannot be zero at the same time. Although the MAP u∗

should recover a trajectory when there exists dynamics between u1 and u2, the zero action, in general, cannot be reached 
by the semi-discrete action functional (11) due to the finite dimensional approximation. If the transition time T is large, the 
accumulation of residuals might affect the search of the MAP [43].

3. Choose a numerical plan for system (2) and LDP

We seek a numerical plan that meets the following conditions: (1) The same spatial discretization is used for both system 
(2) and the LDP; and (2) the residual εr is restricted to temporal discretization only. Such a numerical plan is based on the 
fact that system (2) is an initial value problem while the Euler–Lagrange equation (12) is a boundary value problem.

3.1. A semi-discrete system

To achieve our goal, we choose to start from SPDE (1) instead of the definition of action functional. We look at the 
semi-discrete system

∂t û +PhG(û) = √
εPh Ẇ , (15)

where û is a random element taking its value in Vh . As ε → 0, the deterministic semi-discrete system (9) is obtained.

Remark 2. The semi-discrete system (15) has received much attention as an approximation of stochastic PDE (1) when Ph
corresponds to a finite element approximation space and G is a linear differentiation operator (see [20,36,45,6,23,25–27], to 
name a few).
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Let {(λh,i, eh,i(x))}Nh
i=1 be the numerical solution of the eigenvalue problem Qv = λv given by the approximation space 

Vh , i.e.,

Qheh,i = λh,ieh,i, (16)

where Qh =PhQPh : Vh → Vh and Nh the cardinality of Vh . We then use

Wh(t, x) =
Nh∑

i=1

λ
1/2
h,i βi(t)eh,i(x) (17)

to approximate Ph W , where βi are mutually independent standard real-valued Brownian motions. It is easy to show that 
Wh has a covariance operator Qh . We can then replace Ph W with Wh and consider the stochastic system

∂t û +PhG(û) = √
εẆh. (18)

Since Qh is symmetric and positive definite, we let Vh = span{eh,i}Nh
i=1, where 〈eh,i, eh, j〉D = δi j . Equation (18) yields the 

following stochastic differential equation:

dXh + b(Xh)dt = √
ε	dB, (19)

where Xh = [û1 û2 . . . ûNh ]T ∈ RNh consists of the expansion coefficients of û = ∑Nh
i=1 ûieh,i , (b(Xh))i = 〈Gû, eh,i〉D , i =

1, . . . , Nh , 	 = diag(λ
1/2
h,1 , . . . , λ1/2

h,Nh
), and B = [β1 β2 . . . βNh ]T . Since 		T is symmetric and positive definite (SPD), the action 

functional for a path ψ(t) ∈ RNh can be defined as

ST (ψ) = 1

2

T∫
0

(ψ̇ + b(ψ))T	−T	−1(ψ̇ + b(ψ))dt, (20)

where 	−T	−1 = diag(λ−1
h,1, . . . , λ

−1
h,Nh

). On the other hand, we can regard equation (18) as an evolution equation of a Hilbert 
space valued random variable, which yields a action functional for û(t, x) ∈ [0, T ] × D on Vh

ST (û) = 1

2

T∫
0

〈
∂t û +PhG(û),Q−1

h (∂t û +PhG(û))
〉

D
dt. (21)

In contrast to the action functional defined in equation (4), we refer to equation (21) as the truncated action functional. On 
Vh , we define

Q−1
h =

Nh∑
i=1

λ−1
h,i 〈·, eh,i〉D eh,i . (22)

We then obtain

‖∂t û +PhG(û)‖2
Q−1

h
=

Nh∑
i=1

λ−1
h,i 〈∂t û +PhG(û), eh,i〉2

D

=
Nh∑

i=1

λ−1
h,i (

˙̂ui + 〈PhG(û), eh,i〉D)2

=
Nh∑

i=1

λ−1
h,i (

˙̂ui + 〈G(û), eh,i〉D)2,

which is consistent with the integrand in equation (20).

Remark 3. If Q = I , where I is an identity operator, the noise is space–time white. I does not have a finite trace on L2(D), 
and the stochastic PDE (1) is usually ill-posed especially when d ≥ 2. However, the approximated noise Wh has a covariance 
operator Qh = P2

h , which does have a finite trace. For this case, the norm ‖ · ‖Q−1
h

becomes the regular L2 norm. Recently, 
many efforts have been made to regularize the behavior induced by space–time white noise. One observation is that under 
certain conditions, such as 0 < ε � lc � 1, where lc indicates the correlation length, the norm ‖ · ‖Q−1 can be replaced 
with the regular L2 norm [3,2,19] in the sense that the minimizer of the action functional converges correspondingly as Q
converges to I , i.e., the correlation length lc goes to zero.
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Remark 4. For a compact operator Q, the eigenvalues will be clustered at zero. The problem Q−1 g = f is ill-posed since 
Q−1 is not continuous. Although all eigenvalues of Qh are positive, they can decay fast to be less than the machine accuracy 
if the correlation length is relatively large. We then need regularization to deal with Q −1

h . More discussions about this issue 
can be found in [44].

3.2. Minimum action method (MAM)

From now on, we consider the minimum action method for system (18) using the action functional defined in equation 
(21). In other words, we look at the following optimization problem

ST ∗
h
(u∗

h) = min
T ∈R+,

uh(0)=uh,1,

uh(T )=uh,2

1

2

T∫
0

‖∂t uh +PhG(uh)‖2
Q−1

h
dt, (23)

where we still use T ∗
h and u∗

h to indicate the minimizers, and we assume that uh,1 and uh,2 are metastable attractors (or 
points on attractors of nonzero dimension) of the projected deterministic system (9).

To deal with the fact that T ∗ may be equal to ∞, we will employ the MAM with optimal linear time scaling (or tMAM) 
[41]. More specifically, we consider a re-scaled time parameter s = t/T ∈ � = [0, 1] such that problem (23) can be rewritten 
as

min
T ∈R+,

uh(0)=uh,1,

uh(1)=uh,2

T

2

1∫
0

∥∥∥T −1∂suh +PhG(uh)

∥∥∥2

Q−1
h

ds. (24)

The optimality conditions include

∂ ST

∂T
= 0,

δST

δuh
= 0,

where we used functional derivative in the second equation. For any uh , ∂T ST = 0 has a unique solution at

T̂ (uh) =
⎛
⎜⎝

∫ 1
0 ‖∂suh‖2

Q−1
h

ds∫ 1
0 ‖PhG(uh)‖2

Q−1
h

ds

⎞
⎟⎠

1/2

. (25)

We then enforce the optimality condition ∂T ST = 0 in the formulation (24) to remove the optimization parameter T , and 
obtain a new formulation

S T̂ (u∗
h)

(u∗
h) = min

uh(0)=uh,1,

uh(1)=uh,2

T̂ (uh)

2

1∫
0

∥∥∥T̂ −1(uh)∂suh +PhG(uh)

∥∥∥2

Q−1
h

ds. (26)

The MAM with optimal linear scaling relies on the following observation:

Lemma 3 ([42]). Assume that uh is discretized by finite elements in s direction (see equation (46) for a definition of the approximation 
space). If û∗

h is the minimizer of the fully discretized version of problem (26), then

T̂ (û∗
h) < ∞.

When T ∗
h is finite, we have T ∗

h ≈ T̂ (û∗
h). The main concern about the formulation (26) is that T ∗

h = ∞. Lemma 3 shows 
that if we use finite elements for the temporal discretization of uh , the fully discretized version of problem (26) is always 
well-posed in the sense that T̂ (û∗

h) < ∞ although T ∗
h = ∞. In other words, once problem (26) is discretized in time direction 

by finite elements, the numerical optimal integral time will become from ∞ to a finite number, and its value depends on 
the underlying finite element mesh. This way, we can consider a sequence of refined meshes to generate a minimizing 
sequence. As the mesh is refined, the numerical optimal integral time will increase towards infinity. In [42], we have 
developed numerical strategies for h- or hp-adaptivity based on a posteriori error estimates, which can effectively recover 
the optimal convergence rate of finite element approximation.
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4. Two-dimensional wall-bounded parallel shear flows

We consider the following two-dimensional stochastic Navier–Stokes (N–S) perturbation equations defined on a physical 
domain (x, y) ∈ D = [0, L] × [−1, 1]:{

∂u
∂t + (utot · ∇)utot = −∇p + 1

Re �u + √
εẆ (t, x),

∇ · u = 0,
(27)

where L is the length of the channel, Re is the Reynolds number, Ẇ indicates divergence-free noise that is white in time and 
colored in space, and ε is a small positive number. Here and after y is the wall-normal direction. Equation (27) is obtained 
as follows. We let utot = ub + u and ptot = pb + p, where ub and pb are the velocity and pressure of the 2D Poiseuille 
flow respectively. Then u and p indicate the deviation from the base flow. Considering that ub = (1 − y2, 0) and pb = − 2

Re x
and substituting utot and ptot into the original N–S equations, we obtain equation (27) as a simplification. We will consider 
no-slip boundary conditions u = 0 at y = ±1 and periodic conditions at x = 0, L. We are interested in Poiseuille flows 
is because (more than) two stable states can exist for a Reynolds number located in a certain range, which implies that 
the noise-induced transitions are important for the nonlinear instability of the base flow [43]. More specifically, when the 
Reynolds number Re < ReG , the base flow is globally stable, where ReG indicates the onset of subcritical bifurcation; when 
ReG < Re < ReL , other sustainable states can exist besides the base flow, where ReL indicates the critical Reynolds number 
given by the linear stability theory; when Re > ReL , the base flow is linearly unstable [15,31].

4.1. Navier–Stokes equations defined on a divergence-free space

Consider the divergence-free spaces [35]

H = {
u ∈ L2(D)|∇ · u = 0, u · n = 0|y=±1, u|x=0 = u|x=L

}
,

V =
{

u ∈ H1(D)|∇ · u = 0, u = 0|y=±1, u|x=0 = u|x=L

}
.

Let the Wiener process W (t) takes its value in H . Then the N–S equations can be written as the following stochastic 
evolution equation

du + �
[
(utot · ∇)utot − Re−1�u

]
dt = √

εdW (t), (28)

where u ∈ V is divergence free, and � is a projection operator in L2(D) onto H given by Helmholtz–Hodge decomposition, 
i.e., for any u ∈ L2(D; R2), there exists a unique q ∈ H1(D) with 

∫
D qdx = 0 such that �u = u + ∇q satisfying

0 = 〈�u,∇φ〉D = 〈u + ∇q,∇φ〉D , φ ∈ H1(D).

Since we only consider the divergence-free part, the pressure disappears in equation (28). The action functional for system 
(28) can be defined as [34,11]

ST (u) = 1

2

T∫
0

‖∂t u − �G(u)‖2
Q−1dt. (29)

From now on, G(u) = (utot · ∇)utot − Re−1�u.
We now look at the truncated version of action functional (29). When ε = 0, we have the deterministic system:

∂t u + �G(u) = 0. (30)

Let Vh ⊂ V and Hh ⊂ H be two approximation spaces of V and H , respectively. We then seek ud,h ∈ Vh such that

〈∂t ud,h, v〉D + 〈
�G(ud,h), v

〉
D = 0, v ∈ Hh, (31)

where we assume Vh ⊆ Hh since V ⊂ H . Note that due to the Helmholtz–Hodge decomposition, the spaces for trial functions 
and test functions can be different. We write equation (31) as

∂t ud,h +PH
h G(ud,h) = 0, (32)

where PH
h =Ph� and Ph indicates the projection onto Hh . We then consider small random perturbations of system (32)

∂t ud,h +PH
h G(ud,h) = √

εẆh, (33)

where Ẇh is defined as in section 3.1. The truncated action functional is then defined as
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ST (uh) = 1

2

T∫
0

∥∥∂t uh +PH
h G(uh)

∥∥2
Q−1

h
dt. (34)

Proposition 4. For any u and v ∈ Hh, we have〈
PH

h u, v
〉
D = 〈u, v〉D . (35)

Proof. We have PH
h u =Ph�u and

〈Ph�u, v〉D = 〈�u, v〉D = 〈u, v〉D .

The first equality is due to the definition of Ph . The second equality is due to the Helmholtz–Hodge decomposition, i.e., 
(I − �)u ∈ H⊥ .

Remark 5. The Helmholtz–Hodge decomposition lays the basis for a family of numerical schemes, called projection methods, 
to approximate the deterministic Navier–Stokes equations [4]. Projection methods are widely used to simulate incompress-
ible flows, and many variants can be found in literature, see the review article [17].

4.2. Dynamic solver and MAM defined on Vh and Hh

Depending on how to choose the approximation space and how to implement the Helmholtz–Hodge decomposition, 
there exist many versions of projection method. Due to our interest of MAM for nonlinear instability of wall-bounded 
parallel shear flows, we will consider simple geometries and spectral methods for spatial discretization, where a direct 
construction of divergence-free spaces Vh and Hh is possible [29].

Since periodic conditions are imposed in x direction, we consider the following truncated Fourier expansion for v ∈
Vh := (E N ⊗ P M) ∩ V

v(x, y) =
∑

|k|≤N

vk(y)exp(i2πkL−1x), (36)

with

vk(y) =
M∑

m=0

αkm v V
km(y),

where αkm are unknown coefficients, E N the set of Fourier modes in x with degree up to N , and P M the set of polynomials 
in y with degree up to M . The definition of Vh yields the following requirements: for |k| ≤ N , m = 0, 1, . . . , M ,{ ∇ · (v V

km(y)ei2πkx/L) = 0,

v V
km(±1) = 0.

(37)

Let v V
km(y) = [v V

km,1(y), v V
km,2(y)]T . We have{

(i2πkL−1 v V
km,1(y) + (v V

km,2)
′(y))ei2πkx/L = 0,

v V
km,1(±1) = 0, v V

km,2(±1) = 0.

Proposition 5. The basis functions of Vh can be defined as follows: For k = 0,

v V
km(y) =

(
Lm − Lm+2

− i2πk
L

(
Lm+1−Lm−1

2m+1 − Lm+3−Lm+1
2m+5

) )
, m ≥ 1; (38)

For k = 0,

v V
km(y) =

(
Lm − Lm+2

0

)
, m ≥ 0, (39)

where Lm(y) indicates Legendre polynomials of degree m.

Proof. We first look at k = 0 and m ≥ 1. Note that

Lm(±1) = (±1)m.
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We can take

v V
km,1(y) = Lm(y) − Lm+2(y),

such that v V
km,1(±1) = 0. We then have

v V
km,2(y) = − i2πk

L

y∫
−1

v V
km,1(z)dz = − i2πk

L

y∫
−1

(Lm(z) − Lm+2(z))dz,

where the homogeneous boundary conditions are automatically satisfied for m ≥ 1 due to the orthogonality of Legendre 
polynomials. Using the derivative recurrence relation:

(2m + 1)Lm(y) = L′
m+1(y) − L′

m−1(y), m ≥ 1,

we have the explicit form of v V
km,2(y) given in equation (38). For m = 0, we have

v V
k0,2(y) = − i2πk

L

y∫
−1

(L0(z) − L2(z))dz + C,

where C is a general constant. Then v V
k0,2(−1) = 0 implies that C = 0. However, v V

k0,2(1) = −i4πkL−1, which is impossible 
for k = 0. Thus m = 0 when k = 0. When k = 0, the divergence-free condition yields that (v V

km,2)
′(y) = 0. Thus v V

km,2(y) = 0
due to the homogeneous boundary conditions.

Remark 6. It is noticed that

v V
km(y)ei2πkx/L = v V

(−k)m(y)e−i2πkx/L,

which means that the following modes

v V
km(y)ei2πkx/L + v V

(−k)m(y)e−i2πkx/L, −i
(

v V
km(y)ei2πkx/L − v V

(−k)m(y)e−i2πkx/L
)

provide a real-valued divergence-free basis.

For the definition of Hh we consider a similar Fourier expansion as equation (36), which yields that{ ∇ · (v H
km(y)ei2πkx/L) = 0,

v H
km · n|y=±1 = 0.

(40)

Let v H
km(y) = [v H

km,1(y), v H
km,2(y)]T . We have{

(i2πkL−1 v H
km,1(y) + (v H

km,2)
′(y))ei2πkx/L = 0,

v H
km,2(±1) = 0.

Proposition 6. The basis functions of Hh can be defined as follows: For k = 0,

v H
km(y) =

(
Lm

− i2πkL−1

2m+1 (Lm+1 − Lm−1)

)
, m ≥ 1; (41)

For k = 0,

v H
km(y) =

(
Lm

0

)
, m ≥ 0, (42)

Proof. The proof is similar to that of Proposition 5 and skipped.

We can then define the approximation space Vh as

Vh = span{φi(k,m)(x) = v V
km(y)ei2πkxL−1 }, (43)

where |k| ≤ N , m = 0, . . . , M , and i(k, m) indicates a global index of the basis function φi(k,m) . The meaningful combinations 
of k and m are given by Proposition 5. It is easy to see that Vh � Hh if we truncate Hh in the same way as Vh . However, 
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we expect that Vh ⊆ Hh , which mimics numerically the property that V ⊂ H . Furthermore, the cardinality of Vh should be 
the same as that of Hh for the Galerkin projection. This implies that we need to take Hh = Vh .

For both the dynamic solver and the MAM, we seek an approximation uh ∈ Vh for any t . For the dynamic solver, the 
temporal discretization will be based on the stiffly-stable scheme, which is a semi-implicit scheme:

γ0un+1
h − ∑ J i−1

q=0 αqun−q
h

�t
= −

Je−1∑
q=0

βqPH
h ((utot · ∇)utot)

n−q + 1

Re
PH

h �un+1
h , (44)

where J i and Je are integration orders for the diffusion term and advection term, respectively, and the coefficients γ0, αq
and βq are determined by the accuracy order of the numerical scheme [24]. The convection term is integrated explicitly and 
the diffusion term implicitly. The implicit part of equation (44) takes a from

−PH
h �un+1

h + λun+1
h = f ,

where f includes all information from current and previous time steps and λ = γ0Re/�t . We then have the Galerkin 
projection of the above equation as

−〈PH
h �un+1

h , vh〉 + λ〈un+1
h , vh〉 = 〈 f , vh〉, ∀vh ∈ Vh,

which is equivalent to

〈∇un+1
h ,∇vh〉 + λ〈un+1

h , vh〉 = 〈 f , vh〉, (45)

due to Proposition 4 and integration by parts. This equation can then be further decomposed according to each Fourier 
mode in x direction.

For the MAM, we will employ tMAM for the temporal discretization. We define a finite element approximation space for 
a partitioning of s ∈ � = [0, 1] = ∪Ne

l=0el = ∪Ne
l=0[sl, sl+1]:

Rh = {v ∈ H1([0,1]) : v|el is a polynomial of degree pl},
R0,h = {v ∈ Rh : v(0) = v(1) = 0}.

We construct the space–time approximation space for transition paths:

Rh⊗̂Vh = {uh ∈ Rh ⊗ Vh : uh(0) = uh,1(x), uh(1) = uh,2(x)}, (46)

where uh,1 and uh,2 are two states given by the dynamics solver (44). We then seek u∗
h ∈ Rh⊗̂Vh , such that [41]

S T̂ (u∗
h)

(u∗
h) = min

uh(0)=uh,1,

uh(1)=uh,2

T̂ (uh)

2

1∫
0

∥∥∥T̂ −1(uh)∂suh +PH
h G(uh)

∥∥∥2

Q−1
h

ds, (47)

where

T̂ (uh) =
⎛
⎜⎝

∫ 1
0 ‖∂suh‖2

Q−1
h

ds∫ 1
0 ‖PH

h G(uh)‖2
Q−1

h

ds

⎞
⎟⎠

1/2

. (48)

As we have discussed in section 3.2, problem (47) is always well-posed in the sense that T̂ (u∗
h) < ∞ even when the true 

optimal integral time is ∞. In section 4.4, we provide an hp-adaptivity strategy to effectively generate a sequence of refined 
meshes, which results in a minimizing sequence for problem (47).

We linearize G(uh) to obtain the perturbation operator:

Ĝ(1)
uh

(δvh) = (utot · ∇)δvh + (δvh · ∇)utot − Re−1�δvh,

where the perturbation function δvh ∈ R0,h ⊗ Vh . The first-order variation of S T̂ (uh) can be obtained as

δS T̂ (δvh) = T̂
〈
(T̂ −1∂s +PH

h G)(uh), (T̂ −1∂s +PH
h Ĝ

(1)
uh

)(δvh)
〉
Q−1

h ,D,s
, (49)

where 〈·, ·〉Q−1
h ,D,s indicates the inner product with respect to both x and s weighted by Q−1

h . Consider the numerical 

transition path uh ∈ Rh⊗̂Vh:

uh =
Ns∑ Nx∑

uijθi(s)φ j(x),
i=1 j=1
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where we assume that Rh = span{θk}Ns
k=1. The gradient of action functional can be computed as

∂ S T̂

∂uij
= δS T̂ |δvh=θi(s)φ j(x). (50)

Remark 7. In [40] we constructed a MAM for 2D Navier–Stokes equations using primitive variables u and p, where we con-
sidered G(uh) + ∇p instead of PH

h G(uh) in the action functional. In the current formulation, the pressure is removed from 
the action functional by the Helmholtz–Hodge decomposition. Once the MAP u∗

h is obtained, the corresponding pressure 
can be recovered by the Helmholtz–Hodge decompositions since ∇p = (I −PH

h )G(uh).

Remark 8. The incompressibility condition corresponds to a linear constraint of problem (47). Since we restrict uh to the 
divergence-free space Vh , the optimization problem becomes an unconstrained one. To this end, a gradient-type optimiza-
tion solver can be employed to minimize the action functional. In this work, we use the nonlinear Conjugate Gradient 
method [18,40].

4.3. Preconditioning for MAM

Since Q−1
h is self-adjoint, the Euler–Lagrange equation induced by the action functional (47) can be written as(

T̂ −1∂s +PH
h Ĝ

(1)
uh

)∗
Q−1

h

(
T̂ −1∂s +PH

h G
)

(uh) = 0, (51)

where the superscript ∗ indicates the adjoint operator. The Galerkin projection method to solve equation (51) reads: Find 
uh ∈ Rh⊗̂Vh , such that for any vh ∈ R0,h ⊗ Vh〈(

T̂ −1∂s +PH
h G

)
(uh),

(
T̂ −1∂s +PH

h Ĝ
(1)
uh

)
(vh)

〉
Q−1

h ,D,s
= 0. (52)

This is consistent with the fact that δS T̂ /δuh = 0, see equation (49). Equation (52) is a system of nonlinear algebraic equa-
tions, which in principle can be solved by the Newton’s method. We now look into the Jacobian matrix of system (52). For 
clarity, we consider the first-order variation of δS T̂ (δvh) perturbed by δwh , which yields:

T̂ −1δ(δS T̂ (δvh))(δwh)

=
〈(

T̂ −1∂s +PH
h Ĝ

(1)
uh

)
(δwh),

(
T̂ −1∂s +PH

h Ĝ
(1)
uh

)
(δvh)

〉
Q−1

h ,D,s

+
〈(

T̂ −1∂s +PH
h G

)
(uh),−T̂ −2δ T̂ ∂sδvh +PH

h Ĝ
(2)
uh

(δvh, δwh)
〉
Q−1

h ,D,s

+
〈
−T̂ −2δ T̂ ∂suh,

(
T̂ −1∂s +PH

h Ĝ
(1)
uh

)
(δvh)

〉
Q−1

h ,D,s
, (53)

where δ T̂ is the first-order variation of T̂ induced by δwh and

Ĝ(2)
uh

(δvh, δwh) = (δwh · ∇)δvh + (δvh · ∇)δwh.

Then the Jacobian matrix can be written as

∂2 S T̂

∂uij∂ui′ j′
= δ(δS T̂ )|δvh=θi(s)φ j(x),δwh=θi′ (s)φ j′ (x). (54)

Due to the existence of T̂ , which is defined globally, all terms in equation (53) related δT are nonzero for any pair of 
basis functions, which makes the Jacobian matrix full and dense. Thus, a direct application of the Newton’s method is not 
practical. We then try to extract some information from the Jacobian matrix to construct a preconditioner. We first simplify 
the Jacobian matrix by neglecting the variation of T̂ at each iteration step, i.e., δ T̂ = 0, and the term related to PH

h Ĝ
(2)
uh

. We 
then obtain a positive definite matrix, corresponding to the following bilinear form

a(δw, δv)

=
〈(

T −1∂s +PH
h Ĝ

(1)
uh

)
(δwh),

(
T −1∂s +PH

h Ĝ
(1)
uh

)
(δvh)

〉
Q−1

h ,D,s
, (55)

where T̂ is fixed as T̂ = T .

Proposition 7. For any uh ∈ Rh⊗̂Vh, the matrix W : wk,k′ = a(�k(i, j), �k′(i′, j′)) is symmetric and positive definite, where �k(i, j) =
θi(s)φ j(x) and k(i, j) indicates a global index of the basis function θi(s)φ j(x).
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Proof. If is easy to see that a(v, w) is symmetric and a(v, v) ≥ 0 for any v, w ∈ R0,h ⊗ Vh . We now verify that a(v, v) = 0
only has a trivial solution. Since the inner product 〈·, ·〉Q−1

h ,D,s defines a weighted L2 norm, a(v, v) = 0 implies that

T −1∂s v +PH
h Ĝ

(1)
uh

(v) = 0.

Let {γi(x)}Nx
i=1 be an orthonormal basis of Hh = Vh . Let v = ∑

i vi(s)γi(x). We have for any γ j(x)

〈∂s v, γ j〉D + T
〈
PH

h Ĝ
(1)
uh

(v), γ j

〉
D

= dv j

ds
+ T

〈
Ĝ(1)

uh
(v), γ j

〉
D

= dv j

ds
+ T

∑
i

vi

(〈
utot · ∇)γi, γ j

〉
D + 〈

(γi · ∇) uh, γ j
〉
D − Re−1 〈

�γi, γ j
〉
D

)
= 0,

which is a linear first-order system with respect to s. Due to the uniqueness theorem and the fact that v j(0) = 0, ∀ j, we 
have v j(s) ≡ 0, i.e., v = 0. This concludes the proof.

With respect to the matrix W, we have the following options for preconditioning:
(1). Use W−1 as the preconditioner. One computational issue is that W depends on current uh , which is also dense within 
each time element due to the nonlinearity of the advection term.
(2). Use the diagonal entries of W to construct a diagonal preconditioner. This strategy does not introduce new computa-
tional cost since it only uses the information required by the gradient. This preconditioner was implemented in [40] for a 
MAM of N–S equations subject to a fixed integration time T , where a speed-up of O(10) was observed.
(3). Remove the terms in a(δw, δv) related to the advection term, which results in

â(δw, δv) =
〈(

T −1∂s − Re−1PH
h �

)
δw,

(
T −1∂s − Re−1PH

h �
)

δv
〉
Q−1

h ,D,s
.

This bilinear form corresponds to the leading terms 
(−T −2∂ss + Re−2�2

)
uh of the Euler–Lagrange equation. If the integra-

tion time T is time independent, the stiffness matrix induced by â(δw, δv) only needs to be assembled once. However, at 
the early stage of convergence, T (uh) varies significantly, which means that at each iteration step we need to assemble the 
stiffness matrix. This implies the preconditioner given by â(δw, δv) can be expensive.
(4). There exist optimization algorithms, such as L-BFGS, which accelerate the convergence by approximating the Hessian 
using the curvature information from recent iterations. These techniques may be used as a second-level preconditioner to 
compensate our simplification of the Jacobian matrix.

In this paper, we would choose option (2) and leave options (3) and (4) for future study.

4.4. Adaptivity in time direction

Adaptivity in time direction is necessary for all MAMs formulated with respect to time mainly due to two reasons: 1) 
The optimal integration time for the action functional to reach the minimum can be infinity, e.g., uh,1 is the laminar state, 
and 2) Minimizing the action functional corresponds to solving a (d + 1)-dimensional boundary value problem on � × D , 
where the number of unknowns may significantly limit the problem size we are able to study.

In [41], we developed an h-type adaptive tMAM, where local refinement subject to a physically based criterion was 
successfully used to deal with the quasi-potential. More specifically, the h-type tMAM can achieve the optimal convergence 
rate O(h2p) in terms of the error of the action functional, where h indicates the element size in time direction and p the 
polynomial order in each element. To alleviate the limitation of physically based adaptivity, we employed the derivative 
recovery technique to construct a posteriori error estimate of the MAP, which resulted in an hp-adaptive tMAM [42]. There 
exist two key element-wise estimators ηm

ei
and ηa

ei
for the hp-adaptivity in time direction. The estimator ηm

ei
measures the 

error of model approximation, i.e., T ∗
h ≈ T̂ (u∗

h) is always finite due to linear scaling while T ∗
h can be infinite (see equation 

(25)). The estimator ηa
ei

measures the error of path approximation given by the finite element discretization. Associated 
with ηa

ei
, a regularity indicator αei can also be defined to estimate the smoothness of the path in element ei . Based on ηm

ei
, 

h-type adaptivity is used to deal with the error of model approximation; based on ηa
ei

and αei , hp-adaptivity is used to deal 
with the error of path approximation.

We will adapt the hp-adaptive tMAM [42] for the Navier–Stokes equations. The path uh ∈ Rh⊗̂Vh can be regarded as 
a vector function uh,s ∈ RNx×N y of s, where Nx is the number of Fourier modes in x direction and N y the number of 
modified Legendre modes in y direction. Then ‖uh‖L2(D) is an equivalent norm of |uh,s|�2 for any s. In [42], we established 
a posteriori error estimates with respect to norm | · |�2 for vector functions. Following is our main strategy for a posteriori 
error estimates: First, we use the deviation from the arc length constraint to define the estimator ηm

ei
. The arc length 

constraint [22]

‖∂t uh‖L (D) = ‖PHG(uh)‖L (D), ∀t, (56)
2 h 2
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is a necessary condition satisfied by the MAP. Due to the discretization and linear time scaling, this constraint cannot be 
exactly maintained especially when the optimal integration time is ∞. We then define

(
ηm

ei

)2 = T̂ (uh)

si+1∫
si

(
T̂ −1(uh)‖∂suh‖L2(D) − ‖PH

h G(uh)‖L2(D)

)2
ds, (57)

using the residual from the arc length constraint. Second, we take advantage of the super-convergence of derivative recovery 
operator R. For illustration, let us assume that uh,s is discretized by linear finite elements in time direction, each component 
of the first-order derivative u′

h,s is then piece-wise constant with respect to s. The derivative recovery Ru′
h,s will project 

each component of u′
h,s onto linear finite element space and then smooth the projection. Ru′

h,s is a better approximation 
of the true solution than u′

h,s such that we can define a posteriori error estimate using

(
ηa

ei

)2 =
1∫

0

‖(I −R)∂suh‖2
L2(D)ds ∼

1∫
0

|(I −R)u′
h,s|2�2

ds, (58)

where we replace the norm | · |�2 with ‖ · ‖L2(D) . We also consider an extension Euh,s , which is a quadratic extension of uh,s

obtained by post processing. If the regularity is good, we expect that 
(
Euh,s

)′
is comparable to Ru′

h,s , otherwise, we use the 
ratio

(
αei

)2 =
∫ 1

0 ‖(I −R)∂suh‖2
L2(D)ds.∫ 1

0 ‖∂s (uh − Euh)‖2
L2(D)ds.

(59)

as a measure of the regularity. This procedure can be generalized to an approximation given by hp finite elements. More 
details about the definition of R and E can be found in [42].

To this end, we have all the estimators we need and the adaptivity criteria can be borrowed directly from [42]. We 
here only describe the basic adaptive strategy: After the results are obtained for the current mesh, we compute the three 
indicators ηm

ei
, ηa

ei
and αei elementwisely and the average polynomial order pave through all time elements. If the current 

number of degrees of freedom (DOF) is M , we will set up a target number M(1 + pave)/pave of DOFs for the new time mesh. 
We will separate the new DOFs into two parts: one part is to deal with the error of path approximation, where we consider 
h-refinement or p-refinement based on ηa

ei
and αei ; the other part is to deal with the error of model approximation, i.e., the 

deviation from the arc length constraint (56), which will be done by suppressing the error ηm
ei

via h-refinement. Numerical 
experiments show that we only need a small portion of the new DOFs for the error of model approximation. A typical 
choice can be 90% of the new DOFs for the error of path approximation and 10% of the new DOFs for the error of model 
approximation. We refer to [42] for more details about the adaptivity strategy.

4.5. Some issues related to numerical efficiency

There exist several other computational issues that are particularly related to numerical efficiency. First, it is seen 
from equation (49) that we need to compute PH

h G(uh) and PH
h Ĝ

(1)
uh

(δvh) for each component of ∇ S T̂ (uh). In general, the 
Helmholtz–Hodge decomposition can be done by solving an elliptic equation: taking the divergence of �u = u − ∇q, we 
have {

�q = ∇ · u,
∂q
∂n = u · n|y=±1, q|x=0 = q|x=L .

However, this is only necessary when we do not have a divergence-free space for �u. From Proposition 4 we have for any 
v ∈ Hh

〈PH
h G(uh), v〉D = 〈G(uh), v〉D , 〈PH

h Ĝ
(1)
uh

(δvh), v〉D = 〈Ĝ(1)
uh

(δvh), v〉D . (60)

Then Ph�G(uh) and Ph�Ĝ(1)
uh

(δvh) can be obtained by solving the linear system given by the mass matrix induced by 
the basis functions of Hh = Vh . This can be done efficiently: FFT can be implemented in x direction, and the Cholesky 
factorization in y direction.

Second, the aliasing error deserves some attention. When we considered a direct discretization of the original action 
functional (4) in [40], we need to compute inner products like 〈(uh · ∇)uh, (vh · ∇)wh〉Q−1

h ,D,s induced by the convection 
term, where uh, vh, wh ∈ Vh . Let Qh = I for simplicity. To compute such an inner product exactly, we need O(2N) Gauss-
type quadrature points in each direction, i.e., x-, y- and s-direction, where N indicates the polynomial order in a certain 
direction. So on the subdomain el × D , the number of unknowns is O(Nx N y Ns) while the number of quadrature points 
should be O(8Nx N y Ns) to avoid aliasing errors, where N∗ is the polynomial order in the direction indicated by the star. If 
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Fig. 1. Convergence of tMAM. The initial and final states are located on the trajectory given by equation (61) at t = 0 and t = 6. Left: Errors of the action 
functional of the approximated MAP. Right: Errors of the estimated optimal integration time.

we consider the action functional given by equation (34), this issue can be alleviated. Since PH
h G(uh), PH

h G
(1)
uh

(δvh) ∈ Hh , 
the aliasing errors are mainly related to the terms 〈G(uh), v〉D and 〈Ĝ(1)

uh
(δvh), v〉D in equation (60). Based on the quadratic 

nonlinearity of the advection term, there exist some de-aliasing techniques that can be used, e.g., the 3/2 padding rule [30], 
implicit padding [1], etc.

Third, the pressure can be obtained in a post-processing stage. Due to the divergence-free space, the pressure disappears 
in the action functional. For two-dimensional cases, the number of unknowns is thus reduced by half compared to the MAM 
in [40]. Furthermore, the divergence-free space can be generalized straightforwardly to three dimensional cases, where we 
only need to consider two unknown components of the velocity field.

5. Numerical experiments

5.1. An artificial trajectory

We first test the following artificial trajectory:

u =
(

y3 − y
)

cos

(
2πkx

L

)
et/2, v = πk

L

(
y4

2
− y2 + 1

2

)
sin

(
2πkx

L

)
et/2, (61)

which corresponds to one divergence-free basis mode scaled by et . To make this trajectory an exact solution of the deter-
ministic N–S equations, we need to add a corresponding force term. We then choose (u(t), v(t)) at t = 0, 6 as the initial and 
final states for the MAM. In Fig. 1, we plot both h- and p-convergence with respect to the number of degrees of freedom 
(DOF). The errors of the action functional of the approximated MAP are plotted on the left, and the errors of the approxi-
mated integration time on the right. The DOF is represented as mNx , where m corresponds to different cases of temporal 
discretization and the spatial discretization remains the same. Uniform temporal meshes are used for the h-convergence, 
and the optimal convergence rate O(h2p) is obtained for the error of action functional [41].

5.2. A trajectory from the dynamic solver

We take two points on one trajectory given by the dynamic solver as the initial and final state for MAM. More specifically, 
we let Re = 3500 and L = 5, for which the deterministic N–S equations have a traveling wave solution denoted as U (t). 
The spatial discretization is given by a divergence-free approximation space span{φi(k,m)(x)} with 0 ≤ |k| ≤ 4, 0 ≤ m ≤ 32, 
whose cardinality is denoted by Nx , i.e., 1 ≤ i(k, m) ≤ Nx . Once the traveling wave solution is fully developed, we pick two 
snapshots U (t0) and U (t0 + τ ) with τ = 6. According to the definition of action functional, see equation (47), the minimum 
is reached at

T̂ −1(u∗
h)∂su∗

h +PH
h G(u∗

h) = 0,

where T̂ −1(u∗
h) = τ . In other words, the semi-discrete deterministic N–S equations (32) is solved by u∗

h .
In Fig. 2, we present the convergence behavior of tMAM for this case. Note that the approximated trajectory U (t) is 

located in the following set

{φ(t)|ρ(φ(t), Û (t)) ≤ ε},
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Fig. 2. Convergence of tMAM. The initial and final states are located on a traveling wave trajectory given by the dynamic solver. Left: Errors of the action 
functional of the approximated MAP. Right: Errors of the estimated optimal integration time.

Fig. 3. Effectiveness of the diagonal preconditioner for tMAM. The solid line is given by nonlinear CG without preconditioner, and the dash line is given by 
the same solver with the diagonal preconditioner. Left: Ne = 10, p = 1. Right: Ne = 2, p = 5.

where Û (t) is an exact solution of equation (32), ε is determined by the accuracy of time integration of the dynamic solver, 
and ρ(φ, Û ) = maxt0≤t≤t0+τ ‖φ(t) − Û (t)‖L2(D) . Then along the trajectory U (t), we have ST (U ) ≤ τ

2 ε2. Although U (t0) and 
U (t0 + τ ) are not exactly located on a true solution of equation (32), we at least have ST (u∗

h) ≤ τ
2 ε2 if the temporal resolu-

tion of u∗
h is good enough. We then compute U (t) using a second-order dynamic solver with time step size 10−4. It is seen 

in Fig. 2 that the error of action functional, i.e., ST (u∗
h) decays exponentially to zero as the polynomial order p increases. In 

other words, we do not have the discrepancy between the dynamic solver and the MAM from discretizing operators PH
h G

and G (see section 3 and [40]). The h-convergence is based on uniform temporal discretization and the optimal rate O(h2p)

is observed with respect to the error of action functional. We also observe that the error of the approximated integration 
time stops to decay when the polynomial order is large enough. This is because U (t0) and U (t0 + τ ) are located on a 
numerical trajectory instead of the exact one.

In Fig. 3, we examine the effectiveness of the diagonal preconditioner for tMAM. First, the diagonal preconditioner 
becomes more effective as the error decays. This is because we remove δ T̂ in the bilinear form (55), which can be relatively 
big at the early stage. Second, the speedup appears to be larger when the polynomial order is higher. The best speedup we 
can obtain is O(10).

5.3. hp-Adaptivity

We here demonstrate the hp-adaptivity of the tMAM for N–S equations. The initial and final states are the same as those 
in the previous section. We start with a mesh that has two linear elements, and then let the mesh evolve with respect to 
hp-adaptivity. The convergence behavior is given in Fig. 4. We see that an overall trend of exponential convergence is ob-
tained with respect to DOFs. Compared to the left plot in Fig. 2, the hp-convergence is less efficient than the p-convergence. 
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Fig. 4. Convergence behavior of hp-adaptive tMAM starting from Ne = 2 and p = 1.

This is expected because the initial and finite states are from a trajectory subject to a finite integration time. The second 
reason is that the mesh is really coarse at the early stage where the h-refinement is more preferred to the p-refinement. The 
third reason is that we use h-refinement to deal with error of model approximation due to the consideration of robustness. 
The final mesh has 9 temporal elements with a distribution of polynomial order as 6, 6, 6, 6, 6, 5, 5, 8, 8.

6. Summary and discussions

In this paper we discussed the relation between dynamic solver and minimum action method, based on which we de-
veloped a new minimum action method for two-dimensional Navier–Stokes equations. The new MAM has several features: 
First, the spatial discretization is given by a divergence-free space, which eliminates the pressure in both dynamic solver 
and MAM. The number of degrees of freedom is then significantly reduced. Second, the new MAM is able to deal with 
quasi-potential with respect to time, which can be used to study the transition between any two points in the phase space. 
This provides more flexibility to study the phase space of N–S equations. Third, the hp-adaptivity of MAM is based on ap-
proximation theory instead of physical intuition, which can be more effective to reduce the number of degrees of freedom 
from the temporal discretization. Fourth, the accumulation of residual errors from spatial discretization is alleviated, which 
is important for transitions at a large time scale.

From the algorithm point of view, the preconditioning deserves further study. Due to the variation of integration time at 
each iteration step and the fact that the integration time is estimated by the whole path, the Hessian can become dense, 
which makes the construction of preconditioner more difficult. We also observed that the diagonal preconditioner is not 
quite effective at the early stage because we remove the variation of integration time.
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