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Abstract We present a new spectral element method for solving partial integro-differential
equations for pricing European options under the Black–Scholes and Merton jump diffusion
models. Our main contributions are: (i) using an optimal set of orthogonal polynomial bases
to yield banded linear systems and to achieve spectral accuracy; (ii) using Laguerre functions
for the approximations on the semi-infinite domain, to avoid the domain truncation; and
(iii) deriving a rigorous proof of stability for the time discretizations of European put options
under both the Black–Scholes model and the Merton jump diffusion model. The new method
is flexible for handling different boundary conditions and non-smooth initial conditions for
various contingent claims. Numerical examples are presented to demonstrate the efficiency
and accuracy of the new method.

Keywords Spectral element · Spectral-Galerkin · Unbounded domain · Laguerre
functions · Option pricing · Black–Scholes · Merton jump diffusion

1 Introduction and Motivation

In the classical Black–Scholes model [4], the stock price is a standard Wiener process which
is continuous in time. In order to describe phenomena such as unexpected economic tur-
moils, the jump diffusion model is introduced in [25]. In the jump diffusion model, the
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dynamics of the underline asset is a Lévy process, which, on the one hand, preserves many
desirable properties of the Wiener process, such as independent and stationary increments,
on the other hand, can capture the feature of volatility smile that is absent in the Black–
Scholes model. Therefore the jump diffusion model remains one of the most active areas of
financial mathematics (c.f., [3, 7, 10, 27, 35, 36, 40]).

Option pricing is an important problem in financial mathematics. The pricing for the Eu-
ropean style contingent claims has been extensively studied. Though analytic solutions are
most preferred by practitioners (as indicated in [6]), they are not available for many existing
financial derivatives on the market. In general, one can write the option price as the con-
ditional expectation of the payoff function and compute it with Monte–Carlo simulations,
which is widely used in financial industry. Another popular approach for pricing options,
the transform method, was introduced in [8] and unified in [21]. It yields an elegant and fast
solution to a wide variety of options. Its another advantage is the immediate extension to the
multi-asset cases (c.f., [18, 22]). However, it requires analytic representations of character-
istic functions of the stock price, which are not always available.

In this paper we focus on the PDE approach for the option pricing, and attempt to address
three of the main difficulties in this approach. First, the infinite generator of the Lévy pro-
cess is a nonlocal operator with an integral term. Thus a partial integro-differential equation
(PIDE) for the option price is derived within the Black–Scholes framework. Second, many
payoff functions possess slope discontinuities which might cause unwanted numerical oscil-
lations in numerical solutions of option prices. Third, the PIDE is defined on an unbounded
domain, which is often truncated in practice with potential large truncation errors. Therefore
an accurate right boundary condition becomes crucial for the numerical computation. This is
not a serious issue for the Black–Scholes model, in which the solution decays very fast and
the truncated region does not need to be large. However, in some cases such as the Merton
jump diffusion model we consider here, the decaying rate is slow, so a large domain with a
large number of grid points have to be used with the domain truncation. Another way to get
a correct boundary condition with the localization is to use the transparent boundary condi-
tion (cf. [1]), which is popular in computational electromagnetics. However, this requires a
considerable amount of calculations which affects its flexibility.

For the spatial discretization, the finite difference method and finite element method (c.f.,
[2, 9, 14, 35, 37]) have been used extensively in the community of computational finance and
has achieved successes in many cases for its effectiveness and flexibility. However, as a low
order method, a considerable number of grid points is needed to resolve the solution. Due
to the recent thriving of algorithmic trading, the financial market becomes more sensitive to
small bid–offer spread. It has at least two significant implications. First, the pricing process
should be fast enough to allow a large amount of trading operations within a short time of
period (i.e., high frequency trading). Secondly, it is beneficial to have a high order accuracy
of the numerical solution. Therefore we consider in this paper a new spectral element method
for the option pricing. It possesses both the spectral accuracy of the spectral method and the
domain flexibility of the finite element method. Although the spectral element method is
widely used in computational sciences and engineerings (cf. [13, 19]), its application to the
computational finance is still limited. Its main advantage is that, for a given accuracy, much
less grid points, and in many case much less computing times, are needed comparing to low
order methods. In fact, to achieve a fixed accuracy, the numerical results presented in Sect. 5
show that our new spectral-element method is more efficient than a usual spectral-element
method in [40] and can be orders of magnitude faster than a low-order finite difference
method.
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It is well-known that option prices and their derivatives usually change dramatically near
slope discontinuities of the payoff functions. By splitting the domain at the slope discontinu-
ities, the solution can be effectively resolved by the spectral element method (c.f., [38–40]).
Thus there is no need to artificially smooth the initial data as in [26]. However, previous
spectral element implementations use the nodal Lagrange polynomial basis functions which
result in linear system with dense block diagonals. In this paper, we use modal bases func-
tions (c.f., [28, 30]) which lead to linear systems with banded block diagonals so it can be
efficiently solved. Unlike in previous approach, we treat the unbounded domain directly by
using an infinite element, avoiding the domain truncation error. We refer to [30] for the re-
cent survey of spectral methods on unbounded domains, [23] for pricing game options by
using Hermite polynomials, and [12] for evaluating bonds by using Laguerre polynomials.
Another advantage of having a spectral representation is that the hedging strategies � and �,
which are first and second derivatives of the option price [20, 34], can be computed directly
and accurately from the spectral representation. This is much more efficient and accurate
than using a lower order method. Another difficulty in solving the PIDE is how to treat the
integral term. Successful methods for implicit treatments include the fixed point iteration
[14], the extrapolation [17], solving its associated heat equations [24], etc. We shall treat
the integral term in the PIDE explicitly with a Crank-Nicholson-Leap-Frog (CNLF) scheme
which we shall prove is stable. Numerical experiments show this approach is very efficient.

The rest of the paper is organized as follows. In Sect. 2 we briefly describe the Lévy
driven market model and introduce the PIDE for the European option pricing under the
Merton jump diffusion model. In Sect. 3 we describe our time advancing schemes and prove
their stabilities. We then present in Sect. 4 our spectral element method together with the
treatment of the integral. Numerical results of the European put option in the Black–Scholes
model and the Merton jump diffusion model are given in Sect. 5. We end the paper with a
few concluding remarks.

2 Markets Driven by Lévy Processes

Let Xt be a Lévy process defined on a probability space (�, F ,P). Denote ι = √−1. The
Lévy–Khintchine representation theorem states that the characteristic function of Xt can be
written as

EP
[
e−ιzXt

] = e−tψ(z) (2.1)

with the Lévy–Khintchine exponent

ψ(z) = −
{
−σ 2z2

2
+ ιγ z +

∫ ∞

−∞

(
eιzx − 1 − ιzxχ|x|≤1

)
ν(dx)

}
, (2.2)

where χ� stands for the characteristic function for the set �. The triplet (σ, γ, ν) is known
as the generating Lévy triplet with σ > 0, γ ∈ R, and ν being a positive measure satisfying

∫ 1

−1
x2ν(dx) < ∞,

∫

|x|>1
ν(dx) < ∞. (2.3)

In the classic Black–Scholes model, Xt is a standard Brownian motion, so ν = 0. In the
Merton jump diffusion model, Xt is the sum of a Brownian motion and a compound Poisson
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process:

Xt = σWt +
Nt∑

i=1

Ui, (2.4)

where Nt is a Poisson process with intensity λ = ∫ ∞
−∞ ν(dx) < ∞ and Ui ’s are independent

and identically distributed (i.i.d.) random variables with density ν(dx)/λ. In this case, (2.2)
is reduced to

ψ(z) = −
{
−σ 2z2

2
+ ιγ0z +

∫ ∞

−∞

(
eιzx − 1

)
ν(dx)

}
. (2.5)

Suppose the dynamics of the stock price is given by

St = S0e
rt+Xt , (2.6)

where r is the constant interest rate. The infinitesimal generator of the Markovian process
St is an integro-differential operator defined as:

LSt f (x) = lim
t→0

E[f (x + St )] − f (x)

t

= σ 2x2

2
fxx − rxfx − rf −

∫

R

(
f

(
xey

) − f (x) − x
(
ey − 1

)
fx

)
ν(dy). (2.7)

There exists an equivalent risk-neutral measure, Q, under which e−rtSt becomes a martin-
gale as long as the triplet (σ, γ, ν) satisfies the following conditions:

∫

|y|>1
ν(dy)ey < ∞,

(2.8)

γ = −σ 2

2
−

∫ (
e−1 − yχ|y|>1

)
ν(dy).

Consider a contingent claim with a deterministic maturity T and payoff VT . According to
the no-arbitrage principle, its price V (S, t) at a given time t and St = S is

V (S, t) = EQ
[
e−r(T −t)VT |St = S

]
. (2.9)

By applying Itô’s formula to V (St , t), we obtain the partial integro-differential equations
(PIDE) on an unbounded domain:

Vt(S, t) + LSt V (S, t) = 0, S ∈ (0,∞), t > 0 (2.10)

with the terminal condition

V (S,T ) = VT . (2.11)

Here we restrict the volatility σ(S,T ) to be non-vanishing. Viscosity solutions of the PIDE
are considered in [11] for the pure jump model, i.e., σ(S,T ) ≡ 0. In the case of the European
option under the Merton jump diffusion, Ui ’s in (2.4) are identically, independently and
normally distributed.
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With the substitution v(S, τ ) = V (S,T − τ), we obtain the following Cauchy problem:

vτ = σ 2S2

2
vSS + (r − λκ)SvS − (r + λ)v + λ

∫ ∞

0
v(ηS, τ )G(η)dη (2.12)

with the integral kernel

G(η) = 1√
2πδη

e
− (lnη−m)2

2δ2 (2.13)

and the initial condition for a put option

v(S,0) = max{K − S,0}, (2.14)

where K is the strike price, m = EUi and κ = E(Ui − 1). The payoff function of (2.14) has
a slope discontinuity at S = K . When λ = 0, (2.12) reduces to the celebrated Black–Scholes
equation:

vτ = σ 2S2

2
vSS + rSvS − rv, S ∈ (0,+∞), τ > 0. (2.15)

The hedging strategies are given by

� = vS, � = vSS. (2.16)

While it is well-known that the solution of (2.10) goes to zero at the right infinity (cf, [11]),
the rate of decay can be very slow in the Merton jump diffusion model. Consequently, when
S is large, domain truncation may introduce significant errors. In the example (5.1), a trun-
cation at S = 20K with a homogeneous Dirichlet boundary condition will introduce a trun-
cation error in the order of 10−3 (see Fig. 1). This is the main reason that we deal with the
semi-infinite domain directly (see Sect. 4.1). Other kinds of options with different payoff
functions and other markets driven by different Lévy processes can also be described by
(2.10) and (2.11) with a decaying condition as S → +∞. Thus our method maybe used for
pricing contingent claims with fixed maturities.

3 Time Discretizations

We first rewrite (2.12) in a form which more convenient for numerical approximations:

vτ = σ 2

2

(
S2vS

)
S
+ (

r − λκ − σ 2
)
SvS − (r + λ)v + λ

∫ ∞

0
v(ηS, τ )G(η)dη. (3.1)

We define differential operators

LBSv � σ 2

2

(
S2vS

)
S
+ (

r − σ 2
)
SvS − rv,

(3.2)

LMv � σ 2

2

(
S2vS

)
S
+ (

r − λκ − σ 2
)
SvS − (r + λ)v,

and the integral operator

Rv(S) �
∫ ∞

0
v(ηS)G(η)dη. (3.3)
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Fig. 1 The European put option under the Merton jump diffusion model with parameters in (5.1); The x-axis
represents the stock price, and y-axis the option price

With a substitution of ηS = Z in (3.3), we have

Rv(S) =
∫ ∞

0
v(Z)Ḡ(Z,S)dZ, (3.4)

where

Ḡ(Z,S) � 1

S
G

(
Z

S

)
= 1√

2πδZ
e

− (ln Z
S

−m)2

2δ2 . (3.5)

With the above notations, the Black–Scholes equation, i.e., (3.1) with λ = 0, becomes

vt = LBSv, (3.6)

and the PIDE (3.1) becomes

vt = LMv + Rv. (3.7)

Consider the second order Crank–Nicholson scheme for (3.6):

vk+1 − vk

δt
= LBSvk + LBSvk+1

2
. (3.8)

At each time step, one needs to solve the following model problem, a linear elliptic equation
with variable coefficients:

⎧
⎨

⎩

−c1(x
2v′(x))′ + c2xv′(x) + c3v(x) = f (x), x ∈ � = (0,+∞),

lim
x→∞v(x) = 0,

(3.9)
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where c1, c2, and c3 are constants depending on σ , r , and δt . Note that the system (3.9) does
not need any left boundary condition to guarantee its well-posedness due to the degenerate
nature of x2 in the leading term.

Theorem 3.1 The scheme (3.8) is unconditionally stable. More precisely, we have for all
kδt ≤ T ,

{‖vk+1‖ ≤ ‖vk‖, if α ≤ 0,

‖vk‖2 ≤ Ce2αT ‖v0‖2, if α > 0,
(3.10)

where α � (r−σ 2)2−2rσ 2

4σ 2 .

Proof Taking the inner product of (3.8) with vk+1 + vk , we derive

‖vk+1‖2 − ‖vk‖2

δt
= −σ 2

2

‖S(vk+1
S + vk

S)‖2

2

+ (
r − σ 2

) (S(vk+1
S + vk

S), v
k+1 + vk)

2
− r

‖vk+1 + vk‖2

2
. (3.11)

A simple manipulation leads to

‖vk+1‖2 − ‖vk‖2

δt
= −σ 2

4
P k + α‖vk+1 + vk‖2, (3.12)

where

P k =
∥∥
∥∥S

(
vk+1

S + vk
S

) − r − σ 2

σ 2

(
vk+1 + vk

)
∥∥
∥∥

2

. (3.13)

Therefore, we have ‖vk+1‖ ≤ ‖vk‖, if α ≤ 0. When α > 0, we apply the triangle inequality
on ‖vk+1 + vk‖2 in (3.12) to get

‖vk+1‖2 − ‖vk‖2

δt
≤ 2α

(‖vk+1‖2 + ‖vk‖2
)
, (3.14)

which implies

‖vk+1‖2 ≤ 1 + 2αδt

1 − 2αδt
‖vk‖2 ≤

(
1 + 2αδt

1 − 2αδt

)k+1

‖v0‖2 ≤ Ce2αT ‖v0‖2. (3.15)

�

Next we consider the Crank–Nicholson Leap-Frog scheme for (3.7):

vk+1 − vk−1

2δt
= LMvk+1 + LMvk−1

2
+ λRvk, ∀k ≥ 1, (3.16)

with

v1 − v0

δt
= LMv1 + λRv0. (3.17)

Note that the form of (3.4) is suitable for the numerical implementation since the integral
term is treated explicitly in the time discretization (see Sect. 4.2).
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In order to prove the stability for the scheme (3.16), we need the following lemma
(c.f., [16]).

Lemma 3.2 (Heat kernel) Consider the one dimensional heat equation:

⎧
⎪⎨

⎪⎩

ut = uxx, (x, t) ∈ R × (0, T ],
u(x,0) = g(x),

limx→±∞ u(x) = 0.

(3.18)

Assume that g is bounded, continuous, nonnegative, and non-vanishing, then

u(x, t) = 1√
2π

√
2t

∫ +∞

−∞
exp

[
− (x − y)2

2(
√

2t)2

]
g(y)dy. (3.19)

Without loss of generality, we set m in (2.13) to be zero in the following analysis. When
m �= 0, one can shift the coordinate accordingly to get similar results. Next lemma pro-
vides the exact solution to a one dimensional advection–diffusion problem and establishes
its connection with the integral kernel of our problem.

Lemma 3.3 (Advection–diffusion) Assume m = 0, then Rv(S) = w(S, δ2

2 ), where w(S, t)

is the solution to the following one dimensional advection-diffusion equation:

⎧
⎪⎨

⎪⎩

wt = S2wSS + SwS, (S, t) ∈ R
+ × (0, T ],

w(S,0) = v(S),

limS→∞ w(S, t) = 0.

(3.20)

Proof Consider the coordinate transformation

x = lnS, S = ex. (3.21)

Define u(x) � w(S(x)) = w(ex), then

ut = wt, ux = SwS, uxx = SwS + S2wSS. (3.22)

So the system (3.20) is transformed into

⎧
⎪⎪⎨

⎪⎪⎩

ut = uxx, (x, t) ∈ R × (0, T ],
u(x,0) = v(ex),

limx→±∞ u(x) = 0.

(3.23)

According to Lemma 3.2, we have

u(x, t) = 1√
2π

√
2t

∫ +∞

−∞
exp

[
− (x − y)2

2(
√

2t)2

]
v
(
ey

)
dy. (3.24)

Next we transform the coordinate back:

S = ex, Z = ey. (3.25)
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The solution in (3.24) becomes

w(S, t) = 1√
2π

√
2t

∫ +∞

0
exp

[
− (ln S

Z
)2

2(
√

2t)2

]
v(Z)

Z
dZ. (3.26)

Therefore Rv(S) = w(S, δ2

2 ) by comparing (3.26) with (3.4). �

Lemma 3.4 (L2-bound) ‖Rv(S)‖2 ≤ C(δ)‖v(S)‖2, where C(δ) = e
δ2
2 .

Proof According to Lemma 3.3, it is sufficient to estimate w(S, δ2

2 ). Taking the inner prod-
uct of (3.20) with w, we have

1

2

d

dt
‖w‖2 = −‖SwS‖2 − (SwS,w). (3.27)

In addition,

(SwS,w) = 1

2

(
S,

(
w2

)
S

) = 1

2

(
Sw2|S=+∞

S=0 − ‖w‖2
) = −1

2
‖w‖2. (3.28)

Combining (3.27) and (3.28), we get

d

dt
‖w‖2 ≤ ‖w‖2. (3.29)

By using the Gronwall’s inequality on [0, δ2

2 ], we derive

‖Rv(S)‖2 =
∥
∥∥
∥w

(
S,

δ2

2

)∥
∥∥
∥

2

≤ e
δ2
2 ‖w(S,0)‖. (3.30)

�

Theorem 3.5 (L2-stability) There exists a constant β depending on α, λ and δ such that for
all δt < 1

β
, we have

‖vm‖2 ≤ C‖v0‖2, ∀2 ≤ m ≤ T

δt
− 1, (3.31)

where C is a generic constant depending on α, λ, δ and T .

Proof Taking inner product of (3.16) with vk+1 + vk−1, we have

‖vk+1‖2 − ‖vk−1‖2

2δt
= −σ 2

4
P k + α‖vk+1 + vk−1‖2 + λ

(
Rvk, vk+1 + vk−1

)
, (3.32)

where

P k =
∥∥
∥∥S

(
vk+1

S + vk−1
S

) − r − σ 2

σ 2

(
vk+1 + vk−1

)
∥∥
∥∥

2

. (3.33)
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Applying the triangle inequality and Lemma 3.4, we derive

‖vk+1‖2 − ‖vk−1‖2

2δt
≤ 2α

(‖vk+1‖2 + ‖vk−1‖2
)

+ λ

2

(
C(δ)‖vk‖2 + 2‖vk+1‖2 + 2‖vk−1‖2

)

≤ 1

2

(
β1‖vk+1‖2 + β0‖vk‖2 + β−1‖vk−1‖2

)

≤ β

6

(‖vk+1‖2 + ‖vk‖2 + ‖vk−1‖2
)
, (3.34)

where

β1 = β−1 = 4α + 2λ, β0 = C(δ)λ,
β

3
= max{β1, β0, β−1}. (3.35)

Without loss of generality, we assume m to be an even number. Summing up (3.34) for odd
k between 1 and m − 1, we derive

‖vm‖2 − ‖v0‖2

δt
≤ β

3

(
m∑

k=2,
k odd

‖vk‖2 +
m−1∑

k=1,
k odd

‖vk‖2 +
m−2∑

k=0,
k odd

‖vk‖2

)

≤ β

3

(
m∑

k=2

‖vk‖2 +
m−1∑

k=1

‖vk‖2 +
m−2∑

k=0

‖vk‖2

)

≤ β

m∑

k=0

‖vk‖2. (3.36)

Rearranging terms in (3.36), we get

‖vm‖2 ≤ δtβ

m∑

k=0

‖vk‖2 + ‖v0‖2. (3.37)

We can then conclude (3.31) by applying the discrete Gronwall’s inequality (see, for in-
stance, Lemma B.10 in [32]) to the above. �

4 Spatial Discretizations

We describe in this section our spectral element method for (3.9) with special treatments for
the integral term.

4.1 The Spectral Element Method

Consider the following function space:

H 1
B =

{
u ∈ H 1(0,∞) : lim

x→∞u(x) = 0
}
. (4.1)

The week formulation of (3.9) is: Find u ∈ H 1
B such that

c1
(
xu′, xv′) + c2

(
xu′, v

) + c3(u, v) = (f, v), ∀v ∈ H 1
B. (4.2)
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Next we split the domain � = (0,∞) into M non-overlapping elements:

�1 = (x0, x1), . . . ,�
i = (xi−1, xi), . . . ,�

M = (xM−1, xM), (4.3)

where 0 = x0 < x1 < · · · < xM = ∞. We define the approximation space

XN = {
u ∈ C(�);u|�i ∈ Pni

,1 ≤ i ≤ M − 1;u|�M ∈ P̂nM

}
, (4.4)

where N stands for the dimension of XN , Pk is the k-th degree polynomial space, and P̂k =
e−x/2

Pk .
Since the initial condition has a slope discontinuity at S = K , it is important that K is

one of the nodes {xi}M−1
i=1 so that the solution can be well approximated in the approximation

space XN .
The spectral element method for (3.9) is: Find uN such that

〈AuN, vN 〉 := (
xu′

N, xv′
N

) + (
xu′

N, vN

) + (uN, vN) = (INf, vN), ∀vN ∈ XN, (4.5)

where IN : C(�) → XN is an interpolation operator based on Legendre-Gauss-Lobatto
points at all subintervals �i .

We now construct a set of basis functions for XN . We start with the interior modal basis
functions {φi

j (x)}1≤i≤M−1
0≤j≤ni−2 for �i, 1 ≤ i ≤ M − 1.

φi
j (x) =

{
Li

j (x) − Li
j+2(x), x ∈ �i,

0, else,
(4.6)

where Li
j ’s are Legendre polynomials defined on the element �i , and ni ’s are numbers of

Gaussian points assigned on �i . For the unbounded domain �M , the interior modal basis
functions are

φk = L̂k − L̂k+1, (4.7)

where {L̂k}0≤k≤nM−1 are Laguerre functions scaled on �M .
The nodal basis functions (see Fig. 2) at {xi}1≤i≤M−2 are

I i =

⎧
⎪⎨

⎪⎩

xi+1−x

2di+1
, x ∈ �i,

x−xi−1
2di

, x ∈ �i−1,

0, otherwise,

(4.8)

with di = xi−xi−1
2 . Finally, the nodal basis functions at x0 and xM−1 are given by

I 0 =
{

x1−x

2d1
, x ∈ �1,

0, otherwise,
(4.9)

and

IM−1 =

⎧
⎪⎪⎨

⎪⎪⎩

e− x−xM−1
2 , x ∈ �M,

x−xM−1
2dM−1

, x ∈ �M−1,

0, otherwise.

(4.10)
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Fig. 2 Nodal functions defined on an unbounded domain

Fig. 3 With 3 elements and 8 Gaussian points in each element

It is easy to verify that the above basis functions form a basis for XN with the number of
degrees of freedom N = ∑M

i=1(ni − 1) + (M − 1).
Plugging in

uN =
M∑

i=1

ni−2∑

j=0

u1
kiφ

i
j +

M−1∑

i=1

u2
i I

i (4.11)

in (4.5) and running vN through all basis functions of XN , (4.5) reduces to the following
linear system

[
A B1

B2 C

][
ū1

ū2

]
=

[
f̄1

f̄2

]
, (4.12)

where with ū1 (resp. ū2) is the vector consisting the coefficients of {u1
ki} (resp. {u2

i }) in
(4.11), f̄1 (resp. f̄2) is the vector consisting of 〈f,φ1

j 〉 (resp. 〈f, I i〉), and

A = diag
(
A1,A2, . . . ,AM

)
(4.13)

with

Ai
kj = 〈φi

j , φ
i
k〉, Ckj = 〈Ij , Ik〉,

B1 and B2 are rectangular matrices with entries 〈Aφi
j , Ik〉 and 〈AIj , φ

i
k〉, respectively.

Thanks to the properties of Legendre polynomial and Laguerre functions, the matrices {Ai},
C, B1 and B2 are sparsely banded (cf. Fig. 3). The linear system (4.12) can be efficiently
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solved by using a block Gaussian elimination as follows:

[
I A−1B1

0 C − BT
2 A−1B1

][
ū1

ū2

]
=

[
A−1f̄1

f2 − BT
2 A−1f̄1

]
. (4.14)

Therefore, the computational complexity of our method is dominated by the transforms
between physical values and spectral representation with O(

∑M

k=1 n2
k) flops. This cost can be

reduced to O(
∑M

k=1 nk lognk) (with a much large constant) if we use a Chebyshev-Legendre
approach on each subdomain (cf. [15, 29, 31]).

4.2 Discretization of the Integral Term

Next we deal with the integral term in (2.12). Consider first a direct approximation of
Rv(S) by using Legendre-Gauss-Lobatto quadratures on {�i}M−1

i=1 and Laguerre-Gauss-
Radau quadrature on �M :

Rv(S) =
M∑

i=1

∫

�i

v(Z)Ḡ(Z,S)dZ ≈
M∑

i=1

Ji

ni∑

j=0

ωi
j Ḡ

(
Z

(
ξ i
j

)
, S

)
v
(
Z

(
ξ i
j

))
, (4.15)

where Ji is the Jacobian of the affine mapping which maps �i to (−1,1) or (0,∞), wi
j are

the quadrature weights, and Z(ξ i
j ) are the mapped quadrature points on �i .

Note that Ḡ(Z,S) as a function of Z (see Fig. 4) has a peak of magnitude O(S−1) in the
interval (0, S]. In other words, there is a large gradient drop when S is small. Hence, a large
number of quadrature points, much larger than what is needed to accurately represent the
approximation solution, is needed in �1 to achieve the required accuracy. A simple fix for
this difficulty is to use the over-integration technique proposed in [40]. Namely, we use n1

points to represent uN in �1 but n∗
1 � n1 points to over-integrate the integral term in �1.

5 Numerical Results

We present in this section some numerical results for European put options under both the
Black–Scholes model and the Merton jump diffusion model. The corresponding call op-
tion price can be calculated by using the put–call parity. We set the following benchmark
parameters throughout all the implementations:

T = 0.25, K = 100, r = 0.05, σ = 0.15,

λ = 0.1, δ = 0.45, m = −0.9.
(5.1)

We recall that an analytic solution to the PIDE (2.12) is:

v =
∞∑

n=0

e−λ′T (λ′T )n

n! fn, (5.2)

where λ′ = λ(1 + κ), κ = em+ 1
2 δ2 − 1, γ = ln(1 + κ), and fn is the Black–Scholes option

price with instantaneous variance σ 2 + nδ2/T and risk-free rate r − λκ + nγ/T . We will
use (5.2) to validate our numerical methods.
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Fig. 4 Ḡ(Z,S) as a function of Z for different S

5.1 Black–Scholes Model

We use the scheme (3.8) with three elements for the spatial discretization:

�1 = (0,K), �2 = (K,2K), �3 = (2K,∞). (5.3)

Figure 5 shows the agreement between the numerical solution and the theoretical one with
δt = 10−3 and the following number of quadrature points in each element:

n1 = 20, n2 = 20, n3 = 6. (5.4)

As is well-known (cf. [5]), when using a spectral method for unbounded domains, a proper
scaling parameter can often significantly increase the efficiency. In the case of Laguerre
functions for �3, we can choose the scaling parameter as follows. Assuming that the solution
is essentially zero for S > 2K + ξ̃ . Then, if 2K + ξ is the largest Laguerre-Gauss-Radau
point, we set the scaling parameter to be α = ξ/ξ̃ . In this case, the corresponding scaling
parameters for �3 are:

ξ̃ = K = 100, ξ ≈ 17.65, α ≈ 0.18. (5.5)

Next we examine the temporal and spatial accuracy. We first fix ni in (5.4) and change the
time step δt gradually. We plot in Fig. 6 the error calculated at the strike which is the point
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Fig. 5 Black–Scholes model. Line: exact; dotted: numerical

Fig. 6 Black–Scholes model: errors at the strike, with different time step sizes and fixed {ni } in (5.4)

Fig. 7 Black–Scholes model: L∞-errors, with different {ni } and a fixed δt of 10−3

of most financial interest. The dotted lines in Fig. 6 have the slope of 2 which indicates a
second order convergence in time. Next, we fix δt = 10−3 and plot in Fig. 7 the errors with
different numbers of degrees of freedom (DoF). We observe an exponential convergence in
space.
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Fig. 8 Merton jump diffusion model. Line: exact; dotted: numerical

Fig. 9 Merton jump diffusion model: errors at the strike, with different time step sizes and the fixed {ni }
in (5.7)

5.2 Merton Jump Diffusion Model

We now consider the scheme of (3.16) and (3.17) for the Merton jump diffusion model. For
the spatial discretization, we use the following four elements:

�1 = (0, εK), �2 = (εK,K), �3 = (K,4K), �4 = (4K,∞). (5.6)

In Fig. 8, we plot the numerical and exact solutions with the following computational pa-
rameters:

δt = 10−3, n1 = 4, n2 = n3 = 36, n4 = 6, ε = 0.1. (5.7)

The corresponding scaling parameters for �4 are

α ≈ 0.09, ξ ≈ 53.53, ξ̃ = 10K.

In Fig. 9, we plot the errors with fixed {ni} in (5.7) and different δt , while in Fig. 10, we plot
the errors with fixed δt = 10−3. Again a second order convergence in time and exponential
convergence in space are observed. Note that the saturation of the error when δt is very small
in Fig. 9 is due to the spatial discretization as more spatial points are needed to achieve better
accuracy for computing � and �, while the saturation of error with larger DoF in Fig. 10 is
due to the time discretization error for fixed δt .
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Fig. 10 Merton jump diffusion model: L∞-errors, with different {ni } and a fixed δt of 10−3

Table 1 Computing times for the Merton jump diffusion model

Computing time (ms.) L2
w-error No. of time steps No. of spatial points

0.6 2.40e–3 40 35 = 16 × 2 + 3

1.7 7.67e–4 80 45 = 20 × 2 + 5

4.3 4.50e–5 160 58 = 26 × 2 + 6

11.7 4.25e–6 320 72 = 34 × 2 + 6

In Table 1, we list the computational time for the Merton jump diffusion model on a
2.5 GHz Quad-Core (but only one core is used) AMD Opteron(tm) Processor. Parameters
are fixed to be those in (5.1).

To accurately compute the integral term, we further divide the first subdomain [0,K] into
two subdomains [0,0.1K] and [0.1K,K]. We fix the number of spatial points in [0,0.1K] to
be 4, and use 60 points to perform over-integration in [0,0.1K]. In terms of the accuracy, our
spectral-element method appears to be more efficient than a usual spectral-element method
in [40] when comparing Table 1 in this paper with Table 3 in [40], and can be orders of
magnitude faster than a low-order finite difference method according to Tables 1 and 2 in
[40].

Note that the result in Table 3 of [40] is obtained by using the exact Dirichlet boundary
condition at the truncated boundary. However, for most real applications, exact boundary
condition is not available and is usually replaced by zero. This could introduce significant
irreducible errors. Hence, our method should be more accurate when applied to real prob-
lems.

5.3 Local Volatility Model

Our scheme can be easily applied to jump diffusion models with local volatility. So as a
final example, we compute the price of European put options with a space-time dependent
local volatility function under the Merton jump diffusion model. Namely, instead of (3.1),
we solve the following PIDE,

vτ = 1

2

(
σ 2S2vS

)
S
+ [

rS − λκS − (
σ 2S

)
S

]
vS − (r + λ)v + λ

∫ ∞

0
v(ηS, τ )G(η)dη, (5.8)
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Fig. 11 Left: The local volatility function at {τi } = {0, T /5,2T/5, . . . , T } (from bottom to top). Different
lines corresponding to different σ(S, τ ) as a function of S at different τi ’s. The horizontal axis is for the
variable S. The vertical axis is for the value of σ(S, τ ). Right: Option prices at {τi } (from bottom to top). The
horizontal axis is the stock price S. The vertical axis is the put option price

where the local volatility function (cf. [35]) is chosen to be

σ = σ(S, τ ) = 0.15 + 0.15(0.5 + 2τ)
(S/100 − 1/2)2

(S/100)2 + 1.44
. (5.9)

Since no exact solution is available, we plot in Fig. 11 the local volatility function at different
time steps and the corresponding European put prices. Parameters are chosen as in (5.1)
except for σ , and δt = 10−3.

6 Conclusions

We developed an efficient and accurate spectral element scheme for the European option
pricing with the PIDE approach. Our method enjoys the following advantages: (i) The un-
bounded domain is treated directly by using Laguerre functions to avoid the domain trun-
cation error; (ii) the spectral element approach with interior modal basis functions is very
efficient and flexible for payoff functions with slope discontinuities and various boundary
conditions; (iii) the semi-implicit Crank-Nicholson-Leap-Frog scheme with explicit treat-
ment of integral terms is stable. The numerical results show that our scheme is of second-
order in time and exponentially convergent in space, despite the slope discontinuity. The
numerical results also indicate that our method would be more efficient and accurate for real
applications where the solution at the right truncated boundary is unknown.

While we have only considered the option pricing with one asset case here, we plan to
use some of the techniques developed in this paper, together with the fast spectral sparse
grid methods developed recently [33] to deal with price contingent claims with two or more
assets.
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