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bstract

We study the microstructure formation and defects dynamics arising in liquid crystalline polymers (LCPs) in plane shear flow by a
inetic–hydrodynamic coupled model. The kinetic model is an extension of the Doi theory with a non-local intermolecular potential, including
ranslational diffusion and density variation. LCP molecules are ensured anchoring at the boundary by an additional boundary potential, meanwhile

ass conservation of LCPs holds in the whole flow region. Plane Couette flow and Poiseuille flow are studied using the kinetic–hydrodynamic
odel and the molecular director is restricted in the shear plane. In plane Couette flow, the numerical results predict seven in-plane flow modes,

ncluding four in-plane modes reported by Rey and Tsuji [Macromol. Theory Simul. 7 (1998) 623–639] and three new complicated in-plane modes
ith inner defects. Furthermore, some significant scaling properties were verified, such as the thickness of the boundary layer is proportional to

olecular length, the tumbling period is proportional to the inverse of shear rate. In plane Poiseuille flow, the micro-morph is quasi-periodic in time
hen flow viscosity and molecular elasticity are comparable. Different local states, such as flow-aligning, tumbling or wagging, arise in different
ow region. The difference of the local states, or difference of the tumbling rates in near-by regions causes defects and form branch pattern in
irector spatial–temporal configuration figure.
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. Introduction

Liquid crystalline polymers (LCPs) were investigated in the
ast decades by several theories based on rod-like molecules
15], which include the celebrated Erickson–Leslie (LE) theory
23], the Doi kinetic theory [1] and a variety of tensor-based
heories such as Hand’s theory [16] for homogeneous liquid
rystals (LCs), and Tsuji and Rey’s phenomenological theory
28] for non-homogeneous fluid. LE theory is suitable for low
olecular weight LCs and only valid for weak flow. Because

f its simplicity, many numerical simulations were taken based
n it. However, LE theory will become invalid near the defects
here the director cannot be defined. The tensor-based theory
as been applied extensively; it can describe defects and predict
olydomains, which was studied by experiments [21,22]. But the

arlier tensor models have a variety of parameters, and it is hard
o obtain all the parameters in experiments. The most popular

odel in recent years is the Doi kinetic model and its extensions.

∗ Corresponding author. Tel.: +86 10 6275 9851; fax: +86 10 6276 7146.
E-mail address: pzhang@pku.edu.cn (P. Zhang).
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on-local intermolecular potential

oi developed his well-known kinetic theory for spatially homo-
eneous flows of rod-like LCPs, in which the excluded volume
ffect is accounted for by either the Onsager or the Maier–Saupe
otential [1]. Later, Doi et al. extended the theory to model flows
f non-homogeneous LCPs by introducing a long-range inter-
olecular potential [3]. Marrucci and Greco [24–26] further

mproved the extended Doi theory by incorporating the molec-
lar anisotropy and the long range of interaction into the theory
nd approximated the non-local potential using a truncated Tay-
or series expansion of the probability density function (pdf) to
btain an approximate potential depending on gradients of the
econd moments of the pdf. Wang et al. used a more general
on-local intermolecular potential taking the integral form, and
btained a closed-form stress expression accounting for the non-
ocal molecular interaction [34]. A similar theory was developed
or spheroidal LCPs by Wang et al. [35,36].

The earlier important kinetic-scale simulation based on Doi
heory was carried out by Larson et al. [18,20], they expanded

df in spherical harmonic functions to numerically solve the
oi equation with Onsager potential and predicted tumbling,
agging, log rolling, kayaking and flow-aligning. Their sim-
lation also predicted negative first normal stress difference,

mailto:pzhang@pku.edu.cn
dx.doi.org/10.1016/j.jnnfm.2006.09.005
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hich agreed well with experiments. Later, Forest et al. gave
ome more detailed monodomain analysis [8–12,14,32]. For
nhomogeneous flow, several simulations and analysis were car-
ied out [2,4,7,17,29–31]. Most of them are based on closure
pproximation of Doi-type kinetic theory with Onsager poten-
ial, Maier–Saupe potential or Marrucci–Greco potential. As we
now, closured models can reduce the computing amount a great
eal, but when shear rate is very large, the orientational distor-
ion made pdf cannot be approximated by its second moment or
ourth moment, thus it may lose some features such as energy
issipation and may not arrest all monodomain attractors. The
rst approach of kinetic-scale simulation for inhomogeneous
ow is provided by Zhou et al. [13,37]. They extended the
inetic-scale simulation of Larson to one dimensional Couette
ow.

In this paper, we apply a coupled kinetic–hydrodynamic
odel to inhomogeneous plane shear flow. In the next section,
e first introduce the kinetic–hydrodynamic model, and then

he coupled model is applied to two typical plane shear LCP
ow: plane Couette flow and pressure-driven Poiseuille flow. In
ection 4, we present and discuss the abundant numerical results
redicted by the new model. Finally, we add some concluding
emarks.

. The coupled kinetic–hydrodynamic model

.1. Kinetic equation

The coupled kinetic–hydrodynamic model for inhomoge-
eous flow is a combination of an extended Doi kinetic theory
or rigid rod-like molecules and the Navier–Stokes equation for
ncompressible flow.

The extended Doi kinetic theory includes a non-local poten-
ial,

(x, m, t) = kBT

∫
Ω

∫
|m′|=1

B(x, m; x′, m′)f (x′, m′, t) dm′ dx′,

(1)

here f(x, m, t) is the orientational probability distribution func-
ion of LCPs, Ω the spatial region, kB the Boltzmann constant,
the temperature and B(x, m; x′, m′) is the interaction potential

etween the two polymers in the configurations (x, m) and (x′,
′). If the space occupied by the polymer at position x with

rientation m is denoted by b(x, m), the interaction potential
unction can be calculated as [1]:

(x, m; x′, m′) =
{

U0, if b(x′, m′) ∩ b(x, m) �= ∅,

0, otherwise.
(2)

0 is the interaction potential constant.
The Smoluchowski equation including transitional diffusion

or the LCP system is given by

df

dt
= ∇ ·

{
[D||mm + D⊥(I − mm)] ·

(
∇f + 1

kBT
f∇U

)}
( )
+DrR · R · f + 1

kBT
fRU − R · (m × κ · mf ),

(3)
luid Mech. 141 (2007) 116–127 117

here Dr = kBT/ξr, ξr = 1/3πηsl3/(ln(l/b) − c), D|| = 1/6Drl2,
⊥ = 1/12Drl2, ηs the coefficient of solvent viscosity, ξr the

otational friction factor and c = 0.8 is a dimensionless constant.
||, D⊥, Dr are the translational diffusion coefficients parallel

nd normal to the orientation and rotational diffusion of the
CP molecules [1], � the gradient operator with respect to the
ariable x, R = m × (∂/∂m) is the rotational gradient operator,
= (�v)T is the velocity gradient tensor, and d/dt is the material
erivative (∂/∂t) + v·�.

.2. Hydrodynamic equations

For simplicity, we neglect the density variation in terms of
oncentration variation in LCP solution. Then the macroscopic
ystem consists of the continuity equation with form:

· v = 0, (4)

nd momentum equation:

dv
dt

+ ∇p = ηs 	v + ∇ · τp + Fe, (5)

here Fe = −〈�U〉 is the body force induced by the long-range
olecular interaction [34], p the static pressure and τp is the
CP viscoelastic stress:

p = 2kBTνξrD : 〈mmmm〉 −
〈

mm ×
(

kBT
Rf

f
+ RU

)〉
.

(6)

ere, D = (κ + κT)/2, and

(·)〉 =
∫

|m|=1
(·)f (m, x, t) dm. (7)

he first term of (6) is the viscous stress from solvent–LCP
nteraction and the second term is the elastic stress. For more
etails see [34].

.3. Dimensionless equations

Let L0 denote the characteristic scale of the flow region, �

he length of LCP molecules, and V0 the characteristic velocity
f the flow. The kinetic equation and hydrodynamic equation
ave different spatial and temporal scales. We rescale the system
sing the flow region size L0, the flow time T0 = L0/V0 and the
oltzmann constant multiplied by the temperature:

∗ = x
L0

, t∗ = t

T0
, v∗ = v

V0
, U∗ = U

kBT
,

nd rewrite x*, t*, v∗, U* as x, t, v, U. Then the non-dimensional
orm of the kinetic–hydrodynamic system becomes:

∂f + ∇ · (vf ) = ε2

∇ · {[D∗ (I + mm)] · (∇f + f∇U)}
+ 1

De
R · (Rf + fRU) − R(m × κ · mf ),

(8)
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where G(x) is the characteristic function of the region [−1, 1];
18 H. Yu, P. Zhang / J. Non-Newton

∂v
∂t

+ (v · ∇)v + ∇p = 1 − γ

Re
	v + γ

ReDe
(∇ · τp + Fe),

(9)

(p)
αβ = 3Sα,β − 〈(m × RU)αmβ〉 + De

2
κkl〈mαmβmkml〉,

i,j =
〈

mimj − 1

3
δij

〉
, (10)

here

e = V0/L0

Dr
, ε = �

L0
, Re = ρ

V0L0

ηs + νξr
,

= νξr

ηs + νξr
, D∗

⊥ = ln(�/b)

12(ln �/b) − c)
.

.4. Anchoring condition

Proper boundary conditions should be given before solving
he system (4), (8), (9). The boundary condition for macro-
copic hydrodynamic equation is standard. But the boundary
ondition of the Smoluchowski equation should be delicately
icked.

Chemists can make the boundary molecules anchor at given
ngle by milling the container’s surface, which yields the well-
nown anchoring condition. The director of the boundary
olecules is fixed, but the number density is not fixed. So we

annot just give a fixed value to pdf f(x, m, t) on boundary. Fur-
hermore, the conservation of the molecules yields that ʃΩʃ|m|=1
(x, m, t) dm dx should be constant. Taking into account all
spects of the case, we add a boundary potential accounting
or interaction between polymers and molecules of boundary
urfaces to the system, instead of giving a fixed value to the pdf
t the boundary:

˜ (x, m, t) = kBT

∫
∂Ω

∫
|m|=1

B̃(x, m; x′, m′)f̃ (x′, m′, t) dm′ dx′,

(11)

here f̃ (x′, m′, t) is the pdf of boundary molecules anchoring
t the boundary surface. B̃(x, m; x′, m′) is the interaction poten-
ial function between LCP molecules and boundary molecules.
ssume that the pdf of boundary molecules is the Dirac function.
hen

˜ (x, m, t) = kBT Ñ

∫
∂Ω

∫
|m′|=1

B̃(x, m; x′, m′)δ(m′ − m0(t))

× dm′ dx′ = kBT Ñ

∫
∂Ω

B̃(x, m; x′; mo(t)) dx′. (12)

We replace the potential U(x, m, t) in the Smoluchowski
quation by
t = U + Ũ.

Integrating the both side of the Smoluchowski equation, and
oticing that the pdf f(x, m, t) is periodic with respect to m, one

i

g

Fig. 1. Function gα(x) with α = 0.01.

btains:

d

dt

∫
Ω

∫
|m|=1

f dm dx = ε2

De

∫
|m|=1

∫
∂Ω

{[D||mm + D⊥(I − mm)] · (∇f + f∇Ut)} · n dx dm.

(13)

We take the boundary condition of the Smoluchowski equa-
ion as follows:

[D||mm + D⊥(I − mm)] · (∇f + f∇Ut)} · n = 0, x ∈ ∂Ω.

(14)

. Application to plane shear flow

We assume the flow direction is along x-axis, shearing along
, and the LCP molecules lying in the xy plane. Let θ be the angle
etween m and the x-axis. Let C denote the driven pressure, and
ssume the system is homogeneous in x direction. Then

x = (x, y)T, v = (u, v)T, m = (cos θ, sin θ)T,

∇ = (0, ∂y)T, ∇p = (C, py)T, κ =
(

0 uy

0 0

)
.

(x, m) = b(x, y, θ) is a � × b rectangle at position (x, y). B(x, m;
′, m′) defined by: (2) takes the form B(x, y, θ; x′, y′, θ′). It can
e calculated by

0G

(
(x′ − x) cos θ + (y′ − y) sin θ

� + � cos(θ′ − θ)/2

)

× G

(
(x′ − x) sin θ − (y′ − y) cos θ

)
, (15)
t can be approximated by (see Fig. 1)

α(x) = 2∫ 1
−1 exp(α/x2 − 1) dx

exp

(
α

x2 − 1

)
. (16)



ian Fluid Mech. 141 (2007) 116–127 119

B

w
d
a

b

U

U

U

w

K

u

τ

w
w
C
P

3

t
d

Fig. 2. The plane shear flow of Newtonian fluid: (a) Couette flow, no pressure
gradient, upper plate moving; (b) Poiseuille flow, pressure gradient ∂p/∂x with
both plates fixed.

Fig. 3. The director configurations of seven phases. Colors represent the director
H. Yu, P. Zhang / J. Non-Newton

We use the following formula to approximate (15):

(x, y, θ; x′, y′, θ′) = N sin2(θ′ − θ)

×gα

(
(x′ − x) cos θ + (y′ − y) sin θ

�

)

× gα

(
(x′ − x) sin θ − (y′ − y) cos θ

�/2

)
, (17)

here N = U0/4. We note that the excluded volume potential
etermined by (17) can deduce the Marrucci–Greco potential,
nd it becomes the Maier–Saupe potential when α goes to 0.

The dimensionless Smoluchowski equation including the
oundary potential can be written as:

∂f

∂t
= ε2

De
∂y[(D⊥(1 + cos2 θ)(fy + fUt

y)] + 1

De
∂θ(fθ + fUt

θ)

+ ∂θ(fuy sin2 θ), (y, θ) ∈ [0, 1] × [0, 2π], (18)

t = U + Ũ, (19)

(y, θ, t) = N

∫ 2π

0

∫ 1

−1
K(y′ − y, θ) sin2(θ′ − θ)f (y′, θ′, t)

× dy′ dθ′, (20)

˜ (y, θ, t) = Ñ
2

�

(
gα

(
y − 0

�/2

)
+ gα

(
y − 1

�/2

))
sin2(θ−θb(t)),

(21)

here

(y, θ) =
∫ 1

−1

2

�2 gα

(
x cos θ + y sin θ

�/2

)

× gα

(
x sin θ − y cos θ

�/2

)
dx. (22)

The momentum equation for plane shear flow is:

t + C = 1 − γ

Re
uyy + γ

ReDe
∂yτ21, y ∈ [0, 1]. (23)

21 = 2〈sin θ cos θ〉 + (Uθ cos2 θ〉 + De

2
uy〈sin2 θ cos2 θ〉,

(24)

here C is the dimensionless driven pressure gradient, and
e have C = 0, u(0) = 0, u(1) = 1, for plane Couette flow;
= −4(1 − γ)/Re, u(0) = u(1) = 0, for pressure-driven plane

oiseuille flow (Fig. 2).

.1. Numerical scheme and choice of parameters
The model includes seven parameters: Deborah number De,
he ratio of molecular length to the size of the flow region ε,
imensionless translational diffusion coefficient normal to the

angle’s sine value (from −1 to 1). The horizontal axis is dimensionless time
and the vertical axis is the distance to lower slab. The parameters are D⊥ = 0.1,
γ = 0.1, Re = 1, N = 5. (a) ε = 0.02, De = 0.005; (b) ε = 0.02, De = 0.1; (c) ε = 0.05,
De = 0.75; (d) ε = 0.05, De = 1; (e) ε = 0.05, De = 0.7; (f) ε = 0.02, De = 0.4; (g)
ε = 0.02, De = 0.7.
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Table 1
Thickness of the boundary layer, N = 5, D⊥ = 0.1, Re = 1, γ = 0.1

De ε

0.1 0.05 0.02 0.01

0.1 FA 0.170 0.060 0.031
0.2 0.240 0.140 0.055 0.028

Table 2
Thickness of the boundary layer, N = 10, D⊥ = 0.1, Re = 1, γ = 0.1

De ε

0.1 0.05 0.02 0.01

0.1 FA 0.195 0.075 0.040
0.2 0.250 0.158 0.060 0.030
0.5 0.190 0.108 0.040 0.020
1
2

m
i
p
N

d

F
s
γ

f
s
a

F
t
t

0.140 0.078 0.030 0.015
0.090 0.050 0.020 0.009

olecular orientation D⊥, the proportion of polymer viscos-

ty to total viscosity γ , the coefficient of the excluded volume
otential N, the strength of the additional boundary potential

˜ and Reynolds number Re. To focus on LCP behavior depen-
ence on De, ε, we specify Re = 1 to get laminar flow; D⊥ = 0.1

d
i
f

ig. 5. Demonstration of pdf in one tumbling period at N = 5, De = 0.5, ε = 0.05. The
he figure means from 0 to 1. From left to right, top to bottom the dimensionless tim
= 109 (the middle figure) at about y = 0.28,0.72.
ig. 4. Rheological phase diagram as a function of the ratio of micro to macro
patial scale 1/ε and the ratio of micro to macro time scale De (at D⊥ = 0.1,
= 0.1, Re = 1, N = 5).

or l/b ≈ 120; N = 5 to ensure nematic phase; γ = 0.1 for dilute
olution; and Ñ has the right magnitude to ensure boundary
nchoring.

Eqs. (18)–(24) were solved numerically using a finite-

ifference scheme. A second-order difference scheme was used
n y and θ direction, and the fourth-order Runge–Kutta method
or time-stepping. The no-slip boundary condition was used for

x-axis is θ, 0–100 in the figure means from −π to π. The y-axis is y, 0–100 in
e is: 99, 104, 107, 108, 109, 110, 111, 114, 119. Strong defects arise at time
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Table 3
Flow-aligning angle at y = 0.5 when N = 5, D⊥ = 0.1, Re = 1, γ = 0.1, ε = 0.05

θb De

1 4 16 64 256 1024 4096 16384

0 0787
π 0787

t
i

t
1
W

f√
d
t

4

4

γ

t
i
m

4

d
[
p
k

•

•

•

•

n

•

wagging region arises between two anchoring boundary sur-
faces and the tumbling region in the middle of the flow. One
may take this mode as turning from IT mode to IW mode. See
Fig. 3(e).
−0.0599 0.0347 0.0841 0.
/2 −0.1057 0.0313 0.0838 0.

he momentum equation. We verified that pdf f is positive and
ts integral keeps constant in the numerical process.

To resolve the microstructure, the cell size in y direc-
ion should be smaller than ε, 400 × 100, 200 × 100,
00 × 100,100 × 100 grids are used for ε = 0.01, 0.02, 0.05, 0.1.
e refined the grid, but that did not make much difference.
In the numerical results, close attention should be paid to the

ollowing quantities: density ρ = 〈1〉; the order of nematic s =
〈cos 2θ〉2 + 〈sin 2θ)2/ρ; the angle between director and flow

irection φ = arcsin(〈sin 2θ〉/
√

2s2 + 2s〈cos 2θ〉); the deriva-
ive of stress at y direction τy, and so on.

. Results and discussion

.1. Plane Couette flow

We first simulated the case N = 5, ε = 0.02, De = 0.5, D⊥ = 0.1,
= 0.1, Re = 1, then varied the parameters separately. We found

hat the microstructure is mainly determined by N, ε, De, and
s not sensitive to other parameters, except that the feedback of

icrostructure to the velocity field has strong relation with γ .

.1.1. Flow modes
In the case of plane Couette flow, the coupled model pre-

icts not only all in-plane phases reported by Rey and Tsuji
29], but also three new phases. The four in-plane phases both
redicted by Tsuji and Rey’s phenomenological theory and our
inetic–hydrodynamic model are:

In-plane elastic-driven steady state (IE): Steady state arises
due to the long-range order elasticity stored in the spacial
deformed pdf field. In this mode there is no orientation bound-
ary layer because of no flow-alignment in the bulk region. See
Fig. 3(a).
Tumbling state (IT): In this time-dependent mode, the director
in the bulk region is rotational (tumbling), and in the boundary
is oscillatory or flow-aligning. The boundary between the bulk
tumbling region and each boundary layer is characterized by
the periodic emergence of the abnormal nematic phase, in
which the director is not defined, called defect. Defects link
the tumbling region and fixed director region like bearings.
See Fig. 3(b).
In-plane wagging state (IW): In this mode, the director
dynamics over the entire flow geometry is wagging with an

amplitude that decreases from a maximum at the centerline to
the two boundary surfaces when ε is relatively big, but when
ε is very small, there will be a bulk wagging region with
the same amplitude and two boundary layers with amplitude
decreasing to zero. See Fig. 3(c).

F
d
b
t

0.0574 0.0376 0.0238 0.0149
0.0574 0.0376 0.0238 0.0149

Viscous-driven steady state (IV): In this mode, the flow phase
in the inner bulk region is flow-aligning and the anchoring
angle is very close to zero. There will be two boundary layers
if the boundary anchoring angle is different from the bulk
flow-aligning angle. See Fig. 3(d).

Beyond that, the kinetic–hydrodynamic model predicts three
ew flow modes:

Tumbling–wagging composite region (TW): In this time-
dependent mode, there is no boundary layer; instead, a wide
ig. 6. The effects of defects N = 5, ε = 0.05, De = 0.2, θb = 0. The x-axis is
imensionless time. The y-axis is spatial position. (a) The sine value of angle
etween director and flow direction n; (b) density ρ; (c) order parameter s; (d)
he derivative of stress at y direction τy; (e) shear rate uy.
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Fig. 7. Weak flow results at N = 5, ε = 0.05, De = 0.01, θb = 0. The x-axis is spatial position and the y-axis is the value of the plot function. There are fluctuations near
the two boundaries in shear rate uy and density ρ, this is one of the effects of the boundary potential. Another effect is that the order function s gets its maximum on
the two boundaries.

Fig. 8. Weak flow results at N = 5, ε = 0.05, De = 0.01, θb = π/2. The x-axis is spatial position and the y-axis is the value of the plot function.
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F
a
e

F
a
i

ig. 9. Scaling properties when N = 5, ε = 0.05, De = 0.01, 0.02, 0.04, θb = 0.From le
nd director angle. The x-axis is spatial position and the y-axis is the value of the pl
xcept for two boundary layers for shear rate, density and order parameter, which wa

ig. 10. Scaling properties when N = 5, ε = 0.05, De = 0.01, 0.02, 0.04, θb = π/2. From
nd director angle. The x-axis is spatial position and y-axis is the value of the plot fu
nner bulk region.
ft to right, top to bottom, the figures show shear rate, density, order parameter
ot function. These results confirm the scaling property found by Forest et al.,
s affected heavily by the boundary potential.

left to right, top to bottom, the figures show shear rate, density, order parameter
nction. We did not get the scaling properties found by Forest et al. even in the
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4.1.5. Weak shear results
Forest et al. studied a weak shear tensor model by

asymptotic analysis [14], and obtained s = s0 + De2s2 + O(De3),
24 H. Yu, P. Zhang / J. Non-Newton

Tumbling state with inside defects (ITD): This is a quasi-
periodic mode. In general, the director is tumbling in the bulk
region but the tumbling rate does not fit together well. This
disharmony introduces inside defects. See Fig. 3(f).
Tumbling–wagging composite region with inside defects
(TWD): In this quasi-periodic mode, a wide wagging region
arises between the middle bulk tumbling region with inside
defects and two anchoring boundary surfaces. See Fig. 3(g).

We think the inner defects arise because of the decaying of
ong-range elasticity as the ratio of molecular length to the gap
f the plates ε tends to zero, so the effects of the defects near the
oundaries can easily spread into the inner bulk region and give
ise to out-of-step of the tumbling rate then trigger inner defects.
o make sure the three new modes are introduced by translational
iffusion, we also carry out many simulations without transla-
ional diffusion. We do not find modes with inner defects in the
orresponding ε, De region.

Fig. 4 is a schematic of the rheological phase diagram given
n terms of De and 1/ε. For big ε, there are only two flow modes
E and IV, since the flow region has the same scale as molecular
cale. In fact, we tried several parameters, but obtained no IT
hase when ε = 0.2. For a middle ε, the director configure shows
E, IT, TW, IW, IV as De changing from a very small value to a
ufficiently big value. When ε is small enough, the long-range
lasticity becomes very small, so more defects will arise to bal-
nce the viscosity, which leads to ITD and TWD phase. In ITD
nd TWD flow mode, the director configure shows multilayer
tructure of defects.

Note that the phase diagram depends heavily on the molecular
nteraction strength N. With increasing N, the amount of inside
efects decreases.

.1.2. Thickness of the boundary layer d
The scaling property of the thickness of the boundary layer

redicted by the coupled model is d ∝ ε, see Table 1. This is com-
atible with Marrucci Scaling Er−1/2, because Er ∝ 1/ε2 in the
oupled model. When the boundary anchoring angle is changed,
or example from 0 to π/2, the microstructure does not change in
ssence, the only change is the enlarging of the boundary layer.
he thickness of the boundary layer when the anchoring angle

s π/2 is about twice as large as when the anchoring angle is zero
egree. When N increases, the thickness of the boundary layer
ncreases more slowly at lower De number. It is more sensitive
o the De number than to N. See Tables 1 and 2.

.1.3. Tumbling rate and flow-aligning angle
The director rotates in a clockwise direction (φ̇ < 0) in the

umbling state; see Figs. 4 and 5. The tumbling period almost
oes not depend on the dimensionless parameter De, ε when
t is far away from phase transition points. When N = 5, there
re about 20 tumbling periods in dimensionless time t = 400.
ecause time is rescaled by T0 = L0/V0 = 1/γ̇ so T ∝ 1/γ̇ . If

increases, the tumbling period becomes shorter. The scaling

roperty is about T ∝ 1/N. The tumbling rate φ̇(φ) is not con-
tant [27]: it attains the minimum when φ ≈ φFA, and attains the
aximum when (φ ≈ φFA ± π/2, φFA is the flow-aligning angle.

F
N
fl
s

luid Mech. 141 (2007) 116–127

hen De approaches infinity, φFA tends to zero, but slowly; see
able 3.

.1.4. The effects of defects
The defects take an important role in the microstructure

ynamics. When spatial distortion is not tremendous, the LCPs
n the flow region will take a local state, tumbling, wagging or
ow-aligning, according to the local dimensionless parameters
e, N. If the tumbling rates of neighboring LCPs are different,
r tumbling region is connected with wagging or flow-aligning,
he defects will arise. Defects connect tumbling regions with
ther phases like a bearing.

LCPs are in abnormal nematic phase where defects arise, the
rder parameter is about zero. The minimum of the excluded
olume potential is bigger than that in the normal nematic state.
his causes lower density in defect core, see Fig. 6(b). Defects
lso introduce big stress variation, see Fig. 6(d). The big stress
ariation causes the shear rate to become larger that is we have
hear thinning; see Fig. 6(e).
ig. 11. Figures demonstration of typical pressure-driven plane Poiseuille flow,
= 5, ε = 0.02, De = 0.2, θb = 0. (a) The sine value of angle between director and

ow direction sin φ; (b) density ρ; (c) order parameter s; (d) the derivative of
tress at y direction τy; (e) shear rate uy.
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ig. 12. Director angle’s spatial–temporal configuration of flow-aligning mode
n pressure-driven plane Poiseuille flow, N = 5, ε = 0.02, De = 2.

= φ0 + Deφ1 + O(De2), when the anchoring angle is zero or
/2. Zhou et al. verified this scaling property numerically by
olving the equations derived by spherical harmonic expansion
37].

Our numerical results are presented in Figs. 7–9. Fig. 7 shows
he profile of shear, density, order parameter and director angle
t N = 5, ε = 0.05, De = 0.01, θb = 0. As a result of the boundary
otential, there are two waves near the two boundaries in the
hear, density and order parameter profiles and the order param-
ter near the two boundary surfaces is bigger than that in the
ulk region. Fig. 8 shows the results when the anchoring angle
s θb = π/2. Normal anchoring introduces two wave troughs in
he configuration of the shear, density and order parameter. Our
esults confirm the scaling property found by Forest et al., except

or two boundary layers when θb = 0; see Fig. 9. Besides this, we
ound the density ρ has the same scaling property as the order
arameter, and the shear rate is not constant when the De number
ends to zero, which is also a boundary potential effect. When

s

i
d

ig. 13. The difference between the velocity field of the LCP solution and that of the
ast figure (t = 400), there are two intervals near the boundaries in line De = 0.2 where
uid.
luid Mech. 141 (2007) 116–127 125

decreases, the range of uy − 1 decreases simultaneously. Our
umerical results did not get the similar scaling property when
ormal anchoring is imposed; see Fig. 10.

.2. Pressure-driven plane Poiseuille flow

In pressure-driven plane Poiseuille flow, we studied the
icrostructure by varying De and ε. When ε is small enough,

or example ε = 0.02, increasing De step by step, the microstruc-
ure takes several modes: when De is very small, the flow mode
s an elastic-driven steady state similar to the IE state in plane
ouette flow; at larger De number, a beautiful branch pattern in
irector spatial–temporal configuration arises, see Fig. 11. The
ranches and defects at the crosspoint happened because of the
patial variation of the tumbling rate, which is mainly deter-
ined by the local shear rate. Near the two boundary surfaces,

he shear rate is biggest, so the tumbling rate is biggest, i.e. the
umbling period is small, which leads to small branches. In the
nner region close to the center of the flow region, the shear rate
s very small, which leads to a thick root; at larger De number, a
agging region and then a flow-aligning region will arise near

he boundary, as the inner region changes little. Finally when the
e number is big enough, the flow-aligning mode occupy the

ntire flow region. But the flow-aligning angle is not uniform,

ee Fig. 12.

The feedback of the macrostructure of LCPs to the flow veloc-
ty field is demonstrated in Fig. 13. In general, tumbling will
ecrease the average velocity (tumbling region is much larger at

Newtonian fluid at dimensionless time t = 370, 380, 390, 400. Note that in the
the velocity of the LCP solution is bigger than the velocity of the Newtonian
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e = 0.2 than at De = 0.5 and De = 1), but defects will increase
he velocity. Note that at t = 400, near the two boundaries the
elocity of the LCP solution is bigger than the velocity of New-
onian, because of two strong defects near the two boundaries.

The flow depends heavily on N also. When N increases, the
umbling rate increases, tumbling region of the parameter De is
igger, so more defects and branches will arise.

. Concluding remarks

We presented a new kinetic–hydrodynamic coupled model
or the dilute LCP solution for inhomogeneous flow, which
ccounts for translational diffusion and density variation. It is
ery easy to extend this model to a concentrated solution.

We applied the coupled kinetic–hydrodynamic model to
lane shear flow by restricting the molecular orientation in the
hear plane and obtained some significant properties:

The microstructure is mainly determined by ε, De and N. In
plane Couette flow, seven flow modes are predicted by varying
ε and De (in some closed models the Ericksen number has a
relation with ε and N: Er = 8/Nε2, but in the molecular kinetic
model a simple relation does not exist).
The multilayer structure of defects is arrested.
The thickness of the boundary layer is proportional to molec-
ular length l, and also bears somewhat on N, De. The thickness
of boundary layer will increase as N increases.
The tumbling period is proportional to the inverse of shear
rate.
The flow-aligning angle tends to zero as De approaches infin-
ity.
The scaling properties we obtained in plane Couette flow with
tangential anchoring is similar to that predicted by Zhou et al.
[37]. Furthermore, our results show that density variation has
the same scale De2 with scalar order parameter.

Similar work in Couette flow was done by Forest et al. [13,37]
hey used Doi kinetic theory with Marrucci–Greco potential,
nd neglected translational diffusion. Their numerical approach
as based on spherical harmonic expansion. Because of the

bsence of translational diffusion, that approach cannot pre-
ict density variation. The most important difference between
umerical results in this paper and theirs is their results did not
redict inner defects. We have made sure it is the translational
iffusion that introduces inner defects by comparing numer-
cal results with and without translational diffusion. Another
ifference is we use a boundary potential to ensure boundary
olecules anchoring at a certain direction. The boundary poten-

ial has an effect on some physical quantities, such as scalar order
arameter and density, see Fig. 9. We do not know whether the
ffects are physical or artificial, until the full three dimensional
rientational simulation is performed.

The in-plane restriction of the LCP molecules make the

rientation can be represented by an angle. This can cut off
he computing effort. But this restriction precludes rog rolling,
ayaking and other important and interesting phases. And in
hree dimensional solution of LCPs, some of the in-plane solu-

[
[

luid Mech. 141 (2007) 116–127

ions is unstable with respect to the spatial gradient of orienta-
ion. Indeed, our results predict in-plane tumbling instability at
ow shear rates. And with increasing shear rate, there is a twist
nstability predicted by Zuniga and Leslie [38], followed by a
oll-cell instability [5,6,19]. These all out-of-plane instabilities
nd its consequences, such as band and strip texture reported
y Larson and Mead [21,22], cannot be predicted by any in-
lane orientational simulation. However, the in-plane simulation
onfirm our kinetic–hydrodynamic coupled model with trans-
ational diffusion and non-local intermolecular potential. Full
hree dimensional orientation results will be presented in our
ater paper.

cknowledgements

Pingwen Zhang is partially supported by the state key basic
esearch project of China 2005CB321704 and the National Sci-
nce Foundation of China for Distinguished Young Scholars
0225103.

eferences

[1] M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, Oxford Univer-
sity Press, Oxford, 1986.

[2] Z. Cui, G. Forest, Q. Wang, On weak plane Couette and Poiseuille flows
of rigid rod and platelet ensembles, SIAM J. Appl. Math. 66 (4) (2006)
1227–1260.

[3] M. Doi, T. Shimada, K. Okano, Concentration fluctuation of stiff polymers.
II. Dynamical structure factor of rod-like polymers in the isotropic phase,
J. Chem. Phys. 88 (6) (1988) 4070–4075.

[4] J. Feng, L.G. Leal, Pressure-driven channel flows of a model liquid-
crystalline polymer, Phys. Fluids 11 (1999) 2821–2835.

[5] J.J. Feng, J. Tao, L.G. Leal, Roll cells and disclinations in sheared nematic
polymers, J. Fluid Mech. 449 (2001) 179.

[6] J. Tao, J.J. Feng, Effects of elastic anisotropy on the flow and orientation
of sheared nematic liquid crystals, J. Rheol. 47 (4) (2003) 1051.

[7] J.J. Feng, G. Sgalari, G. Leal, A theory for flowing nematic polymers with
orientational distortion, J. Rheol. 44 (5) (2000) 1085.

[8] G. Forest, Q. Wang, R. Zhou, The flow-phase diagram of Doi–Hess theory
for sheared nematic polymers II: finite share rates, Rheol. Acta 44 (1) (2004)
80.

[9] M.G. Forest, Q. Wang, R. Zhou, Symmetries of the Doi kinetic theory for
nematic polymers of finite and infinite aspect ratio: at rest and in linear
flows, Phys. Rev. E 66 (3) (2003) P031712.

10] M.G. Forest, Q. Wang, Monodomain response of finite-aspect-ratio macro-
molecules in shear and related linear flows, Rheol. Acta 42 (2003) 20–46.

11] M.G. Forest, Q. Wang, R. Zhou, The weak shear phase diagram for nematic
polymers, Rheol. Acta 43 (1) (2004) 17–37.

12] M.G. Forest, R. Zhou, Q. Wang, Scaling behavior of kinetic orientational
distributions for dilute nematic polymers in weak shear, J. Non-Newtonian
Fluid Mech. 116 (2004) 183–204.

13] M.G. Forest, R. Zhou, Q. Wang, Kinetic structure simulations of nematic
polymers in plane Couette cells. II: in-plane structure transitions, Multiscale
Model. Simul. 4 (4) (2005) 1280–1304.

14] M.G. Forest, Q. Wang, H. Zhou, R. Zhou, Structure scaling properties of
confined nematic polymers in plane Couette cells: the weak flow limit, J.
Rheol. 48 (1) (2004) 175–192.

15] P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, second ed., Oxford

Science Publications, 1993.

16] G.L. Hand, A theory of anisotropic fluids, J. Fluid Mech. 13 (1962) 33–46.
17] R. Kupferman, M.N. Kawaguchi, M.M. Denn, Emergence of structure

in a model of liquid crystalline polymers with elastic coupling, J. Non-
Newtonian Fluid Mech. 91 (2000) 255–271.



ian F

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

H. Yu, P. Zhang / J. Non-Newton

18] R.G. Larson, Arrested tumbling in shearing flows of liquid-crystal poly-
mers, Macromolecules 23 (1990) 3983–3992.

19] R.G. Larson, Roll-cell instabilities in shearing flows of nematic polymers,
J. Rheol. 37 (2) (1993) 175.
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