 Y.F. Liu and Y.H. Dai (2013), On the Complexity of Joint Subcarrier and Power Allocation for MultiUser OFDMA Systems, Accepted for Publication in IEEE Transactions on Signal Processing.
 Y.H. Dai,
A New Analysis on the BarzilaiBorwein Gradient Method , Journal of Operations Research Society of China, Vol. 1, No. 2, pp. 187198, 2013.
 Y.F. Liu, M. Hong, Y.H. Dai,
MaxMin Fairness Linear Transceiver Design Problem for a MultiUser SIMO
Interference Channel Is Polynomial Time Solvable, IEEE Signal Processing Letters, Vol. 20, No. 1, pp. 2730, 2013.
 Y.F. Liu, Y.H. Dai and Z.Q. Luo, MaxMin Fairness Linear Transceiver Design for a MultiUser MIMO Interference Channel, IEEE Transactions on Signal Processing, Vol. 61, No. 9, pp. 24132423, 2013.
 Y.F. Liu, Y.H. Dai and Z.Q. Luo, Joint Power and Admission Control via Linear Programming Deflation, IEEE Transactions on Signal Processing, Vol. 61, No. 6, pp. 13271338, 2013.
 Y.H. Dai, C.X. Kou,
A Nonlinear Conjugate Gradient Algorithm with An Optimal
Property and An Improved Wolfe Line Search, SIAM Journal on Optimization, Vol. 23, No. 1, pp. 296320, 2013.
 Y.H. Dai,
A Perfect Example for the BFGS Method, Mathematical Programming, Vol. 138, No. 12, pp. 501530, 2013.
 Y.F. Liu, Y.H. Dai and Z.Q.Luo, Coordinated
Beamforming for MISO Intereference Channel: Complexity Analysis and Efficient Algorithms, IEEE Transactions on Signal Processing, Vol. 59, No. 3, pp. 11421157, 2012.
 Y.H. Dai,
Nonlinear Conjugate Gradient Methods, Wiley Encyclopedia of Operations Research and Management
Science, DOI:10.1002/9780470400531.eorms0183, Published Online, 15 Feb, 2011.
 Y.H.Dai,W.W.Hager,K.Schittkowski and H.C.Zhang (2006), The cyclic BarzilaiBorwein
method for unconstrained optimization, IMA Journal of Numerical Analysis, 26 (3): 604627, 2006.
 Y.H. Dai (2004),
Fast Algorithms on Projection on an Ellipsoid,
University of Dundee Report NA/220 (Accepted by SIAM J. Optimization)
 L.P. Wang and Y.H. Dai (2004), ``Left Conjugate Gradient Method
for NonHermitian Linear Systems", Research Report ICMSEC200402,
Academy of Mathematics and Systems Science, Chinese Academy of
Sciences.
 Y.H. Dai and R. Fletcher (2003),
New Algorithms for Singly Linearly
Constrained Quadratic Programs Subject to Lower and Upper Bounds,
University of Dundee Report NA/216 (Accepted by Math. Prog.)
 Y.H. Dai and R. Fletcher (2003),
Projected BarzilaiBorwein Methods for LargeScale BoxConstrained
Quadratic Programming,
Numerische Mathematik, Vol. 100, No. 1, pp. 2147, 2005.
 Y.H. Dai and R. Fletcher (2003),
On the Asymptotic Behaviour of Some New Gradient Methods,
Mathematical Programming (Series A), Vol. 13, No. 3, pp. 541559 (2005).
 Y.H. Dai and Y. Yuan (2005),
Analyses
of Monotone Gradient Methods, Journal of Industry and Management
Optimization, Vol. 1, No. 2, pp. 181192, 2005.
 Y.H. Dai and X.Q. Yang (2002),
A New Gradient Method with an Optimal Stepsize Property,
Research report (Accepted by Computational Optimization and Applications)
 Y.H. Dai and J. Y. Yuan,
Study on SemiConjugate Gradient Methods for Nonsymmetric Systems,
International Journal of Numerical Methods in Engineering, Vol. 60,
No. 8, pp. 13831399, 2004.
 Y.H. Dai (2001),
Alternate Step Gradient Method, Report AMSS2001041, Academy
of Mathematics and Systems Sciences, Chinese Academy of Sciences.
Published in: Optimization, Vol. 52, No. 45, pp. 395415, 2003.

Y.H. Dai (2001), Convergence of PolakRibi\`erePolyak Conjugate
Gradient Method with Constant Stepsize, Research report
AMSS2001040, Academy of Mathematics and Systems Sciences,
Chinese Academy of Sciences.

Y.H. Dai (2000), Convergence Analyses of Nonlinear Conjugate
Gradient Methods, Report AMSS2000094,
Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences.

Y.H. Dai, L.Z. Liao, and D. Li, An Analysis of BarzilaiBorwein Gradient
Method for Unsymmetric Linear Equations, In: Optimization and
control with applications (L. Qi, K. Teo and X. Yang, eds.), Springer,
pp. 183211, 2005.

Y.H. Dai, L.Z. Liao, and D. Li,
On Restart Procedures for The Conjugate Gradient Method,
accepted by Applied Numerical Mathematics, Vol. 35, No. 24, pp. 249261, 2004.
 Y.H. Dai, Unified Convergence Analyses of Nonlinear Conjugate
Gradient Methods, In: Numerical Linear Algebra and Optimization (Y. Yuan ed.), Science Press, Beijing/New York, pp. 30¡ª41, 2003.
 W.B. Liu, Y.H. Dai and J. Lamb,
Novel supervisorsearcher cooperation algorithms
for minimization problems with strong noise,
Optimization Methods and Software, Vol. 18, pp. 246264, 2003.
 Y.H. Dai and Y. Yuan,
Alternate Minimization Gradient Method, IMA Journal of
Numerical Analysis, Vol. 23, pp. 377393, 2003.

Y.H. Dai and Q. Ni, Testing Different Conjugate Gradient
Methods for LargeScale Unconstrained Optimization,
Journal of Computational Mathematics, Vol. 21, No. 3, pp. 311320, 2003.

Y.H. Dai and D.C. Xu , A New Family
of Trust Region Algorithms for Unconstrained Optimization,
Journal of Computational Mathematics, Vol. 21, No. 2, pp. 221228, 2003.

Y.H. Dai and Y. Yuan,
A Class of Globally Convergent Conjugate Gradient Methods,
Report ICM9830, ICMSEC, Chinese Academy of Sciences.
(Appeared in: Sciences in China (Series A), Vol. 46, No. 2, pp. 251261, 2003)

Y.H. Dai, J. M. Martinez, and J. Y. Yuan,
An IncreasingAngle
Property of the Conjugate Gradient Method and the Implementation of LargeScale
Minimization Algorithms with Line Searches,
Numerical Linear Algebra and Applications,
Vol. 10, No. 4, pp. 323334, 2003.
 Y.H. Dai,
A Family of Hybrid Conjugate Gradient
Methods for Unconstrained Optimization,
Mathematics of Computation, Vol. 72, pp. 13171328, 2003.

Y.H. Dai,
Convergence Properties of the BFGS algorithm,
SIAM Journal on Optimization, Vol. 13, No. 3, pp. 693701, 2002.

Y.H. Dai,
Conjugate Gradient Methods with Armijotype
Line Searches, Acta Mathematicae Applicatae Sinica (English Series),
Vol. 18, No. 1, pp. 123130, 2002.
 Y.H. Dai and Y. Yuan,
A Note on the Nonlinear Conjugate Gradient Method,
to appear in: Journal of Computational Mathematics,Vol. 20, pp. 575582, 2002.
 Y.H. Dai, A Nonmonotone Conjugate Gradient Algorithm
for Unconstrained Optimization,
Journal of Systems Science and Complexity, Vol. 15, No. 2, pp. 139145, 2002.
 Y.H. Dai, J.Y. Yuan, and Y. Yuan,
Modified Twopoint Stepsize Gradient Methods for Unconstrained
Optimization, Computational Optimization and Applications,
Vol. 22, pp. 103109, 2002.
 Y.H. Dai,
On the Nonmonotone Line Search,
Journal of Optimization Theory and Applications, Vol. 112, No. 2, pp. 315330, 2002.

Y.H. Dai and L.Z. Liao,
$R$Linear Convergence of the
Barzilai and Borwein Gradient Method,
IMA Journal of Numerical Analysis, Vol. 22, pp. 110, 2002.
 Y.H. Dai and Y. Yuan,
An Extended Class of Nonlinear Conjugate Gradient Methods,
In: D. Li eds. Proceedings of the 5th International Conference on
Optimization: Techniques and Applications (December 2001, Hongkong),
pp. 778785, 2001.
 Y.H. Dai and H. Zhang,
An Adaptive TwoPoint Stepsize Gradient
Algorithm, Numerical Algorithms, Vol. 27, pp. 377385, 2001.
 W.B. Liu and Y.H. Dai,
Minimization Algorithms Based on
Supervisor and Searcher Cooperation,
Journal of Optimization Theory and Applications, Vol. 111, No. 2,
pp. 359379, 2001.
 Y.H. Dai and Y. Yuan,
An Efficient Hybrid Conjugate Gradient
Method for Unconstrained Optimization,
Annals of Operations Research, Vol. 103, pp. 3347, 2001.
 Y.H. Dai,
Convergence of Nonlinear Conjugate Gradient Methods,
Journal of Computational Mathematics, Vol. 19, No. 5, pp. 539548, 2001.
 Y.H. Dai and Y. Yuan,
A Threeparameter Family of Nonlinear Conjugate Gradient Methods,
Mathematics of Computation, Vol. 70, pp. 11551167, 2001.
 Y.H. Dai and L.Z. Liao,
New Conjugacy Conditions and
Related Nonlinear Conjugate Gradient Methods ,
Applied Mathematics and Optimization, Vol. 43, No. 1, pp. 87101, 2001.
 Y.H. Dai,
New Properties of A Nonlinear Conjugate Gradient
Metho', Numerische Mathematics, Vol. 89, No. 1, pp. 8398, 2001.
 Y.H. Dai,
Some Properties of Memoryless QuasiNewton Method,
Journal on Numerical Methods and Computer Applications, Vol. 1, pp. 2832, 2000.

Y.H. Dai and Y. Yuan, Nonlinear Conjugate Gradient Methods, Shanghai Scientific and Technical Publishers, Shanghai, China, 2000 (In Chinese)

Y.H. Dai and Y. Yuan,
Convergence Analyses of Threeterm Conjugate Gradient Methods (in Chinese),
Mathematica Numericia Sinica, Vol. 21, No. 3, pp. 355362, 1999.
(see Chinese Journal of Numerical Mathematics
and Applications Vol. 21, No. 4, pp. 6978, 1999 for English translation).
 Y.H. Dai,
Further Insight Into the Convergence of the FletcherReeves Method,
Science in China (Series A) Vol. 42, No. 9, pp. 905916, 1999.
 Y.H. Dai, J. Y. Han, G. H. Liu, D. F. Sun, H. X. Yin, and Y. Yuan,
Convergence Properties of Nonlinear Conjugate Gradient Methods,
SIAM Journal on Optimization, Vol. 10, No. 2, pp. 345358, 1999.
 Y.H. Dai and Y. Yuan,
A Nonlinear Conjugate Gradient Method with A Strong Global Convergence
Property,
SIAM Journal on Optimization, Vol. 10, No. 1, pp. 177182, 1999.
 Y.H. Dai and Y. Yuan,
Global Convergence of the Method of Shortest Residuals,
Numerische Mathematik, Vol. 83, pp. 581598, 1999.

Y.H. Dai and Y. Yuan, Some Properties of A
New Conjugate Gradient Method, in: Y. Yuan ed.,
Advances in Nonlinear Programming
(Kluwer, Boston), pp. 251262, 1998.

Y.H. Dai and Y. Yuan,
Convergence Properties of the BealePowell Restart Algorithm,
Sciences in China (series A), Vol. 41, No. 11, pp. 11421150, 1998.

Y.H. Dai and Y. Yuan, Convergence of the FletcherReeves
Method under A Generalized Wolfe Search,
Numer. Math. J. Chinese Univ., Vol. 2, pp. 142148, 1996.

Y.H. Dai and Y. Yuan,
Convergence Properties of the Conjugate Descent Method,
Advances in Mathematics, Vol. 6, pp. 552562, 1996.

Y.H. Dai and Y. Yuan, Convergence Properties of the
FletcherReeves Method, IMA Journal of Numerical Analysis,
Vol. 16, No. 2, pp. 155164, 1996.