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Abstract We propose a θ -scheme to discretize the d-dimensional stochastic cubic
Schrödinger equation in Stratonovich sense. A uniform bound for the Hamiltonian of
the discrete problem is obtained, which is a crucial property to verify the convergence
in probability towards a mild solution. Furthermore, based on the uniform bounds
of iterates in H2(O) for O ⊂ R1, the convergence order 1

2 in strong local sense is
obtained.
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1 Introduction

LetO ⊂ Rd be a boundeddomainwithC2 boundary.We studydifferent discretizations
for the following stochastic cubic Schrödinger equation with multiplicative noise of
Stratonovich type (λ ∈ {−1, 1}),
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idψ +
(
$ψ + λ|ψ |2ψ

)
dt = ψ ◦ dW (t) in OT := O × (0, T ),

ψ = 0 on ∂O × (0, T ), (1)

ψ(0) = ψ0 in O.

Here, W denotes a real-valued trace-class Q-Wiener process. This problem was
e.g. studied in [9] to motivate the possible role of noise to prevent or delay col-
lapse formation; see also [6] for the case λ = 1. It is due to the special type of the
multiplicative noise that the mass of solutions of (1) is preserved P-a.s.,

∥ψ(t)∥L2 = ∥ψ0∥L2 ∀ t ∈ [0, T ], (2)

which is similar to the deterministic case. For the deterministic cubic Schrödinger
equation, theHamiltonianH (ψ) = 1

2

∫
O |∇ψ |2dx− λ

4

∫
O |ψ |4dx is another invariant

quantity, which is also essential to construct a solution to this problem. In the stochastic
case (1), it is no longer preserved and satisfies (see [3])

H (ψ(t)) = H (ψ0) − ℑ
∫ t

0

∫

O
ψ̄∇ψd(∇W (s))dx

+1
2

∫ t

0

∫

O
|ψ |2

∑

ℓ

|∇Q
1
2 eℓ|2dxds P − a.s. (3)

Corresponding uniform bounds for its expectation in the case of Galerkin approxima-
tions of (1) and O = Rd then allow a compactness argument to construct a global
H1-valued mild solution for λ = −1 in [3]; and for the case λ = 1 with the nonlinear
term being replaced by |ψ |2σ ψ , the condition for global existence is 0 < σ < 2

d .
A relevant work on the numerical analysis of (1) and O = Rd is [4], where iterates

{φn
R; n ∈ N} of the temporal discretization with underlying mesh of size τ > 0

covering [0, T ] are studied,

i
(
φn+1
R − φn

R
)
+ τ$φ

n+1/2
R + λτ

2

(
|φn+1

R |2 + |φn
R |2

)
φ
n+1/2
R

= θR(φ
n
R)θR(φ

n+1
R )φ

n+1/2
R $nW (n ≥ 0), φ0

R = ψ0, (4)

where φ
n+ 1

2
R = 1

2

(
φn
R + φn+1

R

)
and $nW = W (tn+1) − W (tn). This scheme is con-

structed in a way that iterates preserve the L2-norm, i.e., P-a.s. ∥φn
R∥L2 = ∥ψ0∥L2

for n ∈ N. However, such a bound is not sufficient for the use of compactness meth-
ods to construct the H1-valued solution of (1), which requires a uniform bound for
the Hamiltonian H (φn

R) := 1
2

∫
O |∇φn

R |2 dx − λ
4

∫
O |φn

R |4 dx for every finite time
T > 0, i.e.,

E
[

max
0≤n≤[ Tτ ]

H (φn
R)

]
≤ C(T ). (5)

Since the scheme (4) with θR ≡ 1 is not known to yield this property, a trun-
cation concept is applied in [4] where e.g. θR(·) = ρ

( ∥·∥L6
R

)
, for some ρ ∈
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C∞
0

(
(−1, 1); [0, 1]

)
such that ρ

∣∣
[− 1

2 ,
1
2 ]

≡ 1, and some fixed R ∈ R+; in this case,
the right-hand side in (5) needs to be replaced by a constant CR(T ). By tending
τ−1, R → ∞, it is shown in [4, Theorem2.2] that iterates construct the mild solution
of (1), where the convergence of the iterates is in probability sense.

This practical construction of the mild solution of (1) is valid for initial data ψ0
having a finite Hamiltonian, and a given real-valued trace-class Q-Wiener process.
In [5], the authors study rates of convergence of the following different time semi-
discretization

i
(
φn+1
R −φn

R
)
−τ$φ

n+1/2
R −λτ

2
θR

(
φn
R
)
θR

(
φn+1
R

)(
|φn+1

R |2+|φn
R |2

)
φ
n+1/2
R = φn

R$nW

(6)
to approximate the stochastic Schrödinger equation in Itô sense

idψ −
(
$ψ + λ|ψ |2ψ

)
dt = ψdW (t) on (0, T ) × Rd , ψ(0) = ψ0, (7)

for more regular initial data ψ0 ∈ H 3
2+s , s > max{ d2 , 1}, and a more regular Q-

Wiener process W . The view-point to achieve this goal is different to the one above:
a truncation θR(·) with R > 0 of the drift term is employed which hinders a (direct)
bound for the Hamiltonian but allows to apply semigroupmethods for the convergence
analysis of this semilinear SPDE with Lipschitz drift: forψ0 ∈ H 3

2+s , s > max{ d2 , 1},
the (locally) existing mild solution ψ is approximated at a rate 1

2 in the following
sense,

lim
C→∞

P
[

max
n=0,...,Kτ∗

∥φn − ψ(tn)∥Hs ≥ Cτ
1
2

]
= 0, (8)

see [5, Theorem 5.6].
A further step towards constructing efficient discretizations of (1) is the work [7]

which uses a Lie-type time-splitting method. This scheme amounts to solving a family
of timely explicitly discretized SODEs for all x ∈ Rd , and a linear PDE with ran-
dom force. Iterates {ξn; n ∈ N} preserve mass, but again no uniform bounds for the
Hamiltonian are known to hold in the caseψ0 ∈ H1, thus leaving unclear convergence
behavior towards a solution of (1) under minimum regularity requirements. However,
some strong rates are obtained in the presence of regular data. The strategy to validate
this result is again based on a proper truncation argument.

The main goal of this work is to propose and study a new discretization (9) of (1)
which inherits a uniform estimate for the related Hamiltonian,

i
(
φn+1 − φn) + τ

(
θ$φn+1 + (1 − θ)$φn) + λτ

2

(
|φn+1|2 + |φn|2

)
φn+1/2

= φn+1/2$nW (n ≥ 0). (9)

For the case θ ∈ [ 12 + c
√

τ , 1] with c ≥ c∗ > 0, and O ⊂ Rd a bounded Lipschitz
domain, λ = −1, and initial data ψ0 ∈ L2(,;H1

0(O)), iterates {φn; n ∈ N} satisfy

E
[

max
0≤n≤[ Tτ ]

H (φn)
]

≤ C(c∗, T ). (10)
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In order to derive this result, we multiply (9) with φ̄n+1 − φ̄n , integrate in space and
then take the real part of the resulting equality. It is then obvious from the stability
analysis which leads to Lemma 7 that the parameter θ has to be chosen from the range[ 1
2 + c

√
τ , 1

]
(c ≥ c∗ > 0) to generate enough numerical dissipativity to control

discretization effects of the noise term. This uniform boundedness of the discrete
Hamiltonian allows a brief and concise approach by a compactness argument which
constructs a family of solution processes related to (9) converging to the mild solution
of (1) for O ⊂ R1; see Remark 4. No additional truncation concept is needed here
— which is a relevant tool in [4,5] (see also (4) and (6)) to compensate for the lack
of (10) in the case θ = 1

2 ; we remark that the involved truncation and discretization
parameters require a proper balancing for the convergence proof in [4,5]. Finally,
Lemmas 9 and 11 favor the choice θ = 1

2 +c
√

τ in order to guarantee an approximate
conservation of the expectation of the L2-norm of iterates.

In the second part of this work, we study pathwise approximation of the solution (1),
which requires initial dataψ0 ∈ L8(,; H1

0∩H2). In particular, we are interested in the
concept of local rates of convergence for iterates of (9), see [2], which is stronger than
that of rates in probability given above, and requires to deal with the discretization of
the nonlinear drift term directly. A relevant prerequisite for this purpose is to provide
strong stability results for the non-truncated original problem (1), and also for the
discretization (9). However, it is due to the interaction of the cubic nonlinearity with
the stochastic term that we are only able to provide the corresponding uniform bounds
in higher spatial norms for d = 1. These estimates are then essential for the error
analysis, which allow to establish optimal strong convergence rates on large subsets of
, (see Theorem 1). An immediate consequence of this result is the following version
of rate of convergence in probability (see Corollary 2),

∃ C > 0 : lim
τ→0

P
[

max
0≤n≤M

∥ψ(tn) − φn∥L2 ≥ Cτα
]
= 0, (11)

for all α < 1
2 . Note that C is a constant which does not depend on α and τ .

This paper is organized as follows. In Sect. 2, some preliminaries are stated, includ-
ing the notion of a mild solution of (1) and some properties of the linear Schrödinger
semigroup {S(t); t ≥ 0}. In Sect. 3, uniform bounds in higher ‘spatial’ norms,
together with the Hölder continuity in time for solutions {ψ(t); t ∈ [0, T ]} of Eq. (1)
are obtained. In Sect. 4, the bound (10) for iterates {φn; 0 ≤ n ≤ M} of (9) is shown
(d ≥ 1), and uniform bounds in higher spatial norms are proven (d = 1). These results
in Sects. 3 and 4 are used in Sect. 5 to establish strong rate of convergence 1

2 for iter-
ates of (9) in local sense, and in the probability sense (11) for O ⊂ R1 as a simple
consequence. Some computational studies are presented in Sect. 6 which complement
the theoretical results.

2 Preliminaries

Throughout this work, let W be a Q-Wiener process defined on a given filtered prob-
ability space (,,F , {Ft }0≤t≤T , P), with values in the real-valued Hilbert space
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U = L2(O,R). Here Q ∈ L (U) is a non-negative, symmetric operator with finite
trace.

Equation (1) with λ = −1 has an equivalent Itô form (see [3])

idψ + $ψdt − (|ψ |2ψ − i
2
ψFQ)dt = ψdW (t). (12)

Here FQ(x) =
∑

ℓ∈N(Q
1
2 eℓ(x))2 for x ∈ O,with {eℓ}ℓ∈N being an orthonormal basis

of U.
To study (12), we introduce L2(U, H), the space of Hilbert-Schmidt operators

from Hilbert space U to another Hilbert space H, where the corresponding norm

is defined by ∥Q 1
2 ∥L2(U, H) =

( ∑
ℓ∈N ∥Q 1

2 eℓ∥2H
) 1

2
. In the following analysis, we

always assume Q
1
2 ∈ L2(U, H3(O)).

We recall the mild solution concept for the Itô equation (12) from [3,5].

Definition 1 An H1
0-valued {Ft }0≤t≤T -adapted process {ψ(t); t ∈ [0, T ]}, is called

a mild solution of problem (12) if for ∀ t ∈ [0, T ] holds P-a.s.

ψ(t) = S(t)ψ(0) − i
∫ t

0
S(t − r)|ψ(r)|2ψdr

−1
2

∫ t

0
S(t − r)ψ(r)FQdr − i

∫ t

0
S(t − r)ψ(r)dW (r), (13)

where S ≡ {S(t); t ∈ R}, with S(t) = eit$ denotes the semigroup of the solution
operator of the deterministic linear differential equation

i
dψ

dt
+ $ψ = 0 in OT , ψ = 0 on ∂O × (0, T ), ψ(0) = ψ0 in O.

(14)

Remark 1 Due to the regularity estimate given in Corollary 1, and to [8, Proposition
F.0.5, (ii)], we also have the following representation for the mild solution of (12): for
every t ∈ [0, T ], and all z ∈ H1

0, there holds P-a.s.

i
∫

O
ψ(t)zdx −

∫ t

0

∫

O
∇ψ∇zdxds −

∫ t

0

∫

O

(
|ψ |2ψ − i

2
ψFQ

)
zdxds

= i
∫

O
ψ0zdx +

∫ t

0

∫

O
ψzdW (s)dx . (15)

We will use this form in the error analysis in Sect. 5.

We end this sectionwith some useful properties of {S(t); t ≥ 0}, whichwill be needed
in Lemmas 5 and 6 (see [5] for a corresponding study in the case O = Rd ).

In the following, the constant K > 0 differs from line to line; it depends on the
initial value ψ0, T , Q

1
2 , and O , but not on τ , n.
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Lemma 1 The semigroup {S(t); t ≥ 0} is an isometry in L2(O), and it holds that

∥S(t) − I d∥L (H1
0, L2) ≤ Kt

1
2 ,

where K does not depend on t.

Proof To show the isometry property of S(t), we multiply (14) by ψ , integrate in OT
and take the imaginary part. We get

∥ψ(t)∥L2 = ∥ψ0∥L2 ,

which implies that ∥S(t)∥L (L2, L2) = 1.
Next, letψ0 ∈ H1

0(O). Bymultiplying (14) by$ψ̄ , integrating inOT and taking the
imaginary part, we easily deduce ∥S(t)∥L (H1

0, H1
0)
= 1. The assertion (i) is equivalent

to ∥ψ(t) − ψ0∥L2 = ∥
(
S(t) − I d

)
ψ0∥L2 ≤ K∥ψ0∥H1 t

1
2 . In fact, we may conclude

from (14) that

i
∫

O
ψ(t)ξdx − i

∫

O
ψ0ξdx =

∫ t

0

∫

O
∇ψ(λ)∇ξdxdλ ∀ξ ∈ H1

0(O).

We choose ξ = ψ̄(t), and take the imaginary part to get

1
2

(
∥ψ(t)∥2L2 − ∥ψ0∥2L2 + ∥ψ(t) − ψ0∥2L2

)
= ℑ

∫ t

0

∫

O
∇ψ(λ)∇ψ̄(t)dxdλ

≤
∫ t

0
∥∇ψ(λ)∥L2∥∇ψ(t)∥L2dλ ≤ K∥ψ0∥2H1 t.

The proof of the assertion is finished. ⊓4

3 Stability results in higher norms for more regular initial data

In this section, we study stability properties of solutions of (1) with λ = −1. A formal
application of Itô’s formula shows that the pathwise L2-norm of the solution of (1) is
preserved as in the deterministic case. The HamiltonianH (ψ), however, is no longer
preserved for (1), but one can obtain its boundedness in L p(,) for any finite time
T > 0; see Lemma 2. For ψ0 ∈ L p(,;H1

0 ∩ H2(O)) and O ⊂ R1, we show that the
solution is alsoH1

0 ∩H2(O)-valued and that its L p(,; L∞(0, T ;H1
0 ∩H2(O)))-norm

is bounded; see Lemma 4. Those bounds in strong (spatial) norms for the mild solution
of (1) may be used to prove Hölder regularity with respect to time in strong norms;
see Lemma 5 and 6. They are useful in Sect. 5 to establish rates of convergence for
the θ -scheme (9).

In the following lemmas, the application of Itô formula is formal; the argument
can, however, be made rigorous by using a truncated version of (12), and passing
to the limit after Itô’s formula has been applied; we refer to [3] for a corresponding
argumentation.
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Lemma 2 Let O ⊂ Rd be a bounded Lipschitz domain, H (ψ0) ∈ L p(,) for some
p ≥ 1 with ψ0 = 0 on ∂O , and ψ be a mild solution of (12). Then there exists a
constant K ≡ K

(
p, T

)
> 0 such that

(i) sup
0≤t≤T

E
[(
H (ψ(t))

)p] ≤ K ,

(ii) E
[

sup
0≤t≤T

(
H (ψ(t))

)p] ≤ K .

Proof Step 1: Case p = 1. Applying expectation to (3), we have

E
(
H (ψ(t))

)
= E

(
H (ψ0)

)
+ 1

2
E

( ∫ t

0

∫

O
|ψ |2

∑

ℓ

|∇Q
1
2 eℓ|2dxds

)
.

Since
∫

O
|ψ |2

∑

ℓ

|∇Q
1
2 eℓ|2dx ≤ ∥ψ∥2L4

∑

ℓ

∥∇Q
1
2 eℓ∥2L4 ≤ 1

4
∥ψ∥4L4 + ∥∇Q

1
2 ∥4L2(U, L4)

(16)

we get the following estimate for E(H (ψ(t))),

E
(
H (ψ(t))

)
≤ E

(
H (ψ0)

)
+ Kt∥∇Q

1
2 ∥4L2(U, L4)

+ E
∫ t

0
∥ψ∥4L4ds.

From the definition of the Hamiltonian H (ψ), we know that ∥ψ∥4L4 ≤ 4H (ψ),
which leads to

sup
0≤t≤T

E
(
H (ψ(t))

)
≤ K + K E

∫ T

0
H (ψ(s))ds.

Gronwall’s Lemma then implies the assertion (i) of the lemma.
To show assertion (ii) for p = 1, we take the supremum over t ∈ [0, T ] in (3)

before taking the expectation. If compared to assertion (i), the main difference is
the appearance of the supremum of a stochastic integral, whose expectation can be
estimated by the Burkholder–Davis–Gundy inequality:

E
[

sup
0≤t≤T

(
− ℑ

∫ t

0

∫

O
ψ̄∇ψd(∇W (s))dx

)]

≤ K E
[( ∫ T

0
∥ψ∥2L4∥∇ψ∥2L2∥∇Q

1
2 ∥2L2(U, L4)

ds
) 1

2
]

≤ K E
[

sup
0≤t≤T

∥∇ψ(t)∥L2

( ∫ T

0
∥ψ∥2L4∥∇Q

1
2 ∥2L2(U, L4)

ds
) 1

2
]

123



Stoch PDE: Anal Comp

≤ 1
8
E

[
sup

0≤t≤T
∥∇ψ(t)∥2L2

]
+ K E

∫ T

0

(
∥ψ∥4L4 + ∥∇Q

1
2 ∥4L2(U, L4)

)
ds

≤ 4E
[

sup
0≤t≤T

H (ψ(t))
]
+ K E

∫ T

0

(
H (ψ(s))+ ∥∇Q

1
2 ∥4L2(U, L4)

)
ds, (17)

where in the last line we use ∥∇ψ∥2L2 ≤ 2H (ψ) and ∥ψ∥4L4 ≤ 4H (ψ). Then
proceeding as in the proof of assertion (i), we can absorb the first term on the left-
hand side, and use Gronwall’s lemma.

Step 2: p ≥ 2. We apply Itô’s formula to
(
H (ψ)

)p
, whereH (ψ(t)) satisfies (3).

(
H (ψ(t))

)p
=

(
H (ψ0)

)p
+ 1

2

∫ t

0
p
(
H (ψ)

)p−1
∫

O
|ψ |2

∑

ℓ

|∇Q
1
2 eℓ|2dxds

+ 1
2

∫ t

0
p(p − 1)

(
H (ψ)

)p−2 ∑

ℓ

(
ℑ

∫

O
ψ̄∇ψ∇Q

1
2 eℓdx

)2
ds

+ 1
2

∫ t

0
p
(
H (ψ)

)p−1
∫

O
ψ̄∇ψd(∇W (s))dx . (18)

Since the last term on the right-hand side vanishes after applying expectation, there
remains to estimate the term

∑

ℓ

( ∫

O
ψ̄∇ψ∇Q

1
2 eℓdx

)2
≤ ∥ψ∥2L4∥∇Q

1
2 ∥2L2(U, L4)

∥∇ψ∥2L2

≤ K
(
H (ψ)

)2
+ ∥∇Q

1
2 ∥8L2(U, L4)

. (19)

Because of (16), (19), and Hölder’s inequality, we have

sup
0≤t≤T

E
(
H (ψ(t))

)p
≤ K + K E

∫ T

0

(
H (ψ(s))

)p
ds.

We may now apply Gronwall’s lemma to obtain the estimate (i).
The assertion (ii) for p ≥ 2 now uses arguments similar to (17), so we skip the

details here. ⊓4

Remark 2 In [3, Theorem 4.6], a uniform bound for the Hamiltonian is used to con-
struct a global unique solution with continuous H1(Rd)-valued paths for Eq. (1) with
λ = −1 or d = 1. To accomplish this result, the unique local mild solution is con-
structed by a contraction argument, which is then shown to be global by a bound
for the Hamiltonian. We can follow the same strategy in [3] to construct the global
unique mild solution with continuous H1

0(O)-valued paths in the case of a bounded
Lipschitz domain O ⊂ R1. It is an open problem to prove existence and uniqueness
of a continuous solution in the case of a bounded domain in higher dimensions.
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Corollary 1 Let p ≥ 1,O ⊂ Rd be a bounded Lipschitz domain, E
(
H (ψ0)

)p
< ∞

such that ψ0 = 0 on ∂O , and ψ be a mild solution. There exists a constant K ≡
K

(
p, T

)
> 0 such that

(i) sup
0≤t≤T

(
E∥∇ψ(t)∥2pL2 + E∥ψ(t)∥4pL4

)
≤ K ,

(ii) E
[

sup
0≤t≤T

(
∥∇ψ(t)∥2pL2 + ∥ψ(t)∥4pL4

)]
≤ K .

In order to verify improved stability properties for the solution of (1), we have
to restrict to bounded domains O ⊂ R1; the technical reason for this restriction is
discussed in Remark 3 below.

Lemma 3 LetO ⊂ R1, and suppose thatψ0 ∈ L2p(,;H1
0∩H2(O)) for some p ≥ 1.

Then there exists a constant K ≡ K (p, T ) > 0 such that

sup
0≤t≤T

E
(
∥ψ(t)∥2pH2

)
≤ K . (20)

Proof To simplify notations, we present the proof of (20) for the case p = 1. We
formally apply Itô’s formula to the function f (ψ(·)), where

f (ψ) =
∫

O
|(I d − $)ψ |2dx + ℜ

∫

O

(
(I d − $)ψ̄

)
|ψ |2ψdx,

since for the leading term we have ∥ψ∥2H2 ≤ ∥(I d − $)ψ∥2L2 ≤ 2∥ψ∥2H2 , i.e., its
square-root is equivalent to the norm H1

0 ∩ H2. We use (12) to get

f (ψ(t)) = f (ψ0)+
∫ t

0
Df (ψ)

(
i$ψ − i |ψ |2ψ − 1

2
ψFQ

)
ds

+ 1
2

∫ t

0
Tr

[
D2 f (ψ)(−iψQ

1
2 )(−iψQ

1
2 )∗

]
ds +

∫ t

0
Df (ψ)(−iψdW (s))

=: f (ψ0)+ I + I I + I I I, (21)

with the first and second order derivatives

Df (ψ)(u) = 2ℜ
∫

O

(
(I d − $)ψ̄

)(
(I d − $)u

)
dx

+ ℜ
∫

O

(
(I d − $)ψ̄

)
ψ(ψ̄u + ψ ū)dx

+ ℜ
∫

O

(
(I d − $)ψ̄

)
|ψ |2udx

+ ℜ
∫

O

(
(I d − $)(|ψ |2ψ)

)
ūdx ∀u ∈ C∞

0 (O),
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and

D2 f (ψ)(u, v) = 2ℜ
∫

O

(
(I d − $)ū

)(
(I d − $)v

)
dx

+ 2ℜ
∫

O

(
(I d − $)ψ̄

)
ψℜ(ūv)dx

+ 2ℜ
∫

O

(
(I d − $)ψ̄

)
uℜ(ψ̄v)dx

+ 2ℜ
∫

O

(
(I d − $)ū

)
ψℜ(ψ̄v)dx

+ 2ℜ
∫

O

(
(I d − $)ψ̄

)
ℜ(ψ̄u)vdx

+ ℜ
∫

O

(
(I d − $)ū

)
|ψ |2vdx

+ ℜ
∫

O

(
(I d − $)v̄

)
|ψ |2udx

+ 2ℜ
∫

O

(
(I d − $)v̄

)
ℜ(ψ̄u)ψdx ∀u, v ∈ C∞

0 (O).

For the term f (ψ0), we use the continuous embedding H1 ↪→ L6,

E( f (ψ0)) ≤ 2E∥ψ0∥2H2+K E
(
∥ψ0∥H2∥ψ0∥3L6

)
≤ K E∥ψ0∥2H2+K E∥ψ0∥6H1 ≤ K .

The term I is the most difficult one: by the expression for Df (ψ) above, we may
represent it in the following form.

I = 2
∫ t

0
ℜ

∫

O

(
(I d − $)ψ̄

)(
(I d − $)(i$ψ − i |ψ |2ψ − 1

2
ψFQ)

)
dxds

+
∫ t

0
ℜ

∫

O

(
(I d − $)ψ̄

)
ψ

[
ψ̄(i$ψ − i |ψ |2ψ − 1

2
ψFQ)

+ ψ(−i$ψ̄ + i |ψ |2ψ̄ − 1
2
ψ̄FQ)

]
dxds

+
∫ t

0
ℜ

∫

O

(
(I d − $)ψ̄

)
|ψ |2(i$ψ − i |ψ |2ψ − 1

2
ψFQ)dxds

+
∫ t

0
ℜ

∫

O

(
(I d − $)(|ψ |2ψ)

)
(−i$ψ̄ + i |ψ |2ψ̄ − 1

2
ψ̄FQ)dxds

=: I 1 + I 2 + I 3 + I 4.

We treat terms I 1, I 2 and I 4 together, for they have troublesome terms which cancel
each other. For this purpose, we first consider terms I 1, I 4 and I 2 independently. For
the first term in I , we compute
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I 1 = − 2
∫ t

0
ℜ

∫

O
i
(
(I d − $)ψ̄

)(
(I d − $)(|ψ |2ψ)

)
dxds

−
∫ t

0
ℜ

∫

O

(
(I d − $)ψ̄

)(
(I d − $)(ψFQ)

)
dxds

=: I 1a + I 1b .

We conclude that

E(I 1b ) ≤ E
∫ t

0
∥ψ∥2H2∥FQ∥H2ds ≤ K E

∫ t

0
∥ψ∥2H2ds.

Byℜ
∫
O i

(
(I d−$)|ψ |2ψ

)
|ψ |2ψdx = 0, we can rewrite the term I 4 in the following

two parts,

I 4 =
∫ t

0
ℜ

∫

O
(−i)

(
(I d − $)(|ψ |2ψ)

)
$ψ̄dxds

+
∫ t

0
ℜ

∫

O

(
(I d − $)(|ψ |2ψ)

)
(i |ψ |2ψ̄ − 1

2
ψ̄FQ)dxds

=
∫ t

0
ℜ

∫

O
(−i)

(
(I d − $)(|ψ |2ψ)

)
$ψ̄dxds

− 1
2

∫ t

0
ℜ

∫

O

(
(I d − $)(|ψ |2ψ)

)
(ψ̄FQ)dxds

=: I 4a + I 4b .

Summing the terms 1
2 I

1
a and I 4a leads to

−
∫ t

0
ℜ

∫

O
i
(
(I d − $)ψ̄

)(
(I d − $)(|ψ |2ψ)

)
dxds

−
∫ t

0
ℜ

∫

O
i
(
(I d − $)(|ψ |2ψ)

)
$ψ̄dxds

= −
∫ t

0
ℜ

∫

O
iψ̄

(
(I d − $)(|ψ |2ψ)

)
dxds

=: I 14a .

This term and the term I 4b can be bounded by integration by parts, using the embedding
H1 ↪→ L6, and Corollary 1, that is

E(I 14a + I 4b ) = − 1
2

∫ t

0
ℜ

∫

O
(|ψ |2ψ)

(
(I d − $)(ψ̄FQ)

)
dxds

−
∫ t

0
ℜ

∫

O
i
(
(I d − $)ψ̄

)
(|ψ |2ψ)dxds
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≤ K E
∫ t

0
∥ψFQ∥H2∥ψ∥3L6ds + K E

∫ t

0
∥ψ∥H2∥ψ∥3L6ds

≤ K E
∫ t

0
(∥ψ∥6H1 + ∥ψ∥2H2)ds

≤ K + K E
∫ t

0
∥ψ∥2H2ds.

Next, we consider the term I 2 and use the identity ab̄+ āb = 2ℜ(ab̄) for a, b ∈ C to
rewrite its part

ψ̄(i$ψ − i |ψ |2ψ − 1
2
ψFQ)+ ψ(−i$ψ̄ + i |ψ |2ψ̄ − 1

2
ψ̄FQ)

= iψ̄($ψ) − iψ($ψ̄)+ 2ℜ
(
ψ̄(−i |ψ |2ψ − 1

2
ψFQ))

)

= iψ̄($ψ) − iψ($ψ̄) − |ψ |2FQ.

Then the term I 2 equals to

I 2 = −
∫ t

0
ℜ

∫

O

(
(I d − $)ψ̄

)
ψ |ψ |2FQdxds

+
∫ t

0
ℜ

∫

O
i
(
(I d − $)ψ̄

)
|ψ |2$ψdxds

+
∫ t

0
ℜ

∫

O
(−i)|ψ |2ψ$ψ̄dxds −

∫ t

0
ℜ

∫

O
(−i)($ψ̄ψ)2dxds

=: I 2b + I 2a ,

where I 2a = −
∫ t
0 ℜ

∫
O (−i)($ψ̄ψ)2dxds, while I 2b denotes the remainder terms in

I 2.
We rewrite the term 1

2 I
1
a in the form

1
2
I 1a = − 2

∫ t

0
ℜ

∫

O
i∇ψ̄∇(|ψ |2ψ)dxds −

∫ t

0
ℜ

∫

O
i$ψ̄$

(
|ψ |2ψ

)
dx .

We insert the identity $(|a|2a) = 2$a|a|2 + 4|∇a|2a + 2(∇a)2ā + (a)2$ā, for a
complex-valued function a(x) ∈ C into the second integral in the above equation, add
the terms 1

2 I
1
a and I 2a to get

1
2
I 1a + I 2a = − 2

∫ t

0
ℜ

∫

O
i∇ψ̄∇(|ψ |2ψ)dxds

− 2
∫ t

0
ℜ

∫

O
i
(
ψ̄$ψ̄(∇ψ)2 + 2ψ$ψ̄ |∇ψ |2

)
dxds.
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To estimate this term, we use integration by parts, Hölder inequality, the embedding
H1 ↪→ L∞ for O ⊂ R1 and interpolation of L4 between L2 and H1,

E
(
1
2
I 1a + I 2a

)
= − 2E

∫ t

0
ℜ

∫

O
i∇ψ̄∇(|ψ |2ψ)dxds

− 2
∫ t

0
ℜ

∫

O
i
(
ψ̄(∇ψ)2$ψ̄ + 2ψ |∇ψ |2$ψ̄

)
dxds

≤ K E
∫ t

0
||ψ ||4H1ds + K E

∫ t

0
∥ψ∥2L∞∥∇ψ∥4L4ds

+ K E
∫ t

0
∥$ψ∥2L2ds

≤ K E
∫ t

0
||ψ ||4H1ds + K E

∫ t

0
∥∇ψ∥10L2ds

+ K E
∫ t

0
∥$ψ∥2L2ds

≤ K + K E
∫ t

0
∥$ψ∥2L2ds, (22)

where for the last inequality we use Corollary 1 and Eq. (2). Here, to estimate the
second integral in (22), we have to restrict to O ⊂ R1.

After using ℜ(i |$ψ |2|ψ |2) = 0, the estimate of term I 2b is similar as before, and
we have

E(I 2b ) ≤ K +
∫ t

0
∥ψ∥2H2ds. (23)

Because of ℜ(i |$ψ |2|ψ |2) = 0, the term I 3 can be estimated in a similar way by
using Hölder’s inequality and some embedding inequalities. It can be bounded by
K + K E

∫ t
0 ∥ψ∥2H2ds.

By the expression for D2 f (ψ) and since ℜ(ψ̄(−iψQ
1
2 )) = 0, we have for term

I I ,

I I =
∫ t

0
ℜ

∫

O
Tr

[(
(I d − $)(−iψQ

1
2 )

)(
(I d − $)(−iψQ

1
2 )

)]
dxds

+
∫ t

0
ℜ

∫

O
Tr

[(
(I d − $)ψ̄

)
ψℜ

(
(−iψQ

1
2 )(−iψQ

1
2 )

)]
dxds

+
∫ t

0
ℜ

∫

O
Tr

[(
(I d − $)(−iψQ

1
2 )

)
|ψ |2(−iψQ

1
2 )

]
dxds

+
∫ t

0
ℜ

∫

O
Tr

[(
(I d − $)(−iψQ

1
2 )

)
ψℜ

(
ψ̄(−iψQ

1
2 )

)]
dxds.

The estimate of term I I is similar to that of term I 3, using Hölder’s inequality and
embedding estimates.
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Because of the property of the Itô stochastic integral, we know that the expectation
of term I I I equals to 0.

Combining these together, we have

sup
0≤t≤T

E∥ψ(t)∥2H2 ≤ |E( f (ψ(t)))| +
∣∣∣Eℜ

∫

O

(
(I d − $)ψ̄(t)

)
|ψ(t)|2ψ(t)dx

∣∣∣

≤ 1
2

sup
0≤t≤T

E∥ψ(t)∥2H2 + K + K
∫ T

0
E∥ψ(s)∥2H2ds,

where in the last step, we use continuous embeddingH1 ↪→ L6 and Corollary 1. Then
the conclusion follows from Gronwall’s lemma. ⊓4

Remark 3 There is only one term that requires a ‘1D-argument’, which is the second
term in (22),

−2
∫ t

0
ℜ

∫

O
i
(
ψ̄(∇ψ)2$ψ̄ + 2ψ |∇ψ |2$ψ̄

)
dxds

= −8
∫ t

0
ℜ

∫

O
iψ |∇ψ |2$ψ̄dxds.

Lemma 4 Let O ⊂ R1, and suppose that ψ0 ∈ L2p(,,H1
0 ∩ H2(O)). Then there

exists a constant K ≡ K (p, T ) > 0 such that

E
(

sup
0≤t≤T

∥ψ(t)∥2pH2

)
≤ K . (24)

Proof If compared to Lemma 3, the main difference of proof is the appearance of
the supremum of stochastic integrals I I I in (21), whose expectations do not vanish
anymore. By the expression of Df (ψ), we know

I I I = 2
∫ t

0
ℜ

∫

O

(
(I d − $)ψ̄

)
(I d − $)(−iψdW (s))dx

+
∫ t

0
ℜ

∫

O

(
(I d − $)ψ̄

)
|ψ |2(−iψdW (s))dx

+
∫ t

0
ℜ

∫

O

(
(I d − $)|ψ |2ψ

)
(iψ̄dW (s))dx . (25)

We deal with the first term in I I I as an example, since the other two terms can be
done similarly with Burkholder–Davis–Gundy inequality as well.

E
[

sup
0≤t≤T

∥
∫ t

0
ℜ

∫

O

(
(I d − $)ψ̄

)(
(I d − $)(−iψdW (s))

)
dx∥p

L2

]

≤ E
[ ∫ T

0
∥ψ∥4H2∥Q

1
2 ∥2L2(U, H2)

dt
] p

2
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≤ E
[

sup
0≤t≤T

∥ψ(t)∥p
H2

( ∫ T

0
∥ψ∥2H2∥Q

1
2 ∥2L2(U, H2)

dt
) p

2
]

≤ 1
8
E

(
sup

0≤t≤T
∥ψ(t)∥2pH2

)
+ K E

∫ T

0
∥ψ(t)∥2pH2dt.

Similar as the proof of Lemma 3, Gronwall’s lemma leads to the assertion. ⊓4

Lemma 5 Let p ≥ 1, O ⊂ R1 and ψ0 ∈ L2p(,,H1
0(O)). There exists a constant

K ≡ K (p) such that

E
(
∥ψ(t1) − ψ(t2)∥2pL2

)
≤ K |t1 − t2|p (0 ≤ t2 ≤ t1 ≤ T ).

Proof From Eq. (13), we have the following expression for ψ(t1) − ψ(t2),

ψ(t1) − ψ(t2) = (S(t1) − S(t2))ψ0

+ i
[ ∫ t1

0
S(t1 − r)

(
− |ψ |2ψ + i

2
ψFQ

)
dr

−
∫ t2

0
S(t2 − r)

(
− |ψ |2ψ + i

2
ψFQ

)
dr

]

− i
[ ∫ t1

0
S(t1 − r)ψdW (r) −

∫ t2

0
S(t2 − r)ψdW (r)

]

=: I + I I + I I I. (26)

Because of Lemma 1,

∥S(t1) − S(t2)∥L (H1
0, L2) = ∥S(t2)(S(t1 − t2) − I d)∥L (H1

0, L2)

≤ ∥S(t2)∥L (H1
0, H1

0)
∥S(t1 − t2) − I d∥L (H1

0, L2)

≤ K |t1 − t2|
1
2 ,

such that

E∥I∥2pL2 ≤ K E∥ψ0∥2pH1
0
|t1 − t2|p ≤ K |t1 − t2|p.

We divide I I into two parts,

I I = i
∫ t2

0
(S(t1 − r) − S(t2 − r))

(
−|ψ |2ψ + i

2
ψFQ

)
dr

+ i
∫ t1

t2
S(t1 − r)(−|ψ |2ψ + i

2
ψFQ)dr

=: I I A + I I B . (27)
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We use H1 ↪→ L∞ to estimate I I A as follows,

∥I I A∥L2 ≤ K |t1 − t2|
1
2

∫ t2

0
∥ − |ψ |2ψ + i

2
ψFQ∥H1dr

≤ K |t1 − t2|
1
2

∫ t2

0
(∥ψ∥3H1 + ∥ψ∥H1)dr,

hence E∥I I A∥2pL2 ≤ K |t1 − t2|p follows from (2) and Corollary 1. By the embedding
H1 ↪→ L2, the estimation of I I B is

∥I I B∥L2 ≤ K
∫ t2

t1
∥ − |ψ |2ψ + i

2
ψFQ∥L2dr ≤ K

∫ t2

t1
(∥ψ∥3H1 + ∥ψ∥H1)dr,

thus E∥I I B∥2pL2 ≤ K |t1 − t2|2p. We split term I I I as (27). Based on the maxi-
mal inequality for stochastic convolutions, the equality S(t1 − r) − S(t2 − r) =(
S(t1 − t2) − I

)
S(t2 − r), Lemma 1 and Lemma 3, the first stochastic term may be

estimated as follows,

E
(
∥
∫ t2

0
(S(t1 − r) − S(t2 − r))ψdW (r)∥2pL2

)

≤ K E
( ∫ t2

0
(t1 − t2)∥ψ∥2H1dr

)p

≤ K |t1 − t2|p,

and the estimate of the second stochastic term is

E
(
∥
∫ t1

t2
S(t1 − r)ψdW (r)∥2pL2

)
≤ E

( ∫ t1

t2
∥ψ∥2L2dr

)p
≤ K |t1 − t2|p.

Thus we have

E∥I I I∥2pL2 ≤ K |t1 − t2|p.

Inserting all these estimates into (26) establishes the result. ⊓4

From Lemma 1, i.e., ∥S(t1) − S(t2)∥L (H1
0, L2) ≤ K |t1 − t2|

1
2 , we may conclude

that if we want to show the Hölder continuity property of the solution of (1) in the
H1

0(O)-norm, we need the boundedness of the H2(O)-norm of the solution, which is
stated in Lemma 3. Therefore we present the following lemma without proof.

Lemma 6 Let p ≥ 1, O ⊂ R1 and ψ0 ∈ L2p(,;H1
0 ∩ H2(O)). There exists K ≡

K (p) > 0 such that

E
(
∥ψ(t1) − ψ(t2)∥2pH1

)
≤ K |t1 − t2|p (0 ≤ t2 ≤ t1 ≤ T ).
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4 Stability of the θ -scheme

In this section, we consider the following θ -scheme on the uniform partition In :=
{tn}Mn=0 covering [0, T ] with mesh-size τ = T/M > 0, where t0 = 0 and tM = T .

Algorithm 1 Let φ0 = ψ(t0) be a given H1
0(O)-valued random variable and let

θ ∈ [0, 1]. Find for every n ∈ {0, . . . ,M} aFtn+1 -adapted random variable φn+1 with
values in H1

0(O) such that P-a.s.

i
∫

O

(
φn+1 − φn)zdx − τ

∫

O

(
θ∇φn+1 + (1 − θ)∇φn)∇zdx

− τ

2

∫

O
(|φn+1|2 + |φn|2)φn+ 1

2 zdx

=
∫

O
φn+ 1

2 $nWzdx ∀z ∈ H1
0(O), (28)

where $nW = W (tn+1) − W (tn).

A relevant property of the limiting system (1) is a bound for the Hamiltonian of its
solution; see (10). This property is not known for the Crank–Nicolson scheme (θ = 1

2 ),
which is why a truncation strategy is applied to the nonlinearity (see [7]) or the noise
term ([4]), leading to a truncated Crank–Nicolson scheme. The next lemma establishes
this property for the θ -scheme and values θ ∈ [ 12 +c

√
τ , 1]with c ≥ c∗ > 0, avoiding

any truncation. For simplicity, we assume φ0 ∈ H1
0(O).

Lemma 7 Let p ≥ 1 and O ⊂ Rd be a bounded Lipschitz domain. Fix T ≡ tM >

0, and let θ ∈ [ 12 + c
√

τ , 1] with c ≥ c∗ > 0. Suppose τ ≤ τ ∗, where τ ∗ ≡
τ ∗(∥φ0∥H1

0
, T ). There exist aH1

0(O)-valued {Ftn }0≤n≤M-adapted solution {φn; n =
0, 1, . . . ,M} of the θ -scheme (28), and a constant K ≡ K (p, T, c∗) > 0 such that

(i) max
1≤n≤M

[
E

(
∥φn∥2pL2 +

(
H (φn)

)2(p−1))]
≤ K ,

(ii) max
1≤n≤M

E∥φn+1 − φn∥2pL2 ≤ K τ p,

(iii) max
1≤n≤M

[
(2θ − 1)

n∑

k=0

E∥∇(φk+1 − φk)∥2L2

]
≤ K .

Proof Step 1: Existence and Ftn -adaptedness. Fix a set ,′ ⊂ ,, P(,′) = 1 such
that W (t, x) ∈ U for all t ∈ [0, T ] and ω ∈ ,′. In the following, let us assume that
ω ∈ ,′. The existence of iterates {φn; n = 0, 1, . . . ,M} follows from a standard
Galerkin method and Brouwer’s theorem, in combination with assertion (i).

Define a map

0 : H1
0 × U ∋

(
φn, $nW

)
→ 0(φn,$nW ) ∈ P(H1

0),
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whereP(H1
0) denotes the set of all subsets of H1

0(O), and 0(φn,$nW ) is the set of
solutionsφn+1 of (28). By the closedness of the graph of0 and a selector theorem ([1],
Theorem 3.1), there exists a universally and Borel measurable map λn : H1

0×U → H1
0

such that λn(s1, s2) ∈ 0(s1, s2) for all (s1, s2) ∈ H1
0 × U. Therefore, Ftn+1 -

measurability of φn+1 follows from the Doob-Dynkin lemma.
Step 2: Case p = 1 for (i), (ii) and (iii). Consider Eq. (28) for one ω ∈ , and

choose z = φ̄n+ 1
2 (ω). Then take the imaginary part to get

1
2
∥φn+1∥2L2 − 1

2
∥φn∥2L2 = τℑ

∫

O

(
θ∇φn+1 + (1 − θ)∇φn)∇φ̄n+ 1

2 dx

= (1 − 2θ)τ
2

ℑ
∫

O
∇φn∇φ̄n+1dx (29)

≤ 2θ − 1
4

τ
(
∥∇φn+1∥2L2 + ∥∇φn∥2L2

)
,

where ℜ
[
(a − b)(ā+ b̄)

]
= |a|2 − |b|2 is used on the left-hand side. Next, we choose

z = −(φ̄n+1 − φ̄n)(ω) in (28), and take the real part. We obtain

(1
2
∥∇φn+1∥2L2 +

1
4
∥φn+1∥4L4

)
−

(1
2
∥∇φn∥2L2 +

1
4
∥φn∥4L4

)

+ (2θ − 1)
2

∥∇(φn+1 − φn)∥2L2

= −1
τ

∫

O
(|φn+1|2 − |φn|2)$nWdx . (30)

We will see that the last term on the left-hand side helps to bound the stochastic
integral term, which is restated as follows by using the Eq. (28), properties of the real
and imaginary parts of a complex number, and the fact that W is real-valued,

∫

O
(|φn+1|2 − |φn|2)$nWdx

= 2ℜ
∫

O
φ̄n+ 1

2 (φn+1 − φn)$nWdx

= 2ℜ
∫

O
φ̄n+ 1

2

(
iτ

(
θ$φn+1 + (1 − θ)$φn)

− i
τ

2
(|φn+1|2 + |φn|2)φn+ 1

2 − iφn+ 1
2 $nW

)
$nWdx

= (1 − 2θ)τℑ
∫

O
∇φ̄n∇φn+1$nWdx − 2τθℑ

∫

O
φ̄n+ 1

2 ∇φn+1∇($nW )dx

− 2τ (1 − θ)ℑ
∫

O
φ̄n+ 1

2 ∇φn∇($nW )dx .
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We used integration by parts in the last step. By plugging it into Eq. (30), we find

H (φn+1) − H (φn)+ 2θ − 1
2

∥∇(φn+1 − φn)∥2L2

= (2θ − 1)ℑ
∫

O
∇φ̄n∇φn+1$nWdx + 2θℑ

∫

O
φ̄n+ 1

2 ∇φn+1∇($nW )dx

+ 2(1 − θ)ℑ
∫

O
φ̄n+ 1

2 ∇φn∇($nW )dx

=: I1 + I2 + I3. (31)

Next we estimate the three terms separately. Because of ℑ
(
|∇φn|2

)
= 0, we have

I1 = (2θ − 1)ℑ
∫

O
∇φ̄n(∇φn+1 − ∇φn)$nWdx

≤ 2θ − 1
8

∥∇φn+1 − ∇φn∥2L2 + 2(2θ − 1)∥∇φn∥2L2∥$nW∥2L∞ .

Rearranging terms and the identity φn+ 1
2 = φn + φn+1−φn

2 lead to

I2 + I3 = 2θℑ
∫

O
φ̄n+ 1

2
(
∇φn+1 − ∇φn)∇($nW )dx

+ 2ℑ
∫

O
φ̄n+ 1

2 ∇φn∇($nW )dx

= 2θℑ
∫

O
φ̄n(∇φn+1 − ∇φn)∇($nW )dx

+ θℑ
∫

O
(φ̄n+1 − φ̄n)

(
∇φn+1 − ∇φn)∇($nW )dx

+ 2ℑ
∫

O
φ̄n∇φn∇($nW )dx

+ ℑ
∫

O
(φ̄n+1 − φ̄n)∇φn∇($nW )dx (32)

Integration by parts for the first term, and using ℑ(a) = −ℑ(ā) (a ∈ C) lead to

I2 + I3 = (1+ 2θ)ℑ
∫

O
∇φn(φ̄n+1 − φ̄n)∇($nW )dx

+ 2ℑ
∫

O
∇φnφ̄n∇($nW )dx

− 2θℑ
∫

O
φ̄n(φn+1 − φn)$($nW )dx

+ θℑ
∫

O
(φ̄n+1 − φ̄n)(∇φn+1 − ∇φn)∇($nW )dx

= : I a23 + I b23 + I c23 + I d23. (33)
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The estimation of the first three terms is as follows,

I a23 + I b23 + I c23 ≤1
4
∥φn+1 − φn∥2L2 + K∥∇φn∥2L2∥∇($nW )∥2L∞

+ K∥φn∥2L2∥$($nW )∥2L∞ + 2ℑ
∫

O
∇φnφ̄n∇($nW )dx . (34)

The troublesome term is I d23, we estimate it as follows,

I d23 ≤∥∇φn+1 − ∇φn∥L2∥φn+1 − φn∥L2∥∇($nW )∥L∞

≤2θ − 1
8

∥∇φn+1 − ∇φn∥2L2 +
2

2θ − 1
∥φn+1 − φn∥2L2∥∇($nW )∥2L∞

≤2θ − 1
8

∥∇φn+1 − ∇φn∥2L2 +
1
8
∥φn+1 − φn∥2L2

+ 2
(2θ − 1)2

∥φn+1 − φn∥2L2∥∇($nW )∥4L∞

≤2θ − 1
8

∥∇φn+1 − ∇φn∥2L2 +
1
8
∥φn+1 − φn∥2L2

+ K τ
(
∥φn+1∥4L4 + ∥φn∥4L4

)
+ 1

τ (2θ − 1)4
∥∇($nW )∥8L∞ , (35)

where we use the embedding L4(O) ↪→ L2(O) in the last step. In order to complete
the proof for (i) and (ii), we need to bound ∥φn+1 − φn∥2L2 , which appears in the last
two estimates (34) and (35). For this purpose, we test the Eq. (28)with (φ̄n+1−φ̄n)(ω),
then take the imaginary part. Because of φn+ 1

2 = φn + φn+1−φn

2 , we get

∥φn+1 − φn∥2L2 = τℑ
∫

O

(
θ∇φn+1 + (1 − θ)∇φn)∇(φ̄n+1 − φ̄n)dx

+ τ

2
ℑ

∫

O
(|φn+1|2 + |φn|2)φnφ̄n+1dx

+ ℑ
∫

O
φn(φ̄n+1 − φ̄n)$Wndx .

Estimating this equality leads to

1
2
∥φn+1 − φn∥2L2 ≤K τ

(1
2
∥∇φn+1∥2L2 +

1
2
∥∇φn∥2L2 +

1
4
∥φn+1∥4L4 +

1
4
||φn||4L4

)

+ K∥φn∥2L2∥$nW∥2L∞

= K τ
(
H (φn+1)+H (φn)

)
+ K∥φn∥2L2∥$nW∥2L∞ , (36)

where Young’s inequality is applied, and the term 1
2∥φn+1 − φn∥2L2 which appears

from the stochastic term is absorbed in the left-hand side.
We may now combine estimate (36) with (29) and (31). By denoting K n =

1
2∥φn∥2L2 +H (φn), we obtain
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K n+1 − K n + 1
8
∥φn+1 − φn∥2L2 +

2θ − 1
4

∥∇φn+1 − ∇φn∥2L2

≤ K τ
(
K n+1 +K n

)
+ K∥∇φn∥2L2∥$nW∥2L∞ + K∥φn∥2L2∥$($nW )∥2L∞

+ K∥φn∥2L2∥$nW∥2L∞

+ 2ℑ
∫

O
∇φnφ̄n∇($nW )dx + 1

τ (2θ − 1)4
∥∇($nW )∥8L∞

=: K τ
(
K n+1 +K n

)
+ A. (37)

In order to efficiently bound the expectation of the last term, we recall that
E∥∇($nW )∥8L∞ = O(τ 4) to admit 2θ − 1 ≥ c

√
τ with c ≥ c∗ > 0.

After applying expectations on both sides of (37), one arrives at

EK n+1 − EK n + 1
8
E∥φn+1 − φn∥2L2 +

2θ − 1
4

E∥∇φn+1

− ∇φn∥2L2 ≤ K τ + K τ
(
EK n+1 + EK n

)
.

The discrete Gronwall’s lemma then leads to the assertions of this lemma in case
τ ≤ τ ∗ is chosen.

Step 3: Case p ≥ 2 for (i). In order to show the assertion (i), we employ an inductive
argument. To obtain the result for p = 2, we multiply equality (37) byK n+1 and use
the identity (a − b)a = 1

2

(
a2 − b2 + (a − b)2

)
, where a, b ∈ R, to get

1
2

[
(K n+1)2 − (K n)2

]
+ 1

2
(K n+1 − K n)2

≤ K τ
(
(K n+1)2 + (K n)2

)
+ AK n+1, (38)

where A is from (37). Applying expectation on both sides of (38), we have

1
2
E

[
(K n+1)2 − (K n)2

]
+ 1

2
E(K n+1 − K n)2

≤ K τ
(
E(K n+1)2 + E(K n)2

)
+ 1

4
E(K n+1 − K n)2 + K τ. (39)

In order to verify this inequality, we may restrict ourselves to the integral term in (37),
since other terms can be easily estimated by Young’s inequality. By the independency
property of increments of the Wiener process, we obtain

E
[
K n+1ℑ

∫

O
∇φnφ̄n∇($nW )dx

]
= E

[(
K n+1 − K n)ℑ

∫

O
∇φnφ̄n∇($nW )dx

]

≤ 1
4
E(K n+1 − K n)2 + K τ E(K n)2,
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and the leading term may be absorbed by the left-hand side of (39). Therefore we
have the conclusion of (i) in the case p = 2 via the discrete Gronwall’s lemma. By
repeating this procedure, one obtains the result for each p ∈ N.

Step 4: Case p ≥ 2 for (ii). We prove it for the case p = 2, since for general p, the
result follows from assertion (i). We deal with inequality (36) by squaring it,

∥φn+1 − φn∥4L2 ≤ K τ 2
(
(K n+1)2 + (K n)2

)
+ K∥φn∥4L2∥$nW∥4L∞ .

Applying expectations leads to assertion (ii) in the case of p = 2. By repeating this
procedure, one obtains the result for each p ∈ N. ⊓4

Remark 4 A compactness argument is used in [4] to prove convergence of a family
of (adapted, continuous) interpolating processes of the numerical solution towards a
mild solution of (12) for the case O = Rd ; a crucial prerequisite for it are the lemmas
[4, Lemmas 3.3 and 3.4], which here are sharpened to Lemma 7.

As is stated in Remark 2, amild solution of (12)may be constructed for the bounded
domain case O ⊂ R1 by a contraction argument following [3]; alternatively, we may
follow the strategy of [4] and use the uniform bounds in Lemma 7 for a compactness
argument which establishes convergence of (interpolated in time) iterates {φn; n =
0, 1, . . . ,M} solving Algorithm 1 towards the uniquemild solution of (12) for the case
O ⊂ R1. No additional truncation parameter (and related stopping times) is involved
in this construction based on Algorithm 1, which would otherwise require a proper
balancing with the discretization parameter in this (practical) construction process of
a solution for (12) as in [4].

Lemma 8 Let p ≥ 1. Under the assumptions made in Lemma 7, we have

E
[

max
1≤n≤M

(
∥φn∥2L2 +H (φn)

)2p−1]
≤ K (p, T ).

Proof We only present the proof for p = 1. We start from (37) for some 0 ≤ ℓ ≤ M ,
sum over the index from ℓ = 0 to n, take the maximum between 0 and m ≤ M , and
apply expectations. We may now employ the result of Lemma 7 to conclude that

E
(

max
0≤n≤m

K n
)

≤ K + K τ

m∑

ℓ=0

E
(
max
0≤ j≤ℓ

K j
)

+ E
[

max
0≤n≤m

n∑

ℓ=0

∫

O
∇φℓφ̄ℓ∇($ℓW )dx

]
. (40)

The bound of the last term is similar to (17), using Burkholder–Davis–Gundy inequal-
ity. ⊓4

The following lemma asserts approximate conservation of mass (in statistical aver-
age) for θ ↓ 1

2 .
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Lemma 9 Let O ⊂ Rd be a bounded Lipschitz domain, T ≡ tM > 0 be fixed, and
θ ∈ [ 12 + c

√
τ , 1] with c ≥ c∗ > 0. There exist a constant K ≡ K (T, c∗) > 0 and

τ ∗ ≡ τ ∗(∥φ0∥H1
0
, T ) such that for all τ ≤ τ ∗, we have

max
1≤n≤⌊T/τ⌋

E∥φn∥2L2 − E∥φ0∥2L2 ≤ K
(
τ

3
4 + (1 − 2θ)τ

1
4

)
. (41)

Proof Recall (29) and use properties of the imaginary part of a complex number to
conclude

∥φn+1∥2L2 − ∥φn∥2L2 = (1 − 2θ)τℑ
∫

O
(∇φ̄n+1 − ∇φ̄n)∇φndx

≤ (2θ − 1)
(
τ

3
8 ∥∇φn+1 − ∇φn∥L2

)(
τ

5
8 ∥∇φn∥L2

)
(42)

≤ (2θ − 1)τ
3
4

2
∥∇φ̄n+1 − ∇φ̄n∥2L2 +

(2θ − 1)τ
5
4

2
∥∇φ̄n∥2L2 .

Now consider the above inequality for some 0 ≤ ℓ ≤ M , sum over the index from
ℓ = 0 to n, take the expectation, and use Lemma 7 (i) and (iii) to establish the assertion.

⊓4
A comparison of Lemmas 7 and 9 illustrates the role of numerical dissipation in the θ -
scheme and suggests a choice θ = 1

2 +c
√

τ to minimize this effect and approximately
preserve the L2-norm of iterates.

The following lemma validates improved stability properties for solutions of Algo-
rithm 1 for O ⊂ R1, which will be relevant in the error analysis below. In fact, a
consequence of it will be an improved preservation of mass; see Lemma 11.

Lemma 10 Let p ≥ 1, O ⊂ R1, T ≡ tM > 0 be fixed, φ0 ∈ L2p(,;H1
0 ∩ H2(O)),

and W beH2
0 ∩H3-valued. Suppose θ ∈ [ 12 + c

√
τ , 1] with c ≥ c∗ > 0. There exist a

constant K ≡ K (p, T, c∗) > 0, and τ ∗ ≡ τ ∗(∥φ0∥H1
0∩H2 , T ) such that for all τ ≤ τ ∗

holds

(i) max
1≤n≤M

[
E

(
∥φn∥2H2+

n∑

k=0

∥φk+1−φk∥2H1 + (2θ − 1)
n∑

k=0

∥φk+1−φk∥2H2

)]
≤K ,

(ii) max
1≤n≤M

E
(
∥φn∥2pH2

)
≤ K ,

(iii) max
1≤n≤M

E∥φn+1 − φn∥2pH1 ≤ K τ p,

(iv) E
(

max
1≤n≤M

∥φn∥2pH2

)
≤ K .

Proof We formally test Eq. (28) with z = $
(
φ̄n+1 − φ̄n

)
and take the real part.

Because of θ$φn+1+ (1−θ)$φn = $φn+1+ (θ −1)
(
$φn+1−$φn) andℜ

(
a(ā−

b̄)
)
= 1

2

(
|a|2 − |b|2 + |a − b|2

)
, we have
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∥$φn+1∥2L2 − ∥$φn∥2L2 + (2θ − 1)∥$φn+1 − $φn∥2L2

= ℜ
∫

O

(
|φn+1|2 + |φn|2

)
φn+ 1

2 $(φ̄n+1 − φ̄n)dx

+ 2
τ

ℜ
∫

O
φn+ 1

2 $nW$(φ̄n+1 − φ̄n)dx

=: A + B. (43)

Step 1: Estimate of the stochastic integral termB.Weuse integration by parts to benefit
from Eq. (28) and W being real-valued,

B = 2
τ

ℜ
∫

O
φn+ 1

2 $nW ($φ̄n+1 − $φ̄n)dx

= 2
τ

ℜ
∫

O
$(φ̄n+ 1

2 $nW )(φn+1 − φn)dx

= 2
τ

ℜ
∫

O
$(φ̄n+ 1

2 $nW )
[
iτ

(
θ$φn+1 + (1 − θ)$φn)

− i
τ

2
(|φn+1|2 + |φn|2)φn+ 1

2 − iφn+ 1
2 $nW

]
dx

= 2ℜ
∫

O
i$(φ̄n+ 1

2 $nW )
(
θ$φn+1 + (1 − θ)$φn)dx

− ℜ
∫

O
i$(φ̄n+ 1

2 $nW )(|φn+1|2 + |φn|2)φn+ 1
2 dx

=: B1 + B2. (44)

Step 2: Estimate of term B1.We rewrite the term B1 as follows,

B1 = 2ℜ
∫

O
i$(φ̄n+ 1

2 $nW )
(
θ$φn+1 + (1 − θ)$φn)dx

= 2ℜ
∫

O
i$φ̄n+ 1

2
(
θ$φn+1 + (1 − θ)$φn)$nWdx

+ 2ℜ
∫

O
i φ̄n+ 1

2 $($nW )
(
θ$φn+1 + (1 − θ)$φn)dx

+ 4ℜ
∫

O
i∇φ̄n+ 1

2 ∇($nW )
(
θ$φn+1 + (1 − θ)$φn)dx

=: B1
a + B1

b + B1
c . (45)

Since θℜ
(
i∥$φn+1∥2L2

)
+ (1 − θ)ℜ

(
i∥$φn∥2L2

)
= 0, we have

B1
a = θℜ

∫

O
i$φ̄n$φn+1$nWdx + (1 − θ)ℜ

∫

O
i$φ̄n+1$φn$nWdx

= (2θ − 1)ℜ
∫

O
i$φ̄n$φn+1$nWdx
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= (2θ − 1)ℜ
∫

O
i$φ̄n($φn+1 − $φn)$nWdx

≤ (2θ − 1)∥$φn∥L2∥$φn+1 − $φn∥L2∥$nW∥L∞

≤ 2θ − 1
8

∥$φn+1 − $φn∥2L2 + 2(2θ − 1)∥$φn∥2L2∥$nW∥2L∞ .

Therefore E(B1
a ) ≤ 2θ−1

8 E∥$φn+1 − $φn∥2L2 + K τ E∥$φn∥2L2 .

Sinceφn+ 1
2 = φn+ φn+1−φn

2 , we have the following estimate for the term B1
b in (45),

B1
b = 2ℜ

∫

O
i φ̄n$($nW )

(
θ$φn+1 + (1 − θ)$φn)dx

+ ℜ
∫

O
i(φ̄n+1 − φ̄n)$($nW )

(
θ$φn+1 + (1 − θ)$φn)dx

= 2θℜ
∫

O
i φ̄n$($nW )$(φn+1 − φn)dx + 2ℜ

∫

O
i φ̄n$($nW )$φndx

+ ℜ
∫

O
i(φ̄n+1 − φ̄n)$($nW )

(
θ$φn+1 + (1 − θ)$φn)dx .

Integration by parts for the first term leads to

B1
b = −2θℜ

∫

O
i∇

(
φ̄n$($nW )

)
(∇φn+1 − ∇φn)dx + 2ℜ

∫

O
i φ̄n$($nW )$φndx

+ ℜ
∫

O
i(φ̄n+1 − φ̄n)$($nW )

(
θ$φn+1 + (1 − θ)$φn)dx

≤ 1
8
∥∇φn+1 − ∇φn∥2L2 + 8∥∇

(
φ̄n$($nW )

)
∥2L2 + K

1
τ

∥φn+1 − φn∥4L2

+ K
1
τ

∥$($nW )∥4L∞ + τ
(
∥$φn+1∥2L2 + ∥$φn∥2L2

)

+ 2ℜ
∫

O
i φ̄n$($nW )$φndx .

By assertion (i) and (ii) of Lemma 7, we get

E(B1
b ) ≤ 1

8
E∥∇φn+1 − ∇φn∥2L2 + K τ + K τ

(
∥$φn+1∥2L2 + ∥$φn∥2L2

)
.

For term B1
c , we use again φn+ 1

2 = φn + φn+1−φn

2 to obtain

B1
c = 4θℜ

∫

O
i∇φ̄n+ 1

2 ∇($nW )$φn+1dx + 4(1−θ)ℜ
∫

O
i∇φ̄n+ 1

2 ∇($nW )$φndx

= 4θℜ
∫

O
i
(
∇φ̄n + ∇φ̄n+1 − ∇φ̄n

2

)
∇($nW )

(
($φn+1 − $φn)+ $φn

)
dx

+ 4(1 − θ)ℜ
∫

O
i
(
∇φ̄n + ∇φ̄n+1 − ∇φ̄n

2

)
∇($nW )$φndx .
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In the following step, we use that the Wiener process is H2
0-valued to allow for inte-

gration by parts,

= 4θℜ
∫

O
i∇φ̄n∇($nW )$(φn+1−φn)dx+2ℜ

∫

O
i∇(φ̄n+1 − φ̄n)∇($nW )$φndx

+ 4ℜ
∫

O
i∇φ̄n∇($nW )$φndx

+ 2θℜ
∫

O
i(∇φ̄n+1 − ∇φ̄n)∇($nW )($φn+1 − $φn)dx .

Integration by parts for the first term then leads to

B1
c = − 4θℜ

∫

O
i∇φ̄n$($nW )(∇φn+1 − ∇φn)dx

+ 2(1+ 2θ)ℜ
∫

O
i(∇φ̄n+1 − ∇φ̄n)∇($nW )$φndx

+ 4ℜ
∫

O
i∇φ̄n∇($nW )$φndx

+ 2θℜ
∫

O
i(∇φ̄n+1 − ∇φ̄n)∇($nW )($φn+1 − $φn)dx .

We only present the estimate of the last term, the remainder terms can be easily
bounded as before.

2θℜ
∫

O
i(∇φ̄n+1 − ∇φ̄n)∇($nW )($φn+1 − $φn)dx

≤ 2∥$φn+1 − $φn∥L2∥∇φn+1 − ∇φn∥L2∥∇($nW )∥L∞

≤ 2θ − 1
8

∥$φn+1 − $φn∥2L2 +
8

2θ − 1
∥∇φn+1 − ∇φn∥2L2∥∇($nW )∥2L∞

≤ 2θ − 1
8

∥$φn+1 − $φn∥2L2 +
1
8
∥∇φn+1 − ∇φn∥2L2

+ 32
(2θ − 1)2

∥∇φn+1 − ∇φn∥2L2∥∇($nW )∥4L∞

≤ 2θ − 1
8

∥$φn+1 − $φn∥2L2 +
1
8
∥∇φn+1 − ∇φn∥2L2

+ K τ
(
∥∇φn+1∥4L2 + ∥∇φn∥4L2

)
+ 1

τ (2θ − 1)4
∥∇($nW )∥8L∞ .

Therefore, for 2θ − 1 ≥ c
√

τ with c ≥ c∗ > 0 and since E∥∇($nW )∥8L∞ = O(τ 4),
by Lemma 7 (i) we obtain

E(B1
c )≤K τ+ 2θ − 1

8
E∥$φn+1−$φn∥2L2+

3
8
∥∇φn+1 − ∇φn∥2L2 + K τ∥$φn∥2L2 .
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Step 3: Estimate of term B2. By integration by parts,

B2 =1
4
ℜ

∫

O
i∇

(
(φ̄n+1 + φ̄n)$nW

)
∇

(
(|φn+1|2 + |φn|2)(φn+1 + φn)

)
dx

=1
4
ℜ

∫

O
i
(
∇φ̄n+1$nW + ∇φ̄n$nW + φ̄n+1∇($nW )+ φ̄n∇($nW )

)

(
(φn+1)2∇φ̄n+1 + 2∇φn+1|φ̄n+1|2 + ∇φn+1φ̄n+1φn + φn+1φn∇φ̄n+1

+ |φn+1|2∇φn + ∇φnφ̄nφn+1 + 2∇φn|φn|2 + ∇φ̄nφnφn+1

+ ∇φ̄n(φn)2 + |φn|2∇φn+1
)
dx .

The estimates of these terms are done by inserting functions ofφn andusing the fact that
E($nW |Ftn ) = 0. So herewe only present one troublesome term in B2 as an example.

ℜ
∫

O
i(∇φ̄n+1φn+1)2$nWdx

= ℜ
∫

O
i
(
(∇φ̄n+1φn+1)2 − (∇φ̄nφn)2

)
$nWdx + ℜ

∫

O
i(∇φ̄nφn)2$nWdx .

The expectation of the second term is zero. By the identity a2 − b2 = (a+ b)(a − b),
we deal with the first term below.

ℜ
∫

O
i
(
(∇φ̄n+1φn+1)2 − (∇φ̄nφn)2

)
$nWdx

= ℜ
∫

O
i(∇φ̄n+1φn+1 + ∇φ̄nφn)(∇φ̄n+1φn+1 − ∇φ̄nφn)$nWdx

= ℜ
∫

O
i(∇φ̄n+1φn+1 + ∇φ̄nφn)(∇φ̄n+1 − ∇φ̄n)φn$nWdx

+ ℜ
∫

O
i(∇φ̄n+1φn+1 + ∇φ̄nφn)∇φ̄n+1(φn+1 − φn)$nWdx . (46)

For the first term, we use H1 ↪→ L∞ and Young’s inequality to conclude

ℜ
∫

O
i(∇φ̄n+1φn+1 + ∇φ̄nφn)(∇φ̄n+1 − ∇φ̄n)φn$nWdx

≤
(
∥∇φn+1∥L2∥φn+1∥L∞ + ∥∇φn∥L2∥φn∥L∞

)
∥∇(φn+1 − φn)∥L2∥φn∥L∞∥$nW∥L∞

≤ 1
8
∥∇(φn+1 − φn)∥2L2 +

1
τ

∥$nW∥4L∞ + K τ∥φn+1∥8H1∥φn∥4H1 + K τ∥φn∥12H1 .

Similarly, by embedding H1 ↪→ L∞ and Hölder inequality, we get the estimation of
the second term in (46),
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ℜ
∫

O
i(∇φ̄n+1φn+1 + ∇φ̄nφn)∇φ̄n+1(φn+1 − φn)$nWdx

≤
(
∥∇φn+1∥L2∥φn+1∥L∞ + ∥∇φn∥L2∥φn∥L∞

)
∥∇φn+1∥L2∥φn+1

− φn+1∥L∞∥$nW∥L∞

≤ ∥φn+1 − φn∥2H1 +
1
τ

∥$nW∥4L∞ + K τ∥φn+1∥12H1 + K τ∥φn∥12H1 .

Therefore, from Lemma 7 (i) and (ii), we have

E(B2) ≤ K τ + K τ
(
E∥$φn+1∥2L2 + E∥$φn∥2L2

)
+ 1

8
E∥∇(φn+1 − φn)∥2L2 .

Step 4: Estimate of term A. Because of (|a|2 + |b|2)(a + b) = 2|a|2a + 2|b|2b −
(|b|2 − |a|2)(b − a) for a, b ∈ C, we split term A further into

A =ℜ
∫

O

(
|φn+1|2 + |φn|2

)
φn+ 1

2 ($φ̄n+1 − $φ̄n)dx

= − 1
2
ℜ

∫

O
(|φn+1|2 − |φn|2)(φn+1 − φn)($φ̄n+1 − $φ̄n)dx

+ ℜ
∫

O
|φn|2φn($φ̄n+1 − $φ̄n)dx + ℜ

∫

O
|φn+1|2φn+1($φ̄n+1 − $φ̄n)dx

=: A1 + A2 + A3. (47)

We use the identity |a|2a− |b|2b = |a|2(a−b)+|b|2(a−b)+ab(ā− b̄) for a, b ∈ C
to rewrite term A2 as

A2 =ℜ
∫

O
$φ̄n+1|φn+1|2φn+1dx − ℜ

∫

O
$φ̄n|φn|2φndx

− ℜ
∫

O
$φ̄n+1(|φn+1|2φn+1 − |φn|2φn)dx

=ℜ
∫

O
$φ̄n+1|φn+1|2φn+1dx − ℜ

∫

O
$φ̄n|φn|2φndx

− ℜ
∫

O
$φ̄n+1|φn+1|2(φn+1 − φn)dx

− ℜ
∫

O
$φ̄n+1|φn|2(φn+1 − φn)dx

+ ℜ
∫

O
$φ̄n+1φn+1|φn+1 − φn|2dx

− ℜ
∫

O
$φ̄n+1(φn+1)2(φ̄n+1 − φ̄n)dx, (48)
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where for the last two terms in (48), we use

ℜ
∫
O $φ̄n+1φn+1φn(φ̄n+1 − φ̄n)dx

= −ℜ
∫
O $φ̄n+1φn+1|φn+1 − φn|2dx + ℜ

∫
O $φ̄n+1(φn+1)2(φ̄n+1 − φ̄n)dx .

We use integration by parts and product formula to rewrite term A3.

A3 =ℜ
∫

O
(φ̄n+1 − φ̄n)$(|φn+1|2φn+1)dx

= 2ℜ
∫

O
(φ̄n+1 − φ̄n)$φn+1|φn+1|2dx + ℜ

∫

O
(φ̄n+1 − φ̄n)(φn+1)2$φ̄n+1dx

+ 2ℜ
∫

O
(φ̄n+1 − φ̄n)(∇φn+1)2φ̄n+1dx + 4ℜ

∫

O
(φ̄n+1 − φ̄n)|∇φn+1|2φn+1dx .

(49)

Summing up (48) and (49) and ℜ(a) = ℜ(ā) for a ∈ C lead to

A2 + A3 =ℜ
∫

O
$φ̄n+1|φn+1|2φn+1dx − ℜ

∫

O
$φ̄n|φn|2φndx

+ ℜ
∫

O
$φ̄n+1(|φn+1|2 − |φn|2

)
(φn+1 − φn)dx

+ ℜ
∫

O
$φ̄n+1φn+1|φn+1 − φn|2dx

+ 2ℜ
∫

O
(φ̄n+1 − φ̄n)(∇φn+1)2φ̄n+1dx

+ 4ℜ
∫

O
(φ̄n+1 − φ̄n)|∇φn+1|2φn+1dx . (50)

Plugging Eq. (50) into (47), one has

A = A1 + ℜ
∫

O
$φ̄n+1|φn+1|2φn+1dx − ℜ

∫

O
$φ̄n|φn|2φndx

+ ℜ
∫

O
$φ̄n+ 1

2
(
|φn+1|2 − |φn|2

)
(φn+1 − φn)dx

+ ℜ
∫

O
$φ̄n+1φn+1|φn+1 − φn|2dx

+ 2ℜ
∫

O
(φ̄n+1 − φ̄n)(∇φn+1)2φ̄n+1dx

+ 4ℜ
∫

O
(φ̄n+1 − φ̄n)|∇φn+1|2φn+1dx

=: A1 + Aa,n+1 + Aa,n + Ab + Ac + Ad + Ae. (51)

We estimate the terms separately. The estimation of the terms Aa,n+1 and Aa,n follows
from their special structure (when taking the sum with respect to n, all middle term
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are canceled) and Lemma 7. For term Ab, we use binomial formula, and interpolation
of L4 between L2 and H1 for d = 1.

Ab = ℜ
∫

O
$φ̄n+ 1

2 (|φn+1|2 − |φn |2)(φn+1 − φn)dx

≤ 2∥φn+1 − φn∥2L4∥$φn+ 1
2 ∥L2∥φn+ 1

2 ∥L∞

≤ τ
(
∥$φn+1∥2L2 + ∥$φn∥2L2

)
+ 1

τ
∥φn+1 − φn∥4L4∥φn+ 1

2 ∥2L∞

≤ τ
(
∥$φn+1∥2L2 + ∥$φn∥2L2

)
+ K

τ
∥∇(φn+1 − φn)∥L2∥φn+1 − φn∥3L2∥φn+ 1

2 ∥2L∞

≤ τ
(
∥$φn+1∥2L2 + ∥$φn∥2L2

)
+ 1

8
∥∇(φn+1 − φn)∥2L2 + K τ∥φn+ 1

2 ∥8L∞

+ 1
τ 5

∥φn+1 − φn∥12L2 .

For term A1, we use |φn+1|2 − |φn|2 = 2ℜ
(
φn+ 1

2 (φn+1 − φn)
)
and ∥$(φn+1 −

φn)∥L2 ≤ ∥$φn+1∥L2 + ∥$φn∥L2 to have

A1 ≤K
(
∥$φn+1∥L2 + ∥$φn∥L2

)
∥φn+1 − φn+1∥2L4∥φn+ 1

2 ∥L∞

≤K τ
(
∥$φn+1∥2L2 + ∥$φn∥2L2

)
+ K

1
τ

∥φn+1 − φn+1∥4L4∥φn+ 1
2 ∥2L∞ .

Now follow the steps for Ab to estimate the right-hand side. In order to bound the term
Ac, we use once more the interpolation result for L4 which holds for d = 1.

Ac = ℜ
∫

O
$φ̄n+1φn+1|φn+1 − φn|2dx

≤ ∥$φn+1∥L2∥φn+1∥L∞∥φn+1 − φn∥2L4

≤ K τ∥$φn+1∥2L2 + K
1
τ

∥φn+1∥2L∞∥∇φn+1 − ∇φn∥L2∥φn+1 − φn∥3L2

≤ K τ∥$φn+1∥2L2 +
1
8
∥∇(φn+1 − φn)∥2L2 + K τ∥φn+1∥8L∞

+ K
1
τ 5

∥φn+1 − φn∥12L2 .

For the last two terms Ad+Ae, we replace the expression φ̄n+1−φ̄n = −iτ
(
θ$φ̄n+1+

(1 − θ)$φ̄n) + i
2τ (|φn+1|2 + |φn|2)φ̄n+ 1

2 + i φ̄n+ 1
2 $nW , then for the second term

and third terms of the resulting equality, we can estimate them as before.
Here by the interpolation of L4 betweenH1 and L2, and the continuous embedding

H1 ↪→ L∞, we estimate the first term of resulting equality after replacing φ̄n+1 − φ̄n

into Ad ,

2τℜ
∫

O
(−i)(∇φn+1)2φ̄n+1(θ$φ̄n+1 + (1 − θ)$φ̄n)dx

+ 4τℜ
∫

O
(−i)φn+1|∇φn+1|2

(
θ$φ̄n+1 + (1 − θ)$φ̄n)dx
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≤ 6τ
(
∥$φn+1∥L2 + ∥$φn∥L2

)
∥∇φn+1∥2L4∥φn+1∥L∞

≤ K τ
(
∥$φn+1∥2L2 + ∥$φn∥2L2

)
+ K τ∥∇φn+1∥5L2∥$φn+1∥L2

≤ K τ
(
∥$φn+1∥2L2 + ∥$φn∥2L2

)
+ K τ∥∇φn+1∥10L2 .

As a consequence, all terms on the right-hand side of (43) may be controlled with the
help of Lemma 7 and a Gronwall’s argument, apart from the term ∥∇(φn+1 −φn)∥L2 .

Step 5: Estimate of the term ∥∇(φn+1 − φn)∥L2 . We formally test Eq. (28) with
−$(φ̄n+1 − φ̄n) and take the imaginary part. We repeatedly use properties of the
imaginary part of a complex number to obtain

∥∇(φn+1 − φn)∥2L2 = τℑ
∫

O
$φn+1$φ̄ndx − τ

2
ℑ

∫

O

(
|φn+1|2 + |φn|2

)
φn+ 1

2

× ($φ̄n+1 − $φ̄n)dx

+ ℑ
∫

O
∇(φn$nW )(∇φ̄n+1 − ∇φ̄n)dx

− 1
2
ℑ

∫

O
(φn+1 − φn)$nW ($φ̄n+1 − $φ̄n)dx

≤K τ
(
∥$φn+1∥2L2 + ∥$φn∥2L2

)
+ τ

16
∥$(φn+1 − φn)∥2L2

+ K τ
(
∥φn+1∥6L6 + ∥φn∥6L6

)

+ 1
2
∥∇(φn+1 − φn)∥2L2 + K∥∇(φn$nW )∥2L2

+ 2θ − 1
16

∥$(φn+1 − φn)∥2L2

+ 1
2θ − 1

∥φn+1 − φn∥4L2 +
1

2θ − 1
∥$nW∥4L∞ .

By the continuous embedding H1 ↪→ L6, and Lemma 7 (i), the term ∥φn+1∥6L6 +
∥φn∥6L6 can be bounded. Other terms can be bounded by assertions (i) and (ii) of
Lemma 7. Therefore

E∥∇(φn+1 − φn)∥2L2 ≤K
(
τ + τ 2

2θ − 1

)
+ K τ

(
E∥$φn+1∥2L2 + E∥$φn∥2L2

)

+
(2θ − 1

16
+ τ

16

)
E∥$(φn+1 − φn)∥2L2 .

Step 6: Gronwall argument. We may combine these estimates for the terms on the
right-hand side of (43). For τ ≤ τ ∗ sufficiently small, we prove the assertion (i) to
benefit from Gronwall’s inequality and Lemma 7.

The proof of assertion (ii) is similar to Lemma 7 (i). Property (ii) then allow to
validate assertion (iii).The proof of assertion (iv) is similar to Lemma 8. ⊓4
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Remark 5 To derive uniform bounds in higher norms for iterates of Algorithm 1 is a
bit more complicated than for the continuous problem (Lemma 3). Terms A1, Ab to
Ae can only be estimated in 1D.

Since we get a better estimate for ∥∇(φ̄n+1 − φ̄n)∥L2 in Lemma 10, we can get
a better conservation of the L2-norm for domains O ⊂ R1; in fact, the next lemma
asserts that the conservation of the L2-norm is of order 1

2 for 2θ − 1 = c
√

τ with
c ≥ c∗ > 0.

Lemma 11 LetO ⊂ R1, T ≡ tM > 0 be fixed, and θ ∈ [ 12+c
√

τ , 1]with c ≥ c∗ > 0.
There exist a constant K ≡ K (T, c∗) > 0 and τ ∗ ≡ τ ∗(∥φ0∥H1

0∩H2 , T ) such that for
all τ ≤ τ ∗ holds

max
1≤n≤M

E∥φn∥2L2 − E∥φ0∥2L2 ≤ K (2θ − 1)τ
1
2 . (52)

Proof Recall (42), but now scale factors differently.

∥φn+1∥2L2 − ∥φn∥2L2 = (1 − 2θ)τℑ
∫

O
(∇φ̄n+1 − ∇φ̄n)∇φndx

≤ (2θ − 1)τ
1
2

(
∥∇φn+1 − ∇φn∥L2)(τ

1
2 ∥∇φn∥L2

)

≤ (2θ − 1)τ
1
2

2
∥∇φ̄n+1 − ∇φ̄n∥2L2 +

(2θ − 1)τ
3
2

2
∥∇φ̄n∥2L2 .

Now consider the above inequality for some 0 ≤ ℓ ≤ M , sum over the index from
ℓ = 0 to n, take the expectation, and use Lemma 7 (i) and Lemma 10 to establish the
assertion. ⊓4

5 Rates of convergence for the θ -scheme

Let en := ψ(tn) − φn , where ψ solves (15) and {φn} solves Algorithm 1. The error
equation then reads for all n ≥ 0,

i
∫

O
(en+1 − en)zdx −

∫ tn+1

tn

∫

O

(
∇ψ(s) − θ∇φn+1 − (1 − θ)∇φn)∇zdxds

−
∫ tn+1

tn

∫

O
(|ψ(s)|2ψ(s) − 1

2
(|φn+1|2 + |φn|2)φn+ 1

2 )zdxds (53)

=
∫ tn+1

tn

∫

O
(ψ(s) − φn)zdxdW (s)

− i
2

∫ tn+1

tn

∫

O
ψ(s)FQzdxds − 1

2

∫

O
(φn+1 − φn)z$Wndx ∀z ∈ H1

0.

The following theorem states strong rates of convergence for the θ -scheme for
initial data ψ0 ∈ L8(,;H1

0 ∩ H2), O ⊂ R1 and θ ∈ [ 12 + c
√

τ , 1] with c ≥ c∗ > 0.
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Since its proof requires properties which are stated in Lemma 10, we again consider
H2

0 ∩ H3-valued driving Wiener processes.

Theorem 1 Consider O ⊂ R1, T ≡ tM > 0 and θ ∈ [ 12 + c
√

τ , 1] with c ≥ c∗ > 0.
Let {ψ(t); 0 ≤ t ≤ T } be the solution of equation (1)with λ = −1,ψ0 ∈ L8(,;H1

0∩
H2), and drivingH2

0∩H3-valuedWiener process W. Let {φn; 0 ≤ n ≤ M} solve (28).
Then there exist a constant K ≡ K (T, c∗) > 0 and τ ∗ ≡ τ ∗(∥ψ0∥L8(,;H1

0∩H2), T ) >
0 such that for every 0 < τ ≤ τ ∗, we have

E
(
1,̃κ

max
0≤n≤M

∥en∥2L2

)
≤ KeKκτ

for any fixed κ > 0, and

,̃κ := ,̃κ,M =
{
ω ∈ ,

∣∣∣
(

sup
0≤t≤tM

∥ψ(t)∥2H1 + max
0≤l≤M

∥φl∥2H1

)
≤ κ

}
.

Let κ = K−1 log(τ−ε) for some ε > 0.Wemay employ stability properties of both
ψ and {φn} to conclude

lim
τ→0

P(,̃κ) = 1. (54)

Then Theorem 1 amounts to

E
(
1,̃κ

max
0≤n≤M

∥en∥2L2

)
≤ K τ 1−ε.

For the subset ,̃κ , by Corollary 1 and Lemma 8, there holds (τ < 1)

P(,̃κ)≥1 −
E

(
supt∈[0,T ] ∥ψ(t)∥2H1

)
+ E

(
max0≤n≤M ∥φn∥2H1

)

K−1 log(τ−ε)
≥1+ 1

ε̃ log(τ )
,

for ε̃ = ε
[
K

(
E(supt∈[0,T ] ∥ψ(t)∥2H1)+E(max0≤n≤M ∥φn∥2H1

))]−1
. Therefore, (54)

is valid.
A consequence of Theorem 1 is convergence with rates in probability sense for

iterates of the scheme. For every α < 1
2 and C > 0, we estimate

P
[

max
0≤n≤M

∥en∥L2 ≥ Cτα
]

≤ P
[{

max
0≤n≤M

∥en∥L2 ≥ Cτα
}

∩ ,̃κ

]
+ P[,\,̃κ ]

≤ K τ

C2τ 2α
− 1

ε log τ
.

Therefore, we obtain the following corollary.

Corollary 2 There exists a constant C > 0 such that for all α < 1
2 ,

lim
τ→0

P
[

max
0≤n≤M

∥ψ(tn) − φn∥L2 ≥ Cτα
]
= 0.
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The constantC > 0 used in this corollary may be determined from the constant K > 0
in Theorem 1.

Proof (of Theorem 1)We test Eq. (53) with z = ēn+1, and take the imaginary part. In
below, we address the three terms on the left-hand sides resp. the three terms on the
right-hand side independently.

LHS (first term I).Because of the identityℜ
(
a(ā− b̄)

)
= 1

2

(
|a|2− |b|2+|a−b|2

)

for a, b ∈ C, we have

I = ℑ
(
i
∫

O
(en+1 − en)ēn+1dx

)
= 1

2

(
∥en+1∥2L2 − ∥en∥2L2 + ∥en+1 − en∥2L2

)
.

(55)

LHS (second term II).We decompose the negative of term I I as follows,

−I I = ℑ
∫ tn+1

tn

∫

O

(
∇ψ(s) − θ∇φn+1 − (1 − θ)∇φn)∇ ēn+1dxds

= θℑ
∫ tn+1

tn

∫

O

(
∇ψ(s) − ∇ψ(tn+1)

)
∇ ēn+1dxds

+ (1 − θ)ℑ
∫ tn+1

tn

∫

O

(
∇ψ(s) − ∇ψ(tn)

)
∇ ēn+1dxds

+ τℑ
∫

O

(
θ∇en+1 + (1 − θ)∇en

)
∇ ēn+1dx

= I I 1 + I I 2 + I I 3. (56)

The estimates of terms I I 1 and I I 2 are similar, we use integration by parts and Eq.
(12). Taking I I 1 as an example, we know that

I I 1 = −θℑ
∫ tn+1

tn

∫

O
$ēn+1

∫ s

tn+1

(
i$ψ(ν) − i |ψ(ν)|2ψ(ν) − 1

2
ψ(ν)FQ

)
dνdxds

− θℑ
∫ tn+1

tn

∫

O
$ēn+1

∫ s

tn+1

iψ(ν)dW (ν)dxds

= I I 1a + I I 1b .

We use the embedding H1 ↪→ L6 and the stability of solution {ψ(t); t ∈ [0, T ]} and
iterates {φn; n = 0, 1, . . . ,M}; i.e., Corollary 1, Lemma 3 and Lemma 10 to obtain

I I 1a ≤
∫ tn+1

tn

∫ s

tn+1

∥$ēn+1∥L2

(
∥$ψ(ν)∥L2 + ∥ψ(ν)∥3H1+∥ψ(ν)∥L2∥FQ∥L∞

)
dνds

≤ K τ 2
(
∥$ψ(tn+1)∥2L2 + ∥$φn+1∥2L2

)

+ K
∫ tn+1

tn

∫ s

tn+1

(
∥ψ(ν)∥2H2 + ∥ψ(ν)∥6H1 + ∥ψ(ν)∥2L2

)
dνds,
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where we use ∥$en+1∥L2 ≤ ∥$ψ(tn+1)∥L2 + ∥$φn+1∥L2 . For the estimate of the
term I I 1b , we use integration by parts twice and Young’s inequality to get

I I 1b ≤ K
∫ tn+1

tn

[

∥en+1∥2L2 +
∥∥∥∥

∫ s

tn+1

ψ(ν)dW (ν)

∥∥∥∥
2

H2

]

ds

= K τ∥en+1∥2L2 + K
∫ tn+1

tn

∥∥∥∥

∫ s

tn+1

ψ(ν)dW (ν)

∥∥∥∥
2

H2

ds.

Using a property of complex numbers, integration by parts and the triangle inequal-
ity we get

I I 3 = τ (1 − θ)ℑ
∫

O
$en(ēn+1 − ēn)dx ≤ K τ∥$en∥L2∥en+1 − en∥L2

≤ 1
16

∥en+1 − en∥2L2 + K τ 2
(
∥$ψ(tn)∥2L2 + ∥$φn∥2L2

)
.

LHS (third term III). The negative of the term I I I is

−I I I = ℑ
∫ tn+1

tn

∫

O

(
|ψ(s)|2ψ(s) − |ψ(tn)|2ψ(tn)

)
ēn+1dxds

− 1
2
ℑ

∫ tn+1

tn

∫

O
(|φn+1|2 − |φn|2)φn+ 1

2 ēn+1dxds

− 1
2
ℑ

∫ tn+1

tn

∫

O
|φn|2(φn+1 − φn)ēn+1dxds

+ ℑ
∫ tn+1

tn

∫

O

(
|ψ(tn)|2ψ(tn) − |φn|2φn

)
ēn+1dxds

= I I I 1 + I I I 2 + I I I 3 + I I I 4.

The estimations of terms I I I 1, I I I 2 and I I I 3 in the above equality are similar, using
Lemmas 5 and 10, and Sobolev embeddings. Below we only present the estimate of
the first term in the above equality. We benefit from the identity |a|2a − |b|2b =
|a|2(a − b)+ |b|2(a − b)+ ab(ā − b̄) for a, b ∈ C to obtain

I I I 1 = ℑ
∫ tn+1

tn

∫

O
|ψ(s)|2

(
ψ(s) − ψ(tn)

)
ēn+1dxds

+ ℑ
∫ tn+1

tn

∫

O
|ψ(tn)|2

(
ψ(s) − ψ(tn)

)
ēn+1dxds

+ ℑ
∫ tn+1

tn

∫

O
ψ(s)ψ(tn)

(
ψ̄(s) − ψ̄(tn)

)
ēn+1dxds.
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By the continuous embedding H1 ↪→ L∞ for d = 1, we may conclude that

I I I 1 ≤ K τ∥en+1∥2L2 + K
∫ tn+1

tn
∥ψ(s)∥4H1∥ψ(s) − ψ(tn)∥2L2ds

+ K
∫ tn+1

tn
∥ψ(tn)∥4H1∥ψ(s) − ψ(tn)∥2L2ds

≤ K τ∥en+1∥2L2 + K τ

∫ tn+1

tn
∥ψ(s)∥8H1ds

+ K τ 2∥ψ(tn)∥8H1 + K
1
τ

∫ tn+1

tn
∥ψ(s) − ψ(tn)∥4L2ds.

The estimation of I I I 2 and I I I 3 are similar as that of I I I 1. So we have

I I I 2 + I I I 3 ≤ K τ∥en+1∥2L2 + K τ 2∥φn+1∥8H1 + K τ 2∥φn∥8H1 + K∥φn+1 − φn∥4L2 .

For term I I I 4 we use again the identity |a|2a − |b|2b = |a|2(a − b)+ |b|2(a − b)+
ab(ā − b̄), for a, b ∈ C to have

I I I 4 = τℑ
∫

O

(
|ψ(tn)|2enēn+1 + |φn|2enēn+1 + ψ(tn)φnēnēn+1

)
dx

≤ K τ∥ψ(tn)∥2H1∥en∥L2∥en+1∥L2 + K τ∥φn∥2H1∥en∥L2∥en+1∥L2

≤ K τ
(
∥ψ(tn)∥2H1 + ∥φn∥2H1

)
∥en∥2L2 + K τ

(
∥ψ(tn)∥2H1 + ∥φn∥2H1

)
∥en+1∥2L2 .

RHS (first term IV). By writing ēn+1 =
(
ēn+1 − ēn

)
+ ēn , we have

I V = ℑ
∫ tn+1

tn

∫

O
(ψ(s) − φn)(ēn+1 − ēn)dxdW (s)

+ ℑ
∫ tn+1

tn

∫

O
(ψ(s) − φn)ēndxdW (s)

= ℑ
∫ tn+1

tn

∫

O
(ψ(s) − ψ(tn))(ēn+1 − ēn)dxdW (s)

+ ℑ
∫ tn+1

tn

∫

O
en(ēn+1 − ēn)dxdW (s)

+ ℑ
∫ tn+1

tn

∫

O
(ψ(s) − ψ(tn))ēndxdW (s)

=: I V 1 + I V 2 + I V 3.
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For term I V 1, via Fubini theorem we have

I V 1 = ℑ
∫

O
(ēn+1 − ēn)

∫ tn+1

tn
(ψ(s) − ψ(tn))dW (s)dx

≤ 1
16

∥en+1 − en∥2L2 + K
∥∥∥∥

∫ tn+1

tn

(
ψ(s) − ψ(tn)

)
dW (s)

∥∥∥∥
2

L2
.

For term I V 2, we have

I V 2 = ℑ
∫

O
en(ēn+1 − ēn)$nWdx ≤ 1

16
∥en+1 − en∥2L2 + K∥en∥2L2∥$nW∥2L∞ .

RHS (second and third terms V).We insert the equation for φn+1 − φn to get

V = −1
2
ℜ

∫ tn+1

tn

∫

O
ψ(s)FQēn+1dxds

− 1
2
ℑ

∫

O

[
iτ

(
θ$φn+1 + (1 − θ)$φn)

− i
τ

2
(|φn+1|2 + |φn|2)φn+ 1

2 − iφn+ 1
2 $nW

]
ēn+1$nWdx

= −τ

2
ℜ

∫

O

(
θ$φn+1 + (1 − θ)$φn)ēn+1$nWdx

+ τ

4
ℜ

∫

O
(|φn+1|2 + |φn|2)φn+ 1

2 ēn+1$nWdx

− 1
2
ℜ

∫ tn+1

tn

∫

O

(
ψ(s) − 1

2
(ψ(tn+1)+ ψ(tn))

)
FQēn+1dxds

− τ

2
ℜ

∫

O
en+

1
2 FQēn+1dx + 1

2
ℜ

∫

O
φn+ 1

2 ēn+1(($nW )2 − FQτ
)
dx

=: V 1 + V 2 + V 3 + V 4 + V 5.

For term V 1, by the identity θ$φn+1 + (1 − θ)$φn = θ$(φn+1 − φn)+ $φn and
Young’s inequality we have

V 1 ≤ K τ
(
∥$φn+1∥L2 + ∥$φn∥L2

)
∥en+1∥L2∥$nW∥L∞

≤ K τ∥en+1∥2L2 + K τ
(
∥$φn+1∥2L2∥$nW∥2L∞ + ∥$φn∥2L2∥$nW∥2L∞

)

≤ K τ∥en+1∥2L2 + K τ 2∥$φn+1∥4L2 + K∥$nW∥4L∞ + K τ∥$φn∥2L2∥$nW∥2L∞ .

The estimation of V 2 is similar as that of V 1 and we have

V 2 ≤ K τ∥en+1∥2L2 + K τ 2
(
∥φn+1∥12L6 + ∥φn∥12L6

)
+ K∥$nW∥4L∞ .
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For term V 3, we have

V 3 ≤ K
∫ tn+1

tn

(
∥ψ(s) − ψ(tn)∥2L2 + ∥ψ(s) − ψ(tn+1)∥2L2

)
ds + K τ∥en+1∥2L2 .

For term V 4, we have

V 4 ≤ K τ
(
∥en∥2L2 + ∥en+1∥2L2

)
.

For term V 5, we have

V 5 = 1
2
ℜ

∫

O
φn+ 1

2 ēn+1(($nW )2 − FQτ
)
dx

= 1
2
ℜ

∫

O
(φn+ 1

2 ēn+1 − φnēn)
(
($nW )2 − FQτ

)
dx

+ 1
2
ℜ

∫

O
φnēn

(
($nW )2 − FQτ

)
dx

=: V 5
a + V 5

b ,

where

V 5
a = 1

2
ℜ

∫

O
φn+ 1

2 (ēn+1 − ēn)
(
($nW )2 − FQτ

)
dx

+ 1
4
ℜ

∫

O
(φn+1 − φn)ēn

(
($nW )2 − FQτ

)
dx

≤ 1
16

∥en+1 − en∥2L2 + K τ 2∥φn+ 1
2 ∥4L2 + K

1
τ 2

∥($nW )2 − FQτ∥4L∞

+ K
1
τ

∥en∥2L2∥($nW )2 − FQτ∥2L∞ + K τ∥φn+1 − φn∥2L2 .

Combining all estimations above, we have

∥en+1∥2L2 − ∥en∥2L2 + ∥en+1 − en∥2L2 ≤ G n +M n, (57)

where

G n :=K
∫ tn+1

tn

∫ tn+1

s
∥$ψ(ρ)∥2L2dρds + K τ 2∥$ψ(tn+1)∥2L2 + K τ 2∥$φn∥2L2

+ K
∫ tn+1

tn

∫ tn+1

s
(∥ψ(ρ)∥6L6 + ∥ψ(ρ)∥2L2)dρds + K τ∥∇en+1 − ∇en∥2L2

+ K
∫ tn+1

tn

∥∥∥∥

∫ s

tn+1

ψ(ν)dW (ν)

∥∥∥∥
2

H2

ds

+ K τ∥en+1∥2L2 + K τ

∫ tn+1

tn
∥ψ(s)∥8H1ds + K τ 2∥ψ(tn)∥8H1
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+ K
1
τ

∫ tn+1

tn
∥ψ(s) − ψ(tn)∥4L2ds + K τ 2∥φn+1∥8H1

+ K τ 2∥φn∥8H1 + K∥φn+1 − φn∥4L2

+ K τ 2∥φn+1∥6L6 + K∥$nW∥4L∞ + K τ∥φn+1 − φn∥2L2

+ K
∫ tn+1

tn
∥ψ(s) − ψ(tn)∥2L2ds

+ K
∫ tn+1

tn
∥ψ(s) − ψ(tn+1)∥2L2ds + K τ 2∥$φn+1∥2L2

+ K τ∥$φn∥2L2∥$nW∥2L∞

+ K
∥∥∥∥

∫ tn+1

tn
(ψ(s) − ψ(tn))dW (s)

∥∥∥∥
2

L2
+ K∥en∥2L2∥$nW∥2L∞

+ K
1
τ 2

∥($nW )2 − FQτ∥4L∞ + K τ
(
∥ψ(tn)∥2H1 + ∥φn∥2H1

)
∥en∥2L2

+ K τ
(
∥ψ(tn)∥2H1 + ∥φn∥2H1

)
∥en+1∥2L2

and

M n :=ℑ
∫ tn+1

tn

∫

O
(ψ(s) − ψ(tn))ēndxdW (s)+ 1

2
ℜ

∫

O
φnēn

(
($nW )2 − FQτ

)
dx .

Now consider the error inequality (57) for some 0 ≤ ℓ ≤ M , multiply it by 1,̃κ,ℓ
, sum

over the index from ℓ = 0 to n, take the maximum between 0 and m ≤ M , and then
take the expectation. The choice of this indicator function is necessary such that the
term corresponding to the stochastic integral M ℓ is a martingale, which allows the
use of the Burkholder–Davis–Gundy inequality. So we obtain correspondingly for the
first term on the left-hand side of (57)

E
[

max
0≤n≤m

n∑

ℓ=0

1,̃κ,ℓ

(
∥eℓ+1∥2L2 − ∥eℓ∥2L2

)]

= E
[

max
0≤n≤m

(
1,̃κ,n

∥en+1∥2L2 − 1,̃κ,0
∥e0∥2L2 +

n∑

ℓ=1

(1,̃κ,ℓ−1
− 1,̃κ,ℓ

)∥eℓ∥2L2

)]

≥ E
[

max
0≤n≤m

1,̃κ,n
∥en+1∥2L2

]
,

wherewe use the fact that the sum in the second line is positive because ,̃κ,ℓ−1 ⊃ ,̃κ,ℓ,
and that e0 = 0 P-a.s. The next terms to be considered are those corresponding to G ℓ.
Under the conclusions of Lemmas 3, 5, 6, 7 and 10, one knows that

E
[

max
0≤n≤m

n∑

ℓ=0

1,̃κ,ℓ
G ℓ

]
=

m∑

ℓ=0

E
[
1,̃κ,ℓ

G ℓ
]
≤K τ+K τ (1+κ)

m∑

ℓ=0

E
(
1,̃κ,ℓ

∥eℓ+1∥2L2

)
.
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In particular here, by Burkholder–Davis–Gundy inequality,

E
[

max
0≤n≤m

n∑

ℓ=0

1,̃κ,ℓ
ℑ

∫ tℓ+1

tℓ

∫

O
(ψ(s) − ψ(tℓ))ēℓdxdW (s)

]

≤ K E
[( m∑

ℓ=0

1,̃κ,ℓ

∫ tℓ+1

tℓ
∥ψ(s) − ψ(tℓ)∥2L2∥FQ∥2L∞∥eℓ∥2L2ds

) 1
2
]

≤ K E
[(

max
0≤n≤m

1,̃κ,n
∥en∥L2

)( m∑

ℓ=0

1,̃κ,ℓ

∫ tℓ+1

tℓ
∥ψ(s) − ψ(tn)∥2L2ds

) 1
2
]

≤ 1
4
E

[
max

0≤n≤m
1,̃κ,n

∥en+1∥2L2

]
+ K τ.

For the second term, one needs to prove the martingale property first, which is equiv-
alent to proving

E
[
1,̃κ,ℓ

ℜ
∫

O
φℓēℓ$ℓW̃dx

∣∣∣Ft j

]
= 0,

where $ℓW̃ = ($ℓW )2 − FQτ for j ≤ ℓ ≤ n. In fact, we have

E
[
1,̃κ,ℓ

ℜ
∫

O
φℓēℓ$ℓW̃dx

∣∣∣Ft j

]
= E

[
E

(
1,̃κ,ℓ

ℜ
∫

O
φℓēℓ$ℓW̃dx

∣∣∣Ftℓ

)∣∣∣Ft j

]

= E
[
ℜ

∫

O
1,̃κ,ℓ

φℓēℓE
(
$ℓW̃

∣∣Ftℓ
)
dx

∣∣∣Ft j

]
= 0,

the last line holds since

E
[
$ℓW̃

∣∣Ftℓ
]
= E

[
($ℓW )2

∣∣Ftℓ
]
− FQτ = 0.

Similar to before, we may estimate by Burkholder–Davis–Gundy inequality

E
[

max
0≤n≤m

n∑

ℓ=0

1,̃κ,ℓ
ℜ

∫

O
φℓēℓ$ℓW̃dx

]
≤ 1

4
E

(
max

0≤n≤m
1,̃κ,n

∥en+1∥2L2

)
+ K τ.

Combining these estimates together, we have

1
2
E

[
max

0≤n≤m
1,̃κ,n

∥en+1∥2L2

]
≤ K τ + K τ (1+ κ)

m∑

ℓ=0

E
(
1,̃κ,ℓ

∥eℓ+1∥2L2

)
.

The discrete Gronwall’s lemma then leads to

E
[

max
0≤n≤m

1,̃κ,n
∥en+1∥2L2

]
≤ KeKtmκτ.
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Using the nestedness of property ,̃κ,m ⊂ ,̃κ,n for all 0 ≤ n ≤ m one obtains

E
(
1,̃κ,m

max
0≤n≤m

∥en+1∥2L2

)
≤ E

[
max

0≤n≤m
1,̃κ,n

∥en+1∥2L2

]
≤ KeKtmκτ.

The proof is completed by letting m = M . ⊓4

The following remark discusses uniqueness of solutions of (28) on ‘large’ subsets
of ,, on subsets of which the error estimate in Theorem 1 is applied.

Remark 6 Let T ≡ tM > 0, and {φn
j ; 0 ≤ n ≤ M}, j = 1, 2 be two solutions of (28),

and denote ξn := φn
1 − φn

2 , as well as ξn+θ := θξn+1 + (1 − θ)ξn to obtain

i
∫

O
(ξn+θ − ξn)z dx − τθ

∫

O
∇ξn+θ∇z dx

−τθ

2

∫

O
F (φn

j ,φ
n+1
j )z dx = θ

∫

O
φn+1/2$nWz dx ∀z ∈ H1

0,

where

F (φn
j ,φ

n+1
j ) :=

(
|φn+1

1 |2 + |φn
1 |2

)
φ
n+1/2
1 −

(
|φn+1

2 |2 + |φn
2 |2

)
φ
n+1/2
1 .

Then put z = ξ̄n+θ , and take imaginary parts; by arguments which are similar to those
in the proof of Theorem 1, and using the algebraic identities

ξn+1/2 = 1
2θ

(
ξn+θ + [2θ − 1]ξn

)
resp. ξn+1 = 1

θ

(
ξn+θ − ξn

)
+ ξn, (58)

we arrive at

1
2

(
∥ξn+θ∥2L2 −∥ξn∥2L2 + ∥ξn+θ − ξn∥2L2

)
= I + θℑ

∫

O
ξn+1/2ξ̄n+θ$nW dx, (59)

where

I = τθ

2
ℑ

∫

O

(
|φn+1

1 |2 + |φn
1 |2

)
ξn+1/2ξ̄n+θ dx

+ τθ

2
ℑ

∫

O

(
|φn+1

1 |2 − |φn+1
2 |2 + |φn

1 |2 − |φn
2 |2

)
φ
n+ 1

2
2 ξ̄n+θ dx

=: Ia + Ib.
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We use (58) to compute for the last term in (59) that

θℑ
∫

O
ξn+1/2ξ̄n+θ$nW dx = 2θ − 1

2
ℑ

∫

O
ξn ξ̄n+θ$nW dx

= 2θ − 1
2

ℑ
∫

O
ξn

(
ξ̄n+θ − ξ̄n

)
$nW dx

≤ 1
4
∥ξ̄n+θ − ξ̄n∥2L2 +

(2θ − 1
2

)2
∥ξn$nW∥2L2 .

(60)

For the first term Ia we have by (58)

τθ

2
ℑ

∫

O

[
|φn+1

1 |2 + |φn
1 |2

]
ξn+1/2ξ̄n+θ dx

= τ

2
ℑ

∫

O

[
|φn+1

1 |2 + |φn
1 |2

] (
2θ − 1
2θ

ξn
)

ξ̄n+θ dx

= τ (2θ − 1)
4

ℑ
∫

O

[
|φn+1

1 |2 + |φn
1 |2

]
ξn(ξ̄n+θ − ξ̄n) dx .

In order to estimate the term Ib we use again (58) to calculate for the relevant term

|φn+1
1 |2 − |φn+1

2 |2 = ξn+1φ̄n+1
1 − φn+1

2 ξ̄n+1

= 1
θ
(ξn+θ − ξn)φ̄n+1

1 + ξnφ̄n+1
1 − 1

θ
(ξ̄n+θ − ξn)φn+1

2 − ξ̄nφn+1
2 .

We may then use H1(O) ↪→ L∞(O) to estimate

I ≤K τ 2 max
1≤ j≤2

(
∥φn+1

j ∥4H1 + ∥φn
j ∥4H1

)
∥ξn∥2L2 +

1
4
∥ξn+θ − ξn∥2L2

+ K τ max
1≤ j≤2

(
∥φn+1

j ∥2H1 + ∥φn
j ∥2H1

)
∥ξn+θ − ξn∥2L2 .

Now multiply (59) with 1,̂κ,n+1
, where

,̂κ,n+1 =
{
ω ∈ ,

∣∣∣ max
0≤ℓ≤n+1

∥φl∥2H1 ≤ κ
}

⊃ ,̃κ,n+1.

Note that again ,̂κ,n+1 ⊂ ,̂κ,n . We then obtain from the above considerations, for
κ ≤ τ−α (α < 1) and τ ≤ τ ∗ sufficiently small the estimate

1,̂κ,n+1
∥ξn+θ∥2L2 ≤ 1,̂κ,n

∥ξn∥2L2

(
1+

(2θ − 1
2

)2
∥$nW∥2H1 + K τ 2(1−α)

)
. (61)

We may now proceed by induction: for n = 0 we have ξ0 = 0 P-a.s. on ,̂κ,0, in
particular. Therefore, we may deduce θ21,̂κ,1

∥ξ1∥2L2 = 0, and hence ξ1 = 0 on ,̂κ,1.
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Correspondingly, we find

1,̂κ,n+1
∥ξn+1∥2L2 = 0 P-a.s. (0 ≤ n ≤ M).

For ,κ := ,κ,M , (54) implies limτ→0 P(,̂κ ) = 1 for κ ∝ log(τ−ε) for every
0 < ε < 1, and thus we retrieve uniqueness of solutions for the limiting problem
(1) with λ = −1. — In the practical studies performed in Sect. 6 we had that all
simulations are included in ,̂κ for some moderate κ = O(1); see Fig. 2c.

6 Numerical experiments

In the previous sections, we showed stability (O ⊂ Rd ), and convergence with local
rates (O ⊂ R1) for the θ -scheme (28) and the defocusing nonlinearity (λ = −1) in
(1) with spatially regular noise. The following example is chosen to computationally
study stability and rates of convergence for different values θi ∈ { 12 , 1

2 + √
τ , 1} in

the θ -scheme (28) to solve the stochastic cubic Schrödinger equation (λ = −1) with
colored in space noise. In order to better clarify the interplay of nonlinearity and noise,
we scale the noise in (1) and (28) by a parameter ν ∈ R.

Example 1 Let O = (−1, 1), T = 1
4 , and ψ0(x) = sin2(πx). For 1 ≤ L ≤ 8, and

{βℓ; 1 ≤ ℓ ≤ L} a family of independent R-valued Wiener processes, consider the
real-valued Wiener process W ≡ {Wt ; t ≥ 0}, W (t) = ∑L

ℓ=1
1
ℓ sin(πℓx)βℓ(t), and

ν =
√
2 in (1). We use the θ -scheme (28) with values θ1 = 1

2 , θ2 = 1
2 + √

τ , and
θ3 = 1 for the numerical approximation. Let Iτ = {tn; 0 ≤ n ≤ M} be the uniform
discretization of [0, T ] of size τ > 0, and Th be the uniform triangulation of O of
size h = 1

256 , on which the lowest-order H1-conforming finite element discretization
of (28) is realized. The reference values (for Fig. 1a, c) are generated for the smallest
mesh size τ̃ = 2−14. Newton’s method is used, and 500 realizations are chosen to
approximate the expectations.

(a) (b) (c)

Fig. 1 a Rates of convergence for the deterministic case in the norm ∥ψ(T ) − φ[ Tτ ]∥L2 (d = 1, T = 1
4 ,

ν = 0, h = 1
256 , τ ∈ {2−i ; 7 ≤ i ≤ 11}). b Trajectory at x = 0 for L ∈ {1, 4, 8} (θ = 1

2 + √
τ ).

c Rates of convergence for the stochastic NLS driven by W (t) = ∑L
ℓ=1

1
ℓ sin(πℓx)βℓ(t) in the norm

(
E[∥ψ(T ) − φ[ Tτ ]∥2L2 ]

)1/2 (d = 1, T = 1
4 , ν =

√
2, τ ∈ {2−i ; 7 ≤ i ≤ 11})
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(a) (b) (c)

Fig. 2 a Squares of (averaged) L2-norm for θ ∈ {θ1, θ2, θ3} (d = 1, T = 1
4 , ν =

√
2, L = 8, h = 1

256 ,

τ = 2−8). b Squares of the (averaged) L2-norm for θ = 1
2 + √

τ and different step sizes τ (d = 1,

T = 1
4 , ν =

√
2, L = 8, h = 1

256 , τ ∈ {2−i ; 7 ≤ i ≤ 11}). c Distribution of max0≤n≤M ∥∇φn∥L2 for

θ = 1
2 + √

τ , with median (5.1) and lower (4.8) and upper (5.5) quartile (d = 1, T = 1
4 , ν =

√
2, L = 8,

τ = 2−10)

We consider ν = 0 first: Fig. 1a shows order 2 for the L2-error of the θ -scheme
for θ = 1

2 ; the order drops to 1.5 for θ = 1
2 + √

τ , and to order 1 for (θ = 1). The
observations are different in the stochastic case (ν =

√
2) where different sorts of

Wiener processes depending on L are used: as is displayed in Fig. 1c, the strong order
of convergence for θ ∈ {θ1, θ2} drops from approximately 1 to 0.5 for values 1 to 8 of
L . The choice θ = θ3 is exceptional since we obtain the approximate order 0.5 for all
values of L . Fig. 1b compares typical trajectories for L ∈ {1, 4, 8}.

The box plot in Fig. 2c complements this result: the set ,̂κ :=
{
max0≤n≤M ∥

∇φn∥L2 ≤ κ
}
is , for values of κ exceeding approximately 6.5. Fig. 2a, b study

the conservation of mass for the three schemes: we observe a mild decrease for θ =
1
2 + √

τ , which is far more pronounced for θ = 1.
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