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Abstract We propose a 6-scheme to discretize the d-dimensional stochastic cubic
Schrodinger equation in Stratonovich sense. A uniform bound for the Hamiltonian of
the discrete problem is obtained, which is a crucial property to verify the convergence
in probability towards a mild solution. Furthermore, based on the uniform bounds
of iterates in H?(&) for ¢ C R!, the convergence order % in strong local sense is
obtained.
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1 Introduction

Let 0 C R be abounded domain with C? boundary. We study different discretizations
for the following stochastic cubic Schrodinger equation with multiplicative noise of
Stratonovich type (A € {—1, 1}),
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idy + (AY + MY PY)dt =y odW(t)  in O == 0 x (0, T),
¥ =0 ondl x (0, 7T), (1)
¥ (0) = Yo in0.

Here, W denotes a real-valued trace-class Q-Wiener process. This problem was
e.g. studied in [9] to motivate the possible role of noise to prevent or delay col-
lapse formation; see also [6] for the case A = 1. It is due to the special type of the
multiplicative noise that the mass of solutions of (1) is preserved P-a.s.,

Iyl = Yol V2 e[0,T], 2

which is similar to the deterministic case. For the deterministic cubic Schrédinger
equation, the Hamiltonian 57 () = % Jo IV 12dx—% [, |¥r|*dx is another invariant
quantity, which is also essential to construct a solution to this problem. In the stochastic
case (1), it is no longer preserved and satisfies (see [3])

t
AW @) = H (o) — 3 /0 /ﬁ YVYd(VW(s))dx
t
+%/0/ﬁ|1ﬂ|22€:|VQ%eg|2dxds P—as. 3)

Corresponding uniform bounds for its expectation in the case of Galerkin approxima-
tions of (1) and & = R? then allow a compactness argument to construct a global
H!-valued mild solution for » = —1 in [3]; and for the case A = 1 with the nonlinear
term being replaced by |v|>? ¢, the condition for global existence is 0 < o < %.

A relevant work on the numerical analysis of (1) and & = R is [4], where iterates
{¢%: n € N} of the temporal discretization with underlying mesh of size 7 > 0
covering [0, T'] are studied,

. 12, AT 172
l(d)grl —¢2)+‘L’A¢)’;+/ +7(|¢7€+1|2+|¢2|2)¢Z+/

= OR(PROR@ETHGETPAW (= 0), 9% = o, (4)

1
where ¢2+7 = %((l)ﬁ + ¢;+1) and A, W = W(t,4+1) — W(t,). This scheme is con-
structed in a way that iterates preserve the L2-norm, i.e., P-a.s. ¢l = lIvollp2
for n € N. However, such a bound is not sufficient for the use of compactness meth-
ods to construct the H!-valued solution of (1), which requires a uniform bound for
the Hamiltonian 7 (¢}) = %fﬁ |V |* dx — %fﬁ ¢ |* dx for every finite time

T > 0,1.e.,
]E[ max, %(q&@] < C(T). &)

0<n<[T]

Since the scheme (4) with g = 1 is not known to yield this property, a trun-

cation concept is applied in [4] where e.g. Or(-) = p(%), for some p €
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C((=1, 1); [0, 1]) such that P}[,I,L]E 1, and some fixed R € R™: in this case,
the right-hand side in (5) needs to bze replaced by a constant Cg(T). By tending
771, R — o0, it is shown in [4, Theorem?2.2] that iterates construct the mild solution
of (1), where the convergence of the iterates is in probability sense.

This practical construction of the mild solution of (1) is valid for initial data
having a finite Hamiltonian, and a given real-valued trace-class Q-Wiener process.
In [5], the authors study rates of convergence of the following different time semi-

discretization

[~]

n A n n n n n n
(O k) T A 0n (0h)Or (857 ) (077 P10k )0} = o, W
(6)

to approximate the stochastic Schrodinger equation in Itd sense
idy — (MY + MY PY)dt = dW (@) on(0,T) xR, ¢(©) =vo, (7)

for more regular initial data ¥y € Hgﬂ , 8 > max{%, 1}, and a more regular Q-
Wiener process W. The view-point to achieve this goal is different to the one above:
a truncation 6 () with R > 0 of the drift term is employed which hinders a (direct)
bound for the Hamiltonian but allows to apply semigroup methods for the convergence

analysis of this semilinear SPDE with Lipschitz drift: for vy € H%“ L8 > max{%, 1},

the (locally) existing mild solution ¥ is approximated at a rate % in the following
sense,

fim P[max [¢" — ()l = o3| =0, ®)
C—o0 n=0,...,K*
see [5, Theorem 5.6].

A further step towards constructing efficient discretizations of (1) is the work [7]
which uses a Lie-type time-splitting method. This scheme amounts to solving a family
of timely explicitly discretized SODEs for all x € R?, and a linear PDE with ran-
dom force. Iterates {£"; n € N} preserve mass, but again no uniform bounds for the
Hamiltonian are known to hold in the case ¥y € H', thus leaving unclear convergence
behavior towards a solution of (1) under minimum regularity requirements. However,
some strong rates are obtained in the presence of regular data. The strategy to validate
this result is again based on a proper truncation argument.

The main goal of this work is to propose and study a new discretization (9) of (1)
which inherits a uniform estimate for the related Hamiltonian,

(67— 9") +T(OAG™ 4 (1= )AG) + T (6 4 197 )
=¢" M 2AW (n>0). ©)

For the case 6 € [% + ca/T, 1] withc > ¢* > 0,and & C R4 a bounded Lipschitz
domain, A = —1, and initial data o € L?(Q; H}(0)), iterates {¢"; n € N} satisfy

E[ max J(@")] = C(c".T). (10)

0=<n<[7]
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In order to derive this result, we multiply (9) with ¢" ! — ¢, integrate in space and
then take the real part of the resulting equality. It is then obvious from the stability
analysis which leads to Lemma 7 that the parameter 6 has to be chosen from the range
[% + ¢ /7, 1] (¢ = ¢* > 0) to generate enough numerical dissipativity to control
discretization effects of the noise term. This uniform boundedness of the discrete
Hamiltonian allows a brief and concise approach by a compactness argument which
constructs a family of solution processes related to (9) converging to the mild solution
of (1) for & c R!; see Remark 4. No additional truncation concept is needed here
— which is a relevant tool in [4,5] (see also (4) and (6)) to compensate for the lack
of (10) in the case 6 = %; we remark that the involved truncation and discretization
parameters require a proper balancing for the convergence proof in [4,5]. Finally,
Lemmas 9 and 11 favor the choice 6 = % + c4/T in order to guarantee an approximate
conservation of the expectation of the I.>-norm of iterates.

In the second part of this work, we study pathwise approximation of the solution (1),
which requires initial data ¥ € L8 (2; ]HI(I) HHZ). In particular, we are interested in the
concept of local rates of convergence for iterates of (9), see [2], which is stronger than
that of rates in probability given above, and requires to deal with the discretization of
the nonlinear drift term directly. A relevant prerequisite for this purpose is to provide
strong stability results for the non-truncated original problem (1), and also for the
discretization (9). However, it is due to the interaction of the cubic nonlinearity with
the stochastic term that we are only able to provide the corresponding uniform bounds
in higher spatial norms for d = 1. These estimates are then essential for the error
analysis, which allow to establish optimal strong convergence rates on large subsets of
2 (see Theorem 1). An immediate consequence of this result is the following version
of rate of convergence in probability (see Corollary 2),

3C>0: lim P[ max (¥ (tn) — ¢" > = cf“] —0, (11)
—0 0<n<M

foralla < % Note that C is a constant which does not depend on « and 7.

This paper is organized as follows. In Sect. 2, some preliminaries are stated, includ-
ing the notion of a mild solution of (1) and some properties of the linear Schrodinger
semigroup {S(#); ¢t > 0}. In Sect. 3, uniform bounds in higher ‘spatial’ norms,
together with the Holder continuity in time for solutions {y/(¢); ¢ € [0, T]} of Eq. (1)
are obtained. In Sect. 4, the bound (10) for iterates {¢"*; 0 < n < M} of (9) is shown
(d > 1), and uniform bounds in higher spatial norms are proven (d = 1). These results
in Sects. 3 and 4 are used in Sect. 5 to establish strong rate of convergence % for iter-
ates of (9) in local sense, and in the probability sense (11) for & C R! as a simple
consequence. Some computational studies are presented in Sect. 6 which complement
the theoretical results.

2 Preliminaries

Throughout this work, let W be a Q-Wiener process defined on a given filtered prob-
ability space (2, Z, {Z}o<i<r, P), with values in the real-valued Hilbert space
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U = L2(&, R). Here Q € Z(U) is a non-negative, symmetric operator with finite
trace.
Equation (1) with . = —1 has an equivalent It6 form (see [3])

idy + Aydt — (W )2y — %wFQ)dz = YdW(1). (12)

Here Fo(x) = ZKGN(Q%Q (x))? for x € O, with {eg} ey being an orthonormal basis
of U.
To study (12), we introduce % (U, Hi), the space of Hilbert-Schmidt operators

from Hilbert space U to another Hilbert space H, where the corresponding norm
1

is defined by IIQ% oW m = (ZZGN IIQ%EgIIIZHI) ’ In the following analysis, we

always assume Q% e AU, H3(0)).
We recall the mild solution concept for the Itd equation (12) from [3,5].

Definition 1 An H(l)—valued {Z:}o<:<r-adapted process {y(¢); t € [0, T}, is called
a mild solution of problem (12) if for V ¢ € [0, T'] holds P-a.s.

t
V() = SOYO) — i /0 S = P () Pydr

t t
—%/ St —nr)y(r)Fodr — i/ St —r)Y@r)dw(r), (13)
0 0

where § = {S(¢); t € R}, with S(r) = ¢’ denotes the semigroup of the solution
operator of the deterministic linear differential equation

iV AN =0 inGr, p=0 ondfxO.T), YO =vo ind.

dt
(14)

Remark 1 Due to the regularity estimate given in Corollary 1, and to [8, Proposition
F.0.5, (ii)], we also have the following representation for the mild solution of (12): for
everyt € [0, T],and all z € H(l), there holds P-a.s.

i/ w(t)zdx—/t/ Vl//Vzdxds—/l/ (|1ﬂ|21/f—inQ)zdxds
o 0o Jeo 0o Jo 2

t
=1 wozdx+/ / YzdW(s)dx. (15)
% 0 JoO

We will use this form in the error analysis in Sect. 5.

We end this section with some useful properties of {S(¢); ¢ > 0}, which will be needed
in Lemmas 5 and 6 (see [5] for a corresponding study in the case & = R?).
In the following, the constant K > 0 differs from line to line; it depends on the

.. 1
initial value v, T, Q2, and &, but not on t, n.
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Lemma 1 The semigroup {S(1); t > O} is an isometry in L>(©), and it holds that
1
IS@) = 1dll gz, 12y < K12,

where K does not depend on t.

Proof To show the isometry property of S(r), we multiply (14) by v, integrate in O
and take the imaginary part. We get

v Oli2 = lIvollr,

which implies that [|S(#)[| ¢ 2, 12) = 1.
Next, let g € H(l)(ﬁ ). By multiplying (14) by Ay, integrating in &'y and taking the
imaginary part, we easily deduce ||S(¢) || 2, HY) = 1. The assertion (i) is equivalent

to |y () — Yollz = ||(S(t) — Id) Yollpz < K||1po||H1t%. In fact, we may conclude
from (14) that

t
i/ Y()Edx —i/ Yokdx = / / VY (M) VEdxdr V& e H(l)(ﬁ).
2 o 0 Jo
We choose & = (1), and take the imaginary part to get

1 2 2 2 ~ ! T
(WO = 1ol + 1w ) = voi) =5 [ [ vwayviroasas
t
< [ 1TV Oy Oladi < K.

The proof of the assertion is finished. O

3 Stability results in higher norms for more regular initial data

In this section, we study stability properties of solutions of (1) with A = —1. A formal
application of Itd’s formula shows that the pathwise L2-norm of the solution of (1) is
preserved as in the deterministic case. The Hamiltonian .7 (v ), however, is no longer
preserved for (1), but one can obtain its boundedness in L”(€2) for any finite time
T > 0; see Lemma 2. For yg € L?(; H(l) NH2(0)) and & C R', we show that the
solution is also H} NH?(&)-valued and that its L (Q; L>(0, T; H} NH?(&)))-norm
is bounded; see Lemma 4. Those bounds in strong (spatial) norms for the mild solution
of (1) may be used to prove Holder regularity with respect to time in strong norms;
see Lemma 5 and 6. They are useful in Sect. 5 to establish rates of convergence for
the 6-scheme (9).

In the following lemmas, the application of It6 formula is formal; the argument
can, however, be made rigorous by using a truncated version of (12), and passing
to the limit after It6’s formula has been applied; we refer to [3] for a corresponding
argumentation.
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Lemma 2 Let & C R? be a bounded Lipschitz domain, 7 (o) € LP () for some
p = L with g = 0 on 00, and ¥ be a mild solution of (12). Then there exists a
constant K = K(p, T) > 0 such that

i) swp E[(@)"] <K

0<t<T
G E| swp ()] <k

0<t<T

Proof Step 1: Case p = 1. Applying expectation to (3), we have

() = E(#an) + 55 / / iy VQ2e[2dxds).
Since
/ﬁ D> VQzecPdx < ¥, Y IVQEecls = pIW I + 190 g

(16)

we get the following estimate for E (57 (¥ (1))),
14 ! 4
E(# W) = E(#W0) + KtIVQ2 Iy, gy o) +E /0 W11 uds.

From the definition of the Hamiltonian 7°(y), we know that ||1/f||IL4 < 47),
which leads to

T
sup E(%(w(t))) <K+ KE/ S (s))ds.
0

0<t<T
Gronwall’s Lemma then implies the assertion (i) of the lemma.
To show assertion (ii) for p = 1, we take the supremum over ¢ € [0, T] in (3)
before taking the expectation. If compared to assertion (i), the main difference is

the appearance of the supremum of a stochastic integral, whose expectation can be
estimated by the Burkholder—Davis—Gundy inequality:

E[O;@T ( - S/Ot/ﬁl/_fVI/fd(VW(S))dx):I
< KE[(/OT W2V I2.1VQ2 1, L4)ds)%]
1

! 2 2 2
= KE[ sup V9@l /0 112 1VQ2 12y, 1oyds) |

0<t<T
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T 1
E[ sup 1V90I3.]+ KE / (W1 + 19QE I, 4y 10 )ds

0<r<T

T
< 4E| sup AW)|+KE / (W) +1VQP Ny sy )ds, (A7)

0<t<T

where in the last line we use ||V1,ﬁ||]Lz < 22() and ||1ﬁ||]L4 < 477 (). Then
proceeding as in the proof of assertion (i), we can absorb the first term on the left-
hand side, and use Gronwall’s lemma.

P
Step 2: p > 2. We apply Itd’s formula to (%(1&)) , where 77 (¥ (t)) satisfies (3).

(2wn) = () +3 / (ran)™ [ IWIZZIVQzeeIdedS
1 /! p—2 - 1
+3 /O p(p—l)(%(w) Zel(“s /ﬁ wvaQZeedx) ds
+%/Ip(%(¢))p_l/ FVYA(VW(s))dx. (18)
0 7

Since the last term on the right-hand side vanishes after applying expectation, there
remains to estimate the term

7 1 2 2 L2 2
> /ﬁ IVUVQIedx) = IWIEIVQI I, gy 1o I VY12,

2 1 3
= K(#W)) +1VQ Iy s (19)

Because of (16), (19), and Holder’s inequality, we have

sup E(%(w(z)))p <K+ KE/OT (%ﬂ(w(s)))pds

0<t<T

We may now apply Gronwall’s lemma to obtain the estimate (i).
The assertion (ii) for p > 2 now uses arguments similar to (17), so we skip the
details here. O

Remark 2 In [3, Theorem 4.6], a uniform bound for the Hamiltonian is used to con-
struct a global unique solution with continuous H' (R¢)-valued paths for Eq. (1) with
A = —1lord = 1. To accomplish this result, the unique local mild solution is con-
structed by a contraction argument, which is then shown to be global by a bound
for the Hamiltonian. We can follow the same strategy in [3] to construct the global
unique mild solution with continuous H(l)(ﬁ)-valued paths in the case of a bounded
Lipschitz domain ¢ c R!. It is an open problem to prove existence and uniqueness
of a continuous solution in the case of a bounded domain in higher dimensions.
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Corollary 1 Let p > 1, 6 C R? be a bounded Lipschitz domain, E (7 (¥9))" < oo
such that Y9 = 0 on 00, and  be a mild solution. There exists a constant K =
K(p, T) > 0 such that

. . .
Q) sup (Envwa)nw + E||W)||L4) e

. 2 4

Gy E[ sip (1IN 01 + v 0l%)] < .
0<t<T

In order to verify improved stability properties for the solution of (1), we have

to restrict to bounded domains & C R!; the technical reason for this restriction is
discussed in Remark 3 below.

Lemma 3 Let & C R!, and suppose that o € L?P(; HéﬁH%ﬁ))forsome p=>1
Then there exists a constant K = K (p, T) > 0 such that

sup E(IwEh) < K. 20)

0<t<T

Proof To simplify notations, we present the proof of (20) for the case p = 1. We
formally apply 1t6’s formula to the function f (1 (-)), where

fO) = /ﬁ |(Id — Ay |*dx + m/ﬁ ((Id — M)V |Y P,

since for the leading term we have ||1p||]%12 < |ldd — A)WHiz < 2”1//”]?-112’ ie., its

square-root is equivalent to the norm H(l) NH2. We use (12) to get

F@ @) = £(o) +/0t Dr) (18w — i Py — Su Fo)ds
+ % /0 t Te| D2 f (W) (=i Q) (—iyQ2)* |ds + /0 DI iAW)
= f(Yo)+1+11+111, (21
with the first and second order derivatives
Df () (u) = 2m/ﬁ ((Id = M)Y) (Ud — Ayu)dx
+ Sﬁ/ﬁ ((Id — M)y (Yu + Yi)dx
+9’t/ﬁ ((Id — D)) 1Y [Fudx

+ m/ﬁ ((Id — A1y 1*P))iidx  Yu e CF(0),
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and

D*f(¥)(u,v) = 2m/ ((Id — Aid) ((Id — A)v)dx

+ 2% ((Id A) Y)Yt (av)dx
+290 [ (Ud — D)Y)uR(Pv)dx
+20 [ (Ud — D)y R(Pv)dx

+2% [ ((Id — A)g)R(fu)vdx

\\%\%\%\\%

+0 [ (Ud = A)i) |y Pvdx

+ 9% [ (Ud = D)D)y udx

%\%\

+ 29{/ ((Id — A)D)Ru)yprdx Yu,v € CP(O).
%

For the term f (1), we use the continuous embedding H! < L,

E(f(Y0) < 2E ol +KE(IVollm¥olis) < KE[Wolip+KElyoldy < K.

The term [ is the most difficult one: by the expression for Df (1) above, we may
represent it in the following form.

' ] 1
I =2/ m/ ((1d — A)xﬂ)((ld —AYAY — iy Py — —wFQ))dxds
0 o 2
‘ T 1
+ [0 [ (@a-mpyp[iasy - it - Sure)
0 1%
_ _ 1 -
Y (i A + il — S Fo) |dxds
t
+/0 m/ﬁ ((Id — DY) WP GAY — iy Py — %WFQ)dxds

t _ _ 1 -
+/0 m/ﬁ ((Id — M)W 1P (=i Ay + iy 1> — SV Fo)dxds

= 1"+ 17+ 1P+ 1%

We treat terms 1!, 1% and I* together, for they have troublesome terms which cancel
each other. For this purpose, we first consider terms 7!, I* and 7% independently. For
the first term in /, we compute
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I'=— 2/t SH/ i((Id — M)y ((Id — DY 1*¥))dxds
0 1%

— i d—ANy)((Id — dxd
/Oih/ﬁ((l M) ((Id — A (Y FQ))dxds

=:I;+Ig.

We conclude that
1 ! 2 ! 2
E()) <E / 1912l Follzds < KE / 1 112ds.
0 0

By R [, i((Id— M)y |*¥) |y *dx = 0, we can rewrite the term I* in the following
two parts,

t
It = /0 9 /ﬁ (=) (d = D)y *y) Avdxds
t _ 1 _
+/0 m/ﬁ ((d = M)y PGy PG — 57 Fo)dds
t
=/ m/ (=) ((Id — DY 1*¥)) Ayrdxds
0 17

I -
- 5/ 57{/ ((1d = MY 1Y) (f Fo)dxds
o Jo

= I} + 1}

Summing the terms %IJ and I leads to

—/0 S]i/ﬁi((ld— M) (Ud = D) 1*Y))dxds
—/t m/ i((Id — A1 1*¥)) Aydxds

/ / ((1d = M) (Y 1*Y))dxds

114

This term and the term / ,f can be bounded by integration by parts, using the embedding
H! < L°, and Corollary 1, that is

1 /! _
EUS+ 1) == /0 9 /ﬁ (W P¥)((Id — M) Fo))dxds

t
—/ zn/ i((Id — DY) (Y *y)dxds
0 0

@ Springer



Stoch PDE: Anal Comp

t t

sKE/O ||¢Fq||Hz||¢||]3Lods+KE/0 1 il 19117 sds
t

< KE/O A IS, + 19 12 )ds

13
<K+ KE [ 101ads
0

Next, we consider the term 72 and use the identity ab+ab = 2% (ab) fora, b € C to
rewrite its part

_ 1 - _ 1 -

YAy — iy Py — SVFQ) + Y (—iay + iy*y — SV FQ)
_ _ _ 1

= iy (AY) — iY(AY) + 2R (P (—ily Py — SV Fe))

=iy (AY) — iy (AY) — || Fa.

Then the term 72 equals to

t
12=—/O E}t/ﬁ((ld—A)l/_f)mwzFdeds
t
+/ m/ i((Id — DY) |y > Aydxds
0 0

t t
+/ m/(—i)|1/f|2¢mpdxds—/ m/ (=) (AYY) dxds
0 % 0 %

=1} + 17,

where 12 = — fot N [, (—=i)(Ayy)>dxds, while I} denotes the remainder terms in
2.
We rewrite the term 17! in the form

11; =—2/ m/ iVl/_/V(h[flzl/f)dxds—/ m/ iAYA(IW Y )dx.
2 0 o 0 Vi

We insert the identity A(|a|?a) = 2Aala|> + 4|Val|*a + 2(Va)?a + (a)*Aa, for a
complex-valued function a(x) € C into the second integral in the above equation, add

the terms %1 Land 12 to get

1
s

t
e :—2/ %/ iV V(Y2 y)dxds
2 0 o

—2/0tm/ﬁi(1ﬁmﬁ(vw)2+2wm&|vw|2)dxds.
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To estimate this term, we use integration by parts, Holder inequality, the embedding
H' < 1> for ¢ c R! and interpolation of IL* between I.? and H!,

1 ‘ _
E(§1a1+1§) =—2E/ m/ iVUV (¥ > ¥)dxds
0 %
t
—2/ m/ i(xp(vw)ZAx/}+2xp|v¢|2m/})dxds
0 1%
t t
sKE/O ll*ﬂll‘ﬁldHKE/O W1 IV 1] 4l
t
+KE/ [INARYE
0
t t
sKE/O ||w||§ﬂ.ds+KE/0 IV 119ds
t
+KE/0 1AV, ds

t
<K+ KE/ IAWIE . ds, (22)
0

where for the last inequality we use Corollary 1 and Eq. (2). Here, to estimate the
second integral in (22), we have to restrict to &' C R

After using R(i|Ay|?|¥|?) = 0, the estimate of term Ib2 is similar as before, and
we have

t
E(UD) <K + /O 1 12ads. (23)

Because of 0 (i|AY|?|¥|?) = 0, the term I3 can be estimated in a similar way by
using Holder’s inequality and some embedding inequalities. It can be bounded by
K+KE [5 1¥lipds.

By the expression for D? f () and since Sﬁ(lﬁ(—iWQ%)) = 0, we have for term
11,

11 Z/’ m/ Tr[((ld — A)(—iy Q) ((Id — A)(—in%))]dxds
0 %
+/0 ”*/ﬁ“:(“ d = BTV UR((—iYQH(—iyQH) |dxds

+/ m/ Tr-((ld—A)(—il/fQ%))|1p|2(—i1//Q%)]dxds
0 1% o

+/0 S}t/ﬁTr:((ld—A)(—me%))wm(¢(—in%))]dxds.

The estimate of term /7 is similar to that of term I3, using Holder’s inequality and
embedding estimates.
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Because of the property of the It6 stochastic integral, we know that the expectation
of term /11 equals to 0.
Combining these together, we have

sup Elly ()3 < [E(f )| + ‘Efﬁ/ﬁ((ld — MY 0)) 1Y ()Y (1)dx

0<t<T

1 T
<= sup E||w(r>||§{2+K+K/ E|y(9)ll3pds.
0

0<t<T

where in the last step, we use continuous embedding H' < 1.6 and Corollary 1. Then
the conclusion follows from Gronwall’s lemma. O

Remark 3 There is only one term that requires a ‘1D-argument’, which is the second
term in (22),

—2/t m/ i(gﬁ(lefAlﬁ+2¢|V¢|2A¢)dxds
0 178
= —8/ %/ iy |V |>Avdxds.
0 178

Lemmad Let 0 C RY, and suppose that o € L*P(S2, H(l) N H2(0)). Then there
exists a constant K = K (p, T) > 0 such that

E( swp Iy )Ih) < k. 24)

0<t<T

Proof If compared to Lemma 3, the main difference of proof is the appearance of
the supremum of stochastic integrals /77 in (21), whose expectations do not vanish
anymore. By the expression of Df (), we know

t
II1] :2/ m/ ((Id — MY)(Id — A)(—ipd W (s))dx
0 %
t
+/ ﬂt/ﬁ((ld— M)W (—ipd W (s))dx
0
t
+/ m/ﬁ((ld—A)|¢|21p)(i¢dW(s))dx. (25)
0

We deal with the first term in /77 as an example, since the other two terms can be
done similarly with Burkholder—Davis—Gundy inequality as well.

t
E[ swp 1 | Sﬁ/ﬁ((ld— A ((1d — A)(—ide(s)))dxH]iz]

0<t<T
)4

T
<E 41072 dt|*
< B[ | 114 i,

@ Springer



Stoch PDE: Anal Comp

L
2

]

T 1
< E[ sup 1wl ( /0 1 131Q° Iy, . g2,

0<t<T

1 2 g 2
<<E D) +KE Dl hdt.
= 5E( s WOIR) +KE [ ol

Similar as the proof of Lemma 3, Gronwall’s lemma leads to the assertion. O

Lemma5 Let p > 1, ¢ C R! and v € L*’(R, H(l)(ﬁ’)). There exists a constant
K = K(p) such that

E(lv@) = v@If) < Kin—nl”  O<n=n=T).
Proof From Eq. (13), we have the following expression for ¥ (t1) — ¥ (f2),
V() — () =(St) — SE))vo
n i
i [T s = (= 1wPy + SuFo)ar
0
%) :
= [ st == 1Py + Suro)ar]
0

131 4]
- z[/ Sty —r)YdW(r) —/ Sty — r)tﬁdW(r)]
0 0
= I1+11+1II. (26)

Because of Lemma 1,

IS@) = S gy, 12y = 1S@)(SW —02) = 1D gm), 12)
< ||S(f2)||g(H(1), HY) 1St — 1) — Id”g(ﬂ-ﬂ(l), L2

1
< K|y —n|2,
such that

ENIIE < KEIolighin = nl” < Kin = nl”.
We divide /1 into two parts,
n ) l
11 :i/ (St —r) =82 —1)) (—IWI ¥+ EIPFQ) dr
0

1 ;
+i/ St = WPy + 5 Fydr
n

=114 + 115, (27)

@ Springer



Stoch PDE: Anal Comp

We use H! < 1% to estimate 114 as follows,
A L[ 2 i
1A < Kl —mz/o I~ 1 PY + 5 Folls,dr

1"
< Kln —mz/ Ay + 1 lgg)dr,
0

hence E|| 114 ||]i[2} < K|t — 1;|? follows from (2) and Corollary 1. By the embedding

H! < 1.2, the estimation of 115 is

1110 < K/

3]

5

2 i n
=y iy + 51//FQ||]L2d” < K/ (III#II%II + 1Y llg)dr,
1

thus E||IIB||H2£ < K|ty — 1|*P. We split term I11 as (27). Based on the maxi-
mal inequality for stochastic convolutions, the equality S(#y — r) — S(t, — r) =

(S(tl —t) —1 )S(12 —r), Lemma 1 and Lemma 3, the first stochastic term may be
estimated as follows,

%) 2[7
E(l /0 (St =) = St = MYdW (O7)

5]
<ke([ @ -niviar)

< K|t —nl|”,

and the estimate of the second stochastic term is
31 2p 1 2 P
(1 [ st -rwawoit) < £( [ widar)” < i - ol
t 5]

Thus we have

2
ENIT < Kin — 0P

Inserting all these estimates into (26) establishes the result. O

From Lemma 1, i.e., ||S(¢1) — S(t2)||$(H(|)’ 12) < K|t — t2|%, we may conclude
that if we want to show the Holder continuity property of the solution of (1) in the
H(l)(ﬁ )-norm, we need the boundedness of the H?(¢)-norm of the solution, which is
stated in Lemma 3. Therefore we present the following lemma without proof.

Lemma6 Let p > 1, 0 C R and ¥y € L*(Q;: H(l) N H2(0)). There exists K =
K (p) > 0 such that

E(l) - v@Ih) <Kln -l Osn<n=<T),
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4 Stability of the #-scheme

In this section, we consider the following 0-scheme on the uniform partition [, :=
{tn},’:”:O covering [0, 7] with mesh-size t = T/M > 0, where tp = Oand tyy = T.

Algorithm 1 Let ¢ = v (f) be a given H(l)(ﬁ)—valued random variable and let
6 € [0, 1]. Find forevery n € {0, ..., M} a %,  -adapted random variable ¢"+! with
values in H(l)(ﬁ) such that P-a.s.

l/ (¢n+1 _d)n)zdx _ T/ (Qv¢ll+l + (1 _ 9)V¢)n)Vde
o o
. / (16" P + 19" P)p" 2 zdx
2 Jo

- /ﬁ P"TIA,Wzdx Yz e HY(O), (28)

where A, W = W (tyi1) — W(t).

A relevant property of the limiting system (1) is a bound for the Hamiltonian of its
solution; see (10). This property is not known for the Crank—Nicolson scheme (8 = %),
which is why a truncation strategy is applied to the nonlinearity (see [7]) or the noise
term ([4]), leading to a truncated Crank—Nicolson scheme. The next lemma establishes
this property for the 8-scheme and values 8 € [% +c4/T, 1] withc > ¢* > 0, avoiding
any truncation. For simplicity, we assume ¢° € H(l)(ﬁ).

Lemma?7 Let p > 1 and 0 C R? be a bounded Lipschitz domain. Fix T = ty; >
0, and let 9 € [% + /T, 1] with ¢ > ¢* > 0. Suppose T < t*, where T* =
1:*(||¢0||H(1), T). There exist a H(l)(ﬁ)-valued {Z1, Yo<n<m-adapted solution {¢"; n =
0,1,..., M} of the 6-scheme (28), and a constant K = K (p, T, ¢*) > 0 such that

i max [E(16"1%+ (M) )] < k.

<n<M

.. 1 2
(i)  max Ef¢" —g¢"|}5 < Kz?,

(iii) max_ [(29 1) g E|V(p"t! — ¢k)||?L2] <K.

Proof Step 1: Existence and %, -adaptedness. Fix a set Q' C Q, P(Q') = 1 such
that W(¢,x) € Uforall r € [0, T] and w € Q. In the following, let us assume that
w € Q. The existence of iterates {¢"; n = 0,1, ..., M} follows from a standard
Galerkin method and Brouwer’s theorem, in combination with assertion (i).

Define a map

Az HyxUs (¢", AW) — A@", A, W) € P(H)),
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where @(H(l)) denotes the set of all subsets of H(l)(ﬁ), and A(¢", A, W) is the set of
solutions ¢”+1 of (28). By the closedness of the graph of A and a selector theorem ([1],
Theorem 3.1), there exists a universally and Borel measurable map A, : H(l) xU — H(l)
such that A, (sy, s2) € A(sy, sp) for all (s1, sp) € H(l) x U. Therefore, ﬂ}nﬂ-
measurability of ¢" ! follows from the Doob-Dynkin lemma.

Step 2: Case p = 1 for (i), (ii) and (iii). Consider Eq. (28) for one w € 2 and
choose z = QE’H'% (w). Then take the imaginary part to get

1 1 S
§||¢"+1||%L2 - 5ll¢" 17, =73 /ﬁ (6Ve"™ + (1 —0)Ve") V" 2dx

_(1-20)t
- 2

4

3 / V¢V Hdx (29)
%

T (1ve" 12, + 199" 1,).

where E)t[(a —b)(a+ I;)] = |a|? — |b|? is used on the left-hand side. Next, we choose
7= —(¢"t — ¢")(w) in (28), and take the real part. We obtain

1 1 1 1
(S1V0" 12 + 519" 1154 ) = (3199 12 + 5 19"112)

20 — 1)

+ 5 IV@" = ¢MIL

S / (" P = 16" P Ay Welx. (30)
TJo

We will see that the last term on the left-hand side helps to bound the stochastic
integral term, which is restated as follows by using the Eq. (28), properties of the real
and imaginary parts of a complex number, and the fact that W is real-valued,

/ ("> = 19" 1)) Ay Wdx
0
— o / FHE @ — ¢ AW
%
= 291/ (Z>”+%(ir(9A¢"+1 + (1 —0)A¢")
o
_ i§(|¢n+l|2 + |¢n|2)¢n+% _ l(f)n—i_%AnW) Aan)C
= —26)13/ V@'V A, Wdx —2r9~3/ FTIVTIV(A,W)dx
0 %

—2t(1 — 9)3/ FHIVYIV (A W)dx.
7
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We used integration by parts in the last step. By plugging it into Eq. (30), we find
20 — 1
2
= (20 — 1)%/ V@'V A, Wdx + 293/ GV TIV(A, W)dx

% %

AP — A (P + V(" — o™i,

+2(1 — 9)5/ FHIVSIV (A, W)dx
1%

=i+ L+ 1. (D
Next we estimate the three terms separately. Because of S(lV(]b" |2) = 0, we have

I =260 — 1)?3/ Vo' (Vo' — V") A, Wdx
%

20 — 1
<
- 8

V"t — Ve |I7, + 220 — DIV T2 118, W E -
Rearranging terms and the identity ¢"+2 = ¢" + WT_W lead to
L+ 13 zzes/ﬁ s (Vo' — V") V(A, W)dx
+23 /ﬁ IV V(A W)dx
=29$‘/ﬁq§" (Vo' — V") V(A, W)dx

+ 93/ @" T = ¢M) (V" — V") V(A, W)dx
7

+23 / P"VP'V(A,W)dx
%
+3 / (@" T — ¢"VP" V(A W)dx (32)
0
Integration by parts for the first term, and using J(a) = —3J(a) (a € C) lead to

I+ I =(1+20)3 /ﬁ Ve (@ — )V (A, W)dx
+23 /ﬁ Vo' 9"V (A, W)dx
203 /ﬁ 5@ — ) AAW)dx
+03 /ﬁ @t = ") (V" — VeV (A, W)dx
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The estimation of the first three terms is as follows,

1
I3y + Iy + Iy < 719" = "I, + KIVO" 2,1V (A W)l

KNP A, W) [P + 23 /ﬁ Ve FV (A W)dx. (34)

The troublesome term is 1513, we estimate it as follows,

gy <IVe" = Ve lla 1" — @™l IV (A W) Lo

20 —1 2 +1 2 2
= 20— 1 6" = " L2 IV (AR W) Il 00

20 — 1 1
== Vo™t — VeIt , + §||¢>"+l —¢"II7>
2
+1 2 4
+ m”‘ﬁn — " L2 V(AR W)IIT 00

20 — 1 ) 1
=— Vet — V|7, + §||¢"+‘ —¢"II7,

1
+ Kr(||¢"“||ﬁ‘L4 + ||¢”II?L4) + WIIV(AnW)IIix, (35)

IVe"+! — V" |7, +

where we use the embedding L*(0) = L%(0) in the last step. In order to complete
the proof for (i) and (ii), we need to bound "t — @ ||i2, which appears in the last
two estimates (34) and (35). For this purpose, we test the Eq. (28) with (¢" ! —¢") (w),
then take the imaginary part. Because of ¢"+% =¢" + ¢n+12_¢n , we get

1975 =" = [ (@971 4 (1= 0)V9") V@ — g
33 [ Q0P 19 P
+ s/ﬁw(é"“ — ") AW,dx.
Estimating this equality leads to

1 1 1 1 1
19" = 9", <K (SIVe 12, + S IV 12 + 219" Ity + F 11" 1)
2 2 2 4 4
+ K" 1721 A0 WIIF oo
=Kt(A @)+ @) + KIS 1MW, (6)
where Young’s inequality is applied, and the term %Hd)”“ — (;5”||]]242 which appears
from the stochastic term is absorbed in the left-hand side.

We may now combine estimate (36) with (29) and (31). By denoting #" =
%||¢" II]iz + S (¢"), we obtain
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20 — 1
4
< Kr(%"“ + %) + K[V 721 A0 WliF oo + K 16" 7211 AA W) 1 o

1
A+ §||¢"+1 —¢"lt, + IV — Vo't ,

+ KN6" 17201 An W oo

) 1
23 [ V""" V(A,W)dx + ———— IV (A, W) 18
+23 [ 99V Wds + VAW

— Kr(%”“ +Ji/") FA. 37)

In order to efficiently bound the expectation of the last term, we recall that
EIV(AW) |2 = O(x*) to admit 20 — 1 > /T withc > ¢* > 0.
After applying expectations on both sides of (37), one arrives at

26— 1
4
— V¢, < K1+ Kr(EJif”+1 + EJif”)

E||V¢n+l

1
EJZ/’H_I —EX¥" 4+ §E”¢n+l _ ¢n”i2 +

The discrete Gronwall’s lemma then leads to the assertions of this lemma in case
T < 7*is chosen.

Step 3: Case p > 2 for(i). In order to show the assertion (i), we employ an inductive
argument. To obtain the result for p = 2, we multiply equality (37) by #"*! and use
the identity (a — b)a = 3(a*> — b* + (a — b)?), where a, b € R, to get

ll:(%n+1)2 _ (C%/n)ZiI + l((%/n-‘rl _ %n)z
2 2

S Kt((%n+l)2 + (()g/n)z) + A%n-{-l’ (38)
where A is from (37). Applying expectation on both sides of (38), we have

1 w12 2] L ntl _ pny2
2E[(Jsf )2 — (™ ]+ SEWH P40
< Kt(E(Ji/"'H)Z + E(%")Z) + %E(Ji’”“ — ¥ +Kr. (39)

In order to verify this inequality, we may restrict ourselves to the integral term in (37),
since other terms can be easily estimated by Young’s inequality. By the independency
property of increments of the Wiener process, we obtain

E[%”HS/ﬁ V¢"q§"V(A,,W)dx] - E[(;if”“ —J{")S/ﬁ V¢"q§"V(A,,W)dx]

1
< ZE(Ji/n—H _ %n)Z + KTE(%n)z,
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and the leading term may be absorbed by the left-hand side of (39). Therefore we
have the conclusion of (i) in the case p = 2 via the discrete Gronwall’s lemma. By
repeating this procedure, one obtains the result for each p € N.

Step 4: Case p > 2 for (ii). We prove it for the case p = 2, since for general p, the
result follows from assertion (i). We deal with inequality (36) by squaring it,

1971 = 71> = Ke2 (™2 + () + K18 121 80 Wl .

Applying expectations leads to assertion (ii) in the case of p = 2. By repeating this
procedure, one obtains the result for each p € N. O

Remark 4 A compactness argument is used in [4] to prove convergence of a family
of (adapted, continuous) interpolating processes of the numerical solution towards a
mild solution of (12) for the case & = R?; a crucial prerequisite for it are the lemmas
[4, Lemmas 3.3 and 3.4], which here are sharpened to Lemma 7.

As is stated in Remark 2, a mild solution of (12) may be constructed for the bounded
domain case & C R! by a contraction argument following [3]; alternatively, we may
follow the strategy of [4] and use the uniform bounds in Lemma 7 for a compactness
argument which establishes convergence of (interpolated in time) iterates {¢"; n =
0,1, ..., M} solving Algorithm 1 towards the unique mild solution of (12) for the case
¢ c R'. No additional truncation parameter (and related stopping times) is involved
in this construction based on Algorithm 1, which would otherwise require a proper
balancing with the discretization parameter in this (practical) construction process of
a solution for (12) as in [4].

Lemma 8 Letr p > 1. Under the assumptions made in Lemma 7, we have
2[)—1

£ max (1"12: +#6M) " | <Kp.D.

Proof We only present the proof for p = 1. We start from (37) for some 0 < ¢ < M,
sum over the index from ¢ = 0 to n, take the maximum between 0 and m < M, and
apply expectations. We may now employ the result of Lemma 7 to conclude that

0<n<m 0<j=<t

E( max jif”) §K+Kt;E( max Ji/f)

0<n<m

+E[ max Z/ Vqﬁ[qSZV(AgW)dx]. (40)
=077

The bound of the last term is similar to (17), using Burkholder—Davis—Gundy inequal-
ity. O

The following lemma asserts approximate conservation of mass (in statistical aver-
age) for 6 | %
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Lemma9 Let 0 C R? be a bounded Lipschitz domain, T = ty > 0 be fixed, and
0 € [% + ca/T, 1] with ¢ > ¢* > 0. There exist a constant K = K(T, ¢*) > 0 and
A— 1:*(||¢0||H(1J, T) such that for all T < t*, we have

n2 02 ( 3 _ %)
IS;I;%/”EIW 72— Ell¢°ll{. < K(z% 4+ (1 —260)77). 41)

Proof Recall (29) and use properties of the imaginary part of a complex number to
conclude

197122 = 19712 = (1 = 20023 [ (941 = v vt

= @0 = D(F Ve = Vgl ) (cFIVe ) @)

5
20 —1)

3
(20 — 1)t o
<= 7 7 V"l

< 5 Vet — Ve |I7, +

Now consider the above inequality for some 0 < ¢ < M, sum over the index from
£ = Oton, take the expectation, and use Lemma 7 (i) and (iii) to establish the assertion.
O

A comparison of Lemmas 7 and 9 illustrates the role of numerical dissipation in the 0-
scheme and suggests a choice § = % + ¢./T to minimize this effect and approximately
preserve the IL2-norm of iterates.

The following lemma validates improved stability properties for solutions of Algo-
rithm 1 for & C R!, which will be relevant in the error analysis below. In fact, a
consequence of it will be an improved preservation of mass; see Lemma 11.

Lemma 10 Letp > 1, 0 C R, T =ty > 0 be fixed, ¢° € L*P(Q; H) N H?(0)),
and W be H(z) NH3-valued. Suppose 0 € [% +c/T, 1] withc > ¢* > 0. There exist a
constant K = K(p, T,c*) > 0,and t* = r*(llqﬁOIIH(l)mHz, T) suchthat forallt < t*
holds

M max [E(Ig" I+ D 18" =0t 1F + @0 — D X Ie* —9h12 ) | <k
- k=0

k=0
i) max E(19"1%) < K.
(i) | max Efl¢"" — 9" lif < K<,
(v) E( max 6" 15) < K.
Proof We formally test Eq. (28) with z = A(q_ﬁ’”‘l - q_S”) and take the real part.

Because of 0 A¢" !+ (1 —0)A¢" = A¢p"T! + (6 — 1)(Ap"+! — Ap") and m(a(a -
5)) = %(|a|2 — b2 +]a— b|2), we have
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IAG" T, — 1A 17, + (20 — D[ AQ" ! — Ag" |7,
— m/ (|¢n+1|2 + |¢n|2)¢n+%A(¢;n+] _q;n)dx
1%

2 _ _
+ —m/ "I ALWA@P! — M) dx
T Jo

=:A+B. (43)

Step 1: Estimate of the stochastic integral term B. We use integration by parts to benefit
from Eq. (28) and W being real-valued,

B =2n / ¢ IAW(AG T — AGdx
T 7%
= %m/ A@"F I AL W) (9" — ¢™)dx
T %
- %m / A@ 28, W)[iT (026" + (1 - 6)Ag")
%
IS 19— i AW Jdx
:29{/ @A W)(0AP™! + (1 —0)A¢")dx
%

_ 1 1
- % /ﬁ iA@"TIAWY(19" T + 19" " T 2dx

=:B' + B2. (44)
Step 2: Estimate of term B'. We rewrite the term B as follows,
B! = 2>)t/ﬁiA(¢3"+%AnW)(9A¢"+1 + (1 —6)Ap")dx
- 23)’t/€iA</3"+%(eA¢"+l + (1 - 0)A¢") A, Wdx
+ 25}%/@;&”%(%%(9@”“ + (1 — 0)A¢")dx

+4§R/ di3"+%V(AnW)(9A¢"+1 + (1 —0)A¢")dx
0

=: B, + B, +B,. (45)

Since OR (i A¢" T 17,) + (1 — )R (i Ag"[1F,) = 0, we have

B! =9m/ iAG" A"V A, Wdx + (1 —e)m/ iAG" T AP A, Wdx
% %

= (20 — D% /ﬁ iAG" AP A, Wdx
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— (20 — DR / iAG" (AP — AP A, Wdx
%

IA

26 — D A" [12118¢™ " — AG™ 1211 A0 W|Loe

20 — 1
TIIAW’“ — AQ"IF 2 + 220 — DIAG"IT 211 AW 1} o

Therefore E(B)) < 2 E[A¢"™ — A¢" (2, + KTE[|A¢"|2,

n+1 n
Since ¢"+% =¢"+ ¢ +27¢ , we have the following estimate for the term Bl} in (45),

B} =29t/ﬁi¢'>"A(AnW)(9A¢”+l +(1—0)A¢")dx
+ m/ﬁ (@ — AW (0 A" + (1 — 6)A¢")dx
=29§R/ﬁid§"A(AnW)A(¢"+l —¢"dx + 2§7i/f?i</3"A(AnW)A¢”dx
+ m/ﬁi(é"“ — ¢ANW) (046" + (1 —0)Ap")dx
Integration by parts for the first term leads to
Bl = —ZGm/ﬁiV(QS"A(A,, W)) (V" — Vo™ydx +25}t/ﬁiq§”A(An W)A¢"dx
+ m/ (@™ — AN W) (OAY" T + (1 — 0)Ap")dx
%nw“ V" |72 + 81V (¢" AAW))IIF 2 + K% lp" ' — @117
+ —||A(An Wl + (186" 12, + 120"13,)
+ 25}1/@ ig" A(A,W)AP"dx.
By assertion (i) and (ii) of Lemma 7, we get
E(B) = BNV — V9" 12+ Ko+ Ke (189" 1, + 189" 12.).
For term Bl we use again ¢>"+2 =¢" + u to obtain

B! =4em/ iv¢3"+%V(AnW)A¢"+1dx+4(1—9)&R/ iV IV(A, WA dx
0 %

:46’5R/ﬁi(Vq3" n w)

+4(1 — G)ER/
%

V(A,W) ((A¢"+1 —AP") + Ad)”)dx

n+l _ xgpn
i(w's” + u)vmnwmwdx.
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In the following step, we use that the Wiener process is H%)—valued to allow for inte-
gration by parts,

=49m/ iVJ)”V(AnW)A(qs"“—qb”)dx—i—Zi)i/ iV(@"T — V(A W)AP dx
% 0
+4m/ iVP"V(A,W)AP" dx
1%

+20% / i(Vo"T — V" )V(A,W)(AP"T! — Agp™)dx.
17

Integration by parts for the first term then leads to

B! = —49m/ iVO"A(A, W)V — V™")dx
%
+2(1 + 29)51{/ i(VP T — V" V(A,W)AP"dx
o
+4§H/ iVP"V(A,W)AP" dx
%

+ 299t/ i(Vo" T — V" )V(A,W)(AP"T! — Agp™)dx.
17

We only present the estimate of the last term, the remainder terms can be easily
bounded as before.

299{/ iV — Ve V(A,W)(AY"T! — Ap™)dx

%

<2/ A¢" T — AP 12 IV — V" L2 IV (A W) oo
20 — 1
o l1ag" ! — Ag"IE, +
20 — 1

<

- 8

S5 11V = VO I IV A W)l

1
[Ag"T! — Ag™ |17, + gnw“ —V¢'li,

32
+ muw“ — Vo I IV (A W)
20 — 1
<
-8
+ K (IV8" I + 196" 1) + -

1
WHV(AHW)”I%OO-

1
[Ag" ! — A" 17, + gnw’“ — V"7,

Therefore, for 20 — 1 > ¢4/T with ¢ > ¢* > 0 and since E||V(A, W)||]fioo = 0(14),
by Lemma 7 (i) we obtain

X 20 — 1
E(BH<Kt+

3
E||A¢n+l—A¢n||i2+§||v¢n+l — V¢, + KTlA" T,
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Step 3: Estimate of term B>. By integration by parts,

B = /ﬁ V(@ + AWV (" P+ 19" (" + ¢ )dx
=j—‘m/ﬁ i (VqS"HAnW F VG AW + "HIV(A, W) + qS"V(AnW))
((¢n+1)2vq§n+1 £ 2V 4 v tlgntlgn 4 gt gy gt
+ |¢n+1 |2V¢n + V¢nq'>n¢n+l + 2V¢n|¢n|2 + V(j;n¢n¢n+l
+ V(¢ + |¢"|2v¢"+‘)dx.

The estimates of these terms are done by inserting functions of ¢" and using the fact that
E(A,W|.%;,) = 0.Sohere we only present one troublesome term in B? as an example.

ER/ i(vq;n+]¢n+1)2Aanx

%

=N / i((VqS”+1¢"+1)2 — (V<¢3"¢")2)Aanx+m / i(V" ") A, Wdx.
% %

The expectation of the second term is zero. By the identity a®>—b* = (a+b)(a—Db),
we deal with the first term below.

m/ i((v&)n+l¢n+l)2 _ (Vq_ansn)z)Aanx
%
— %/ i(v(z)n+l¢n+l + V(I;n¢n)(v(5)1+l¢n+l _ V(Z_ﬁn(f)n)Aanx
%
=% / (V"1™ 1 Vg g™ (Ve — V"¢ A W
%
+ g{/ i(v(in+l¢n+l + V(i11¢n)v(5n+l(¢n+l _ (pn)An Wdx. (46)
%

For the first term, we use H! < L°° and Young’s inequality to conclude

?R/ i(v(in+1¢n+1 + Vénq}n)(v(in-&-l _ V(in)(bnAanx
o

< (||V¢"+‘||Lz||¢"“nw + ||V¢"||Lz||¢"||m)||V(¢”“ — ¢M)lIr2 19" Lo | A W lLos
1 1
< §||V<¢"“ — NI, + ;nAnwnﬁw + Krllg" IR " 5 + KTl -

Similarly, by embedding H! < IL° and Hélder inequality, we get the estimation of
the second term in (46),

@ Springer



Stoch PDE: Anal Comp

gt/ i(v&nﬁ-ld)l’l""l + V(i;n¢n)v(5n+l(¢n+l _ ¢n)Aanx
%

= (96 ka9 e + 196" 216" e ) 196" 12 ™!
= ¢" e | A Wl

1
< g™ — 9"l + ;nAanﬁm + K" g + Kellg" I
Therefore, from Lemma 7 (i) and (ii), we have
2 n+1y,2 n2 1 n+1 ny 2
E(BY) < Kt + Kt (EIA"IE, + EIAG"IT2 ) + S EIV@™ ! = ML

Step 4: Estimate of term A. Because of (|a|*> + |b|*)(a + b) = 2|a|?a + 2|b|*b —
(|1b1> = |al®)(b — a) for a, b € C, we split term A further into

A ZSR/ (|¢n+1|2 + |¢n|2)¢n+%(Aq§n+l _ A(}_S")dx
%
1 - -
=— 0 /ﬁ (¢ = 1" (@™ — ") (A" — AG")dx
+m/ |¢n|2¢n(Aq;n+l_A(ﬁn)dx+m/ |¢n+1|2¢n+1(Aan+l_Aq;n)dx
% %

Al A 4 AP 47)

We use the identity |a|2a — |b|*b = |a|*(a —b) + |b|*(a —b) +ab(a—b) fora, b € C
to rewrite term AZ as

A2 ZER/ A(l_)n+l|¢n+l|2¢n+ld.x _ 9{/ A(l;iz|¢n|2¢ndx
o %
— 9 / L (L A U T
%
zm/ Aq_sn+l|¢n+1|2¢n+ldx _fn/ A&n|¢n|2¢ndx
7 %
_ St/ Ad‘)n+1|¢n+1|2(¢n+1 _ ¢")dx
%
_ m/ Aq;n+1|¢n|2(¢n+1 _ ¢”)d.x
%
0| agrHgrignt - gt P
%

_ (R/ A¢‘)n+l(¢n+1)2(d‘)n+l —q_ﬁ")dx, (48)
4
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where for the last two terms in (48), we use

R fﬁ Aén+l¢n+l¢n(q§n+l _ én)dx
- —% f@’ A(}Sn+l¢n+1|¢n+l _ ¢n|2dx + 0 fﬁ A(ﬁn+l(¢n+l)2((ﬁn+l _ én)dx'

We use integration by parts and product formula to rewrite term A3,
A3 :9{/ (J)'H—l _ Q;n)A(|¢”+l |2¢ﬂ+1)dx
%
=2 [ @ gnag e Rax e [ @ - g Pagax
4 %

+2§H/ (&VH—I _ &")(V¢"+l)2q_5"+ldx +4m/ (QBVH-I _ d_)l’l)|v¢ﬂ+l|2¢n+ldx.
2 o
(49)

Summing up (48) and (49) and 9 (a) = N(a) fora € C lead to
A2 + A3 zgt/ﬁ> Ad')n+1|¢n+l|2¢n+1dx _ 3’{/@) Ad_)n|¢n|2¢ndx
+ m/ A$n+1(|¢ﬂ+l|2 _ |¢n|2)(¢n+l _ ¢n)dx
%
+ 8{/ A$n+l¢n+l|¢n+l _ ¢"|2dx
%
+2m/ (&l’l‘i’l _ J)n)(v¢n+])2q‘5n+ldx
%
+4§R/ (éi’l-‘rl _ (i)")|V¢n+l|2¢"+ldx. (50)
%
Plugging Eq. (50) into (47), one has
A=A1+§R/ A(lgn+l|¢"+l|2¢”+ldx—m/ A$n|¢n|2¢ndx
% o
+§H/ Aq_ﬁn+% (|¢n+1|2 _ |¢n|2)(¢n+1 —¢")dx
%
+ gﬁ/ A(in+l¢n+l|¢n+l _ ¢n|2dx
%
+2$R/ (q_bn'i‘l _ ¢')n)(v¢n+1)2¢'5n+1dx
%

+4m/ ((5}’1-‘1-1 _ q;n)|v¢ﬂ+1|2¢n+ldx
1%
= A 4 Aui1 + Aan + Ap + Ac + Ay + A (51)

We estimate the terms separately. The estimation of the terms A, ,+1 and A, , follows
from their special structure (when taking the sum with respect to n, all middle term
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are canceled) and Lemma 7. For term Ap, we use binomial formula, and interpolation
of I* between 1.2 and H! for d = 1.

Ap =0 [ 8§ = 196 = s
= 209" = @M 1241 AG" 29"
< o (1AG" 12+ 18912 + 19" — 119" 1
< o (18G4 189122 + V@™ — 9"z ll9" — 92167 1
< o (180" 12, + 1AG"I2.) + 1Y@ — 9" + Kol
+ T—lsllaﬁ"“ — "3

For term A!, we use |¢"+1 2 — |¢"]2 = 29‘{(¢"+%(¢"+1 — ¢")) and [|A(@"T! —
Mlle < 180" L2 + | Ag™ |12 to have
1
A' <K (180" T 2 + 11A¢" I12) 19" T — " 1T 419" 2 [l

1 1
<KT(I1A" I + 1AQ"IZ:) + K —ll9"H = @™ HIZalle" 2.

Now follow the steps for Aj to estimate the right-hand side. In order to bound the term
A, we use once more the interpolation result for L* which holds for d = 1.

A, — 9{/ AGH T g+ — g Py
0
< 1A¢ " 2llg" I o™ — 9" [174
< Kr|A¢" M2, + K%nqs"“ 1§ V" — Vo 219" — 6”117
< Kt|A¢" T, + énvw“ — "% + Kellg" IS
+ K:—anf:"*1 — " ;3.

For the last two terms Ay A, we replace the expression ¢" 1 —¢" = —it (9 APt 4

(1 = 0)AG") + (¢ 2 + |¢" )"+ 2 + ig"T2 A, W, then for the second term
and third terms of the resulting equality, we can estimate them as before.

Here by the interpolation of L* between H! and IL2, and the continuous embedding
H' < 1>, we estimate the first term of resulting equality after replacing ¢! — ¢”
into Ay,

2'['9{\/ (_i)(v¢n+l)2q;n+l(9Aq;n+l + (1 _ G)Aq;”)dx
%

+4t§)’t/ ()" V" 2 (0A¢" ! + (1 — 0)AP")dx
%
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< 67 (I1A¢™ L2 + 140" 12 ) IV 124 10"
= Ko (1ag™ 12, + 186" 12,) + KV 15,146 .

= Ke(Iag"™ 12, + 146" 12,) + K V9" 115,
As a consequence, all terms on the right-hand side of (43) may be controlled with the
help of Lemma 7 and a Gronwall’s argument, apart from the term || V(p"t! —¢™) 2.
Step 5: Estimate of the term ||V (¢" ! — @")|l12. We formally test Eq. (28) with

—A(¢"H! — ¢") and take the imaginary part. We repeatedly use properties of the
imaginary part of a complex number to obtain

e R e M s T e
x (AP — A@M)dx
+3 / V(" A, W)(VP'T! — Vd™")dx
2
- %s / (¢" " = ¢ AW (AP — AG")dx
o
<K (180" I + 180" 12:) + =A™ = ¢M)12;
+ K (10" 18 + 16”165

1
+ 5||V<¢>”+1 — ¢, + KIV(@" A W)IIE
20 — 1
16

1 n+1 n 4 1 4
- - AWl so-
to ¢ ¢l + 5 1A WIL

+ A" = ¢™M)I7

By the continuous embedding H' < 1L and Lemma 7 (i), the term ||¢" ! ||H6‘6 +

||¢"||Es can be bounded. Other terms can be bounded by assertions (i) and (ii) of
Lemma 7. Therefore

2
T
EIV@"™ = ¢"IE: <K (v + 55— ) + K (ENA" 12, + E1 59" 1)
20—-1 ¢
R LA TN CRSE Dl

Step 6: Gronwall argument. We may combine these estimates for the terms on the
right-hand side of (43). For t < t* sufficiently small, we prove the assertion (i) to
benefit from Gronwall’s inequality and Lemma 7.

The proof of assertion (ii) is similar to Lemma 7 (i). Property (ii) then allow to
validate assertion (iii). The proof of assertion (iv) is similar to Lemma 8. O
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Remark 5 To derive uniform bounds in higher norms for iterates of Algorithm 1 is a
bit more complicated than for the continuous problem (Lemma 3). Terms A!, A” to
A¢ can only be estimated in 1D.

Since we get a better estimate for ||V (¢"*! — ¢™)||r2 in Lemma 10, we can get
a better conservation of the L2-norm for domains & C R!: in fact, the next lemma
asserts that the conservation of the IL2-norm is of order % for 20 — 1 = ¢/t with
c>c*>0.

Lemmall Let0 C R, T =1ty > 0 be fixed, and 6 € [%—{—cﬁ, 1lwithc > ¢* > 0.
There exist a constant K = K(T, ¢*) > 0 and t* = T*(”‘bO”HémHZ’ T) such that for
all T < t™* holds

El¢"|2, — E¢°I2, < K(20 — 1)72. 52
| ax "l 2 l¢"l7. = K( )T (52)
Proof Recall (42), but now scale factors differently.

167711 = 167122 = (1 = 20073 [ (3" = 99 dx

< (20— )2 (||v¢"+1 - V¢”IIL2)(I%IIV¢”IIL2)

_@o- % 26 — )73

Tn+l Tn 2
< 5 V"™ — Ve . + 3

2
Vo™ Iy
Now consider the above inequality for some 0 < ¢ < M, sum over the index from

£ = 0 to n, take the expectation, and use Lemma 7 (i) and Lemma 10 to establish the
assertion. o

5 Rates of convergence for the §-scheme

Let e" := ¥ (t,) — ¢", where i solves (15) and {¢"} solves Algorithm 1. The error
equation then reads for all n > 0,

t}l
i/(e"+1 —e”)zdx—/ +l/ (VY (s) — V"t — (1 — 0)Ve")Vzdxds
17 th 1%
In+1 1
-~ / /ﬁ <|w(s>|21/f(s)—5(|¢”“|2+|¢"|2)¢"+%>zdxds (53)
tl‘l

th+1
- / : / (W (s) — §")zdxd W (s)
th %

; 1 1
— %/ / ¥ (s) Fozdxds — E/ (" — ¢"zAW,dx Yz € H.
ty 12 %

The following theorem states strong rates of convergence for the 8-scheme for
initial data Yo € L¥(Q; H) NH?), & C Rl and 6 € [§ + cy/7. 1] with ¢ > ¢* > 0.
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Since its proof requires properties which are stated in Lemma 10, we again consider
H3 N H3-valued driving Wiener processes.

Theorem 1 Consider 6 C R, T =1y, > 0and 0 € [} 5 +cy/T, 1 withe > ¢* > 0.
Let {{/(t); 0 <t < T} be the solution ofequatwn(l)wzth)» =—1,vYp € L3(Q; Hl

H?), and driving H20H3 valued Wiener process W. Let {¢"; 0 < n < M} solve (28)
Then there exist a constant K=K(T,c*)>0andt* =1 (HWOHLS(Q,H(I]QHZ)’ T) >

0 such that for every 0 < T < t*, we have
E(1~ max |le"||? ) < KeK«r
o ymax ") <

for any fixed k > 0, and

e =S = {o e | (swp IO + max 16'1) <],

0<t<ty

Letk = K~ 'log(z %) for some ¢ > 0. We may employ stability properties of both
Y and {¢"} to conclude 3
limO P(2%) =1. (54)
T—

Then Theorem 1 amounts to

E(l"’ ny2 ) < K 1—8'
Gy oMax, le"lli.) = Kt
For the subset €2,, by Corollary 1 and Lemma 8, there holds (t < 1)

E(supien 1y IV Ol) + B (maxossm 19"1)
>
K~Tlog(r—¢) = glog(t)’

P(Q)>1—

-1
foré = S[K (E(supte[O‘T] ||1//(t)||1%11)+E(max05n5M ||¢”||12HI1))] . Therefore, (54)

is valid.
A consequence of Theorem 1 is convergence with rates in probability sense for
iterates of the scheme. For every o < % and C > 0, we estimate

P[ max_[|e" |12 > Ct® ]5 P[{ max_||e" |2 > Ct® }mfzK]JrP[Q\fzK]

0<n<M 0<n<M

Kt 1
< - .
T C2t2® clogt

Therefore, we obtain the following corollary.

Corollary 2 There exists a constant C > 0 such that for all « < %

: _4n af
lim [ max [[4(6) — ¢" 2 = 7] =0,
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The constant C > 0 used in this corollary may be determined from the constant K > 0
in Theorem 1.

Proof (of Theorem 1) We test Eq. (53) with z = &"*!, and take the imaginary part. In
below, we address the three terms on the left-hand sides resp. the three terms on the
right-hand side independently.

LHS (first term I). Because of the identity 9t (a(a - 5)) =1 (|a|2 b +a— b|2)

fora, b € C, we have

1
~ | 1 ~n+1 12 2 1 2
1=73(i /ﬁ ("1 =M@ tldx) = S (1", — eI, + e = " I12).

(55)
LHS (second term II). We decompose the negative of term /1 as follows,
In+1
—I1 = “s/ / (VY (s) — V"t — (1 —0)Ve") Vet dxds
th 1%
In+1
= es/ / (VY (s) — Vi (tar1)) Ve dxds
tn 7
Int1
+(1— e)s/ / (Vi (s) — Vi (t,)) Ve dxds
tn 7
+ r?s/ (OVe"™ + (1 —0)Ve") Ve Hdx
%
=I11'"+11°+1D. (56)

The estimates of terms /7' and 177 are similar, we use integration by parts and Eq.
(12). Taking 71" as an example, we know that

1 1 -n+1 * - . 2 1
11" = —63 Aé (zAw(v) — il WPy — Ew(v)FQ)dvdxds
In 0 th+1
th+1 s
—93/ / Aé"“/ iy (V)dW (v)dxds
In 0 In+1
=11} +11,.

We use the embedding H! < 1.6 and the stability of solution {y/(¢); ¢ € [0, T']} and
iterates {¢"; n =0, 1, ..., M};i.e., Corollary 1, Lemma 3 and Lemma 10 to obtain

1 s
1l [ [ 1A i (180 0l + 1O +1 Ol Foll )dvds
tn Int1
= K2 1Ay G0 12 + 146" 1, )

41 s
+K / / (||w(v)||ﬁz + I + ||w(v>||iz)dvds,
In Int1
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where we use [|Ae" 2 < [|AY (tar )2 + [|A¢" ! ||12. For the estimate of the
term /1, bl , we use integration by parts twice and Young’s inequality to get

In+t1 § 2
11} < K/ [||e"+1||i2 + ‘ Y ()dW (v) :|ds
tn In+1 HZ2
Int1 s 2
=Kl + K/ vW)AW©W)|  ds.
In In+1 H2

Using a property of complex numbers, integration by parts and the triangle inequal-
ity we get

13 =71 - 9)3/ Ae" (@ —adx < K| Ae |2 ]le"! — 2
%
1
< Ene"“ —e"|IF, + Kﬁ(uw(rn)niz + ||A¢"||%Lz).

LHS (third term 11I). The negative of the term /11 is
Int1 5 5 _ 1
—I11 =S/ /ﬁ(nv(sn V(s) — Y (tn)] 1ﬁ(tn))e’”r dxds
t)l

Int1
‘M/ / (|¢n+1|2_ |¢n|2)¢n+%én+ldxds
th %

Int1
S/ / |¢n|2(¢n+l —¢n)én+1dxds
t %

s

[

= N =

Int1
3 [ (0P - 1o Pen)e axds
tn 4

= [I1' + 1112+ 1113 + 111%
The estimations of terms /71", 1117 and 1113 in the above equality are similar, using
Lemmas 5 and 10, and Sobolev embeddings. Below we only present the estimate of

the first term in the above equality. We benefit from the identity lal>a — |b|*b =
la|*(a — b) + |b|*(a — b) + ab(a — b) for a, b € C to obtain

' =y / /ﬁ W ()1 (Y(s) — ¥ tn)) e dxds
n

2%

th41
+3 / : /ﬁ 1Y ()12 (W (s) — ¥ (1))@ dxds
tl‘l

2%

Int1 - -
+\/ ' /ﬁl/f(S)W(ln)(l/f(S)—llf(tn))é"ded&
In
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By the continuous embedding H' < L for d = 1, we may conclude that

Int1
' < Keje"ig, + K/ 1Y ) 3 1Y () — ¥ (@) 17 2ds
1,

n

Int1 4 5
LK / I 0 () — (1) 2dis
tn

1,2 et 8
< Ktlle™ |2, + K / 1 () IS ds
17

2 3 1 Int1 4
+ KoY ()l + K; ¥ (s) — ¥ (@)l 2ds.
In
The estimation of 7712 and 1713 are similar as that of I71. So we have
HIPP+ 111 < Kl 2, + Ko2(le" 15 + Ko2 19" 15 + Ko™ — ¢"1I7 ».

For term /11* we use again the identity |a|?a — |b|*b = |a|*(a — b) + |b|*(a — b) +
ab(a — b), for a, b € C to have

HI' =13 / (1w @ Pene ™! + 19" Pe e + y (1)¢"e" e+ ) dx
0

Klly )iz ez lle iz + Krlg™ I3 lle” iz lle™ iy
< Kt (W @)li3 + 16" 1) 1e" 125 + Kt (11w @)l + 19" 1) 1" 112,

IA

RHS (first term IV). By writing &' = (2"+! — &") + &", we have

ty
IV:S/ +l/(lzf(s) — ™)@ — &dxdW (s)
ty 0
Int1
+3 / /ﬁ (W (s) — ¢")&"dxd W (s)
ty
tn+l
=3 / / (W (s) — Y ()@ — &)dxdW(s)
th 1%
In+
+~3/ 1/ @ — eMdxdW (s)
th o

In+1
+3 / /ﬁ (W (s) — Y (ty))e"dxd W (s)
ty

= IV 4+ 1vZ4+1V3.
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For term / V!, via Fubini theorem we have

In+1
=3 / @t —em / (W (s) — Y (tn)dW (s)dx
7 th
2

1
< Ene”*‘ — "7, + K’

Ih+1
/ (W () = ¥ (0))dW (s)
In

L2

For term 1 V2, we have
_ ) 1
1v? = S/ﬁe"(e"“ — & A, Wdx < 1—6||e"+1 — "2, + K€" IF 21 AnWIIT -

RHS (second and third terms V). We insert the equation for ¢"*! — ¢" to get

1 In+1
V= —-m/ / ¥ (s) Foe" M dxds
2 th %
1
- —3/ [ir(9A¢>”+1 +(1-0)A¢")
2 Jo
_ i§(|¢n+1|2 + |¢n|2)¢n+% _ i¢n+%AnW]én+lAanx
- —%‘h/ (620" + (1 —6)A¢")e" ' A, Wdx
%
+ / ("1 2 + 19" P)g" 2" A, W
%
1 In+1 1 _
=30 [ [ (06 = S0t + w0 o axds
2 Iy % 2
1
_ Em/ "1 Fod'ldx + -m/ $" e (A, W)2 — For)dx
2 Vi 2 o
= Vs Vviyvigvigpvs,

For term V!, by the identity 8 A¢"T! + (1 — 0)Ag" = A (" — ™) + Ap" and
Young’s inequality we have

VU< Ko (180" s + 186" Iz )™ L2l A, Wl
< Kzlle"™E, + Kt(qu“niznAnwnim + ||A¢"||%L2||Anwn%m)
< Krle" i, + KA T s + KIIAW (] + KT AG" 72 An WIIT oo

The estimation of V2 is similar as that of V! and we have

Vi< Kt + Kr2(||¢"“||§56 + ll¢”lli%) + KN AW (] o
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For term V3, we have
3 1 2 2 1,2
V3 < K/ (196 = @I +196) = Y usn)I2:)ds + Kl 2.
In
For term V4, we have
Vi< Ke(lle"I3s + et I2).
For term V7, we have
1
Vi = Em/ ¢" 28 (A, W)? — For)dx
17
1
- zm/ (@"T 2" — ¢"&") (A, W)2 — Fot)dx
o

- %Sﬁ/ﬁd)"é" (A, W)? — For)dx
=: Va5 + Vbs,
where
V= %sﬁ/ﬁq’;“%(é’l“ — &) ((A,W)? — Fot)dx
0 [ @ =9 (W) — For)ds
< %ne"“ — "2, + K", + 1(1—12||<A,,W>2 — FQtlii~

F K1l A WY — Fqrl + K6 — 912,

Combining all estimations above, we have
le" T, — eI, + lle"t! — eI, < 9" + . a™, (57)

where
Int+1 Int1 ) ) ) ) )
9" =K / / 1AV (0)122dpds + KT A (63 )12 + K221 A¢" |2,
tn s
I+l 41 6 2 11 2
LK / / IS + ()12 )dpds + K| Ve — ver 2,
th s

In1
tn

nt12 et 8 2 8
+ Kzl . + Kt 1V ) g ds + KTy (@) lgp
n

2
ds
HZ

N

v (v)dW(v)

In41
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and

1 [l _ 4 4 20 o1y 8
+Kr ¥ (s) — ¥ (t)llp2ds + Keollo™ i
1,

+ K" 18 + Ko™ — 9" 1
+ K" 0 + K AW [T + KTll9"T — 9" 17,

tn+l 2
+K / 19 (s) — ¥ (1)1 ds
th

In+1
+K / ¥ (s) = ¥ (tasD) |7 2ds + K2 A" T2,
In

+ KTl A" T2 An WIIT o
2
+ K

Int1
/ W) = PENAWES|  + K P2l AW
17

]LZ
1
+ K;H(AHW)2 — FQtlii e + K (¥ )3 + 10" I3 ) e 117 »

+ Kr(Ily )iz + 19" 15) le" 17

Iht1
M ::3/ " /(w(s) — Y(tn)e" dxdW (s) + %%/ ¢"e" (A W)* — For)dx.
th 0 0

Now consider the error inequality (57) for some 0 < £ < M, multiply it by lflu , sum
over the index from ¢ = 0 to n, take the maximum between 0 and m < M, and then
take the expectation. The choice of this indicator function is necessary such that the
term corresponding to the stochastic integral .#* is a martingale, which allows the

use

of the Burkholder—Davis—Gundy inequality. So we obtain correspondingly for the

first term on the left-hand side of (57)

04+1,2 2
E[ max Zl‘ (e 12, = Ne'12,)]

0<n<m

0<n<m

n
= B[ max (1o "2, —1g, 1e%12 + D (g, 15 )le'12:)]
=1

> E[ max 15 [l "2,

0<n<m

where we use the fact that the sum in the second line is positive because SNZ,(Y -1 D SNZ,(, 05
and that ¢ = 0 P-a.s. The next terms to be considered are those corresponding to %
Under the conclusions of Lemmas 3, 5, 6, 7 and 10, one knows that

dl

m

m
] N 4 N +1
oﬂkaénzl % ]_Z E[lwg ]SK‘E—FK‘C(]—HC)ZE(IQK e ||L2)

=0 =0
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In particular here, by Burkholder—Davis—Gundy inequality,

t,
[ max Zl s/“l/(w(s) —w(zg))éfdxdW(s)]
0<n=m t Vi

e 2 2 pey2 2
< KE[(ZIQ/ 1) = V@I Flxlle’ 122ds)” |
£=0 fe

1

< KE[( max lfzm”e"“w)(ilm [ iy - Y elEds) |
T £=0 ¢

E[ max 15 "2, ] + K.

For the second term, one needs to prove the martingale property first, which is equiv-
alent to proving

E[lfz [é}i/ ¢€é@Angx‘ﬁ,j] —0,
i, L o
where AZVT/ = (AW)? — Fgt for j < £ < n.Infact, we have

E[IQMEH /ﬁ ¢féngde‘<%j] - E[E(IQMS{ /ﬁ ¢555A5de‘<%()

7
- E[‘R/ﬁ I, $'¢ E(AW|7,)dx| 7, ] =0,
the last line holds since
E[AW|F,] = E[(AW)?|F,] — For =0.
Similar to before, we may estimate by Burkholder—Davis—Gundy inequality

1
[ max ZL ‘R/ ¢L]ezAngx < - ( max lg |le n+]||i2)+KT-

0<n<m 4 0<n<m

Combining these estimates together, we have

l m
EE[ max 1g | "+1||i2] < Kt+Kr(1+K)ZE(1§2K,Z||6H1||H2J2).

0<n<m
£=0

The discrete Gronwall’s lemma then leads to

E[ max 1g | "+1||§L2] < KeKimk e,

0<n<m
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Using the nestedness of property fz,(,m C Qk,n for all 0 < n < m one obtains

E(1~ max |[" 11| ) < E[ max 15 [e"12 ]< K eKimk g,
G (AKX I lj2) < onax QMH lj2| =

The proof is completed by letting m = M. O

The following remark discusses uniqueness of solutions of (28) on ‘large’ subsets
of €2, on subsets of which the error estimate in Theorem 1 is applied.

Remark 6 LetT =ty > 0, and {¢;-’; 0 <n <M}, j=1,2betwo solutions of (28),
and denote £" := ¢ — @5, as well as M0 .= g1 4 (1 — 6)E” to obtain

i/ (M0 —gMzdx —r@/ vEIvzdx
17 17
0
—%/ 54‘(¢’?,¢7+1)de=9/ ¢" V2N, Wzdx Yz eH],
17 ’ 17
where
F@ 0 = (161 P+ 10l D)o = (195 + 1)) T,

Then put z = £"*?, and take imaginary parts; by arguments which are similar to those
in the proof of Theorem 1, and using the algebraic identities

En-‘rl/z — %(Sn-‘r@ + [20 _ I]En) resp. Eﬂ-’rl — %(Sn-‘r@ _ En) + Sn’ (58)

we arrive at
1 _
S (1002, = 1612, + 180 €12 ) = 1463 /ﬁ gHI2ETHO AL W dx, (59)

where

70 -
I = 73/@)(|¢i’l+1|2 + |¢;1|2)%.n+1/2;§n+9 dx
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We use (58) to compute for the last term in (59) that

_ 20 — 1
eg/ﬁs"“ﬂg"”Aanx =

EMHY —EM) A, W dx (60)

= \S

_ - 260 — 1\2
< —||é"+9 - S"HLZ + (—) IE" A W12,
4 2
For the first term I, we have by (58)

0
2

/ [|¢n+1| + |¢?|2]$n+1/2§n+0 dx
T n+1,2 n2 20 -1 n ) gn+6
= -3 —_— d
zv/ﬁ[w»l | +|¢>1|]( ) B
T(20 - 1) _ - -
== /ﬁ [l61 ™17 + 19717 ]6" " — &™) dx.
In order to estimate the term I;, we use again (58) to calculate for the relevant term
|¢ll’l+l|2 _ |¢n+l|2 — gn+1¢;il+l _ ¢£1+1§n+1

1 _ _
— g(én+9 %. )¢n+l +€ ¢n+l (En+0 E )¢n+1 Sn¢g+1‘

We may then use H! (0) < L.°(0) to estimate

1
2 n+14 n4 ny2 Zqento _ gny 2
I <Kt lrél;lgz(u(bj gz + 1197 g ) 1E" N2 + 1€ &ML

+12 2 +6 2
+ K max (197 1y + 197 1) 16"~ €I

Now multiply (59) with 15, where

-~

12 A
Qe ={we@| max 161 <k} > G,
0<t<n+1

Note that again ﬁ,mw 1 C ﬁ,(,n. We then obtain from the above considerations, for
Kk <1t % (@ < 1)and t < t* sufficiently small the estimate

20 — 1\2 _
B IEO < 1g 1713 (1 (55— ) 1AW + K22072). 6D)

We may now proceed by induction: for n = 0 we have £ = 0 P-a.s. on QK .0, in
particular. Therefore, we may deduce 921§2 R ||§‘ || 2= = 0, and hence & I'—=0on QK 1.
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Correspondingly, we find

1, 1€ 2, =0 Pas.  (0<n<M)

For Q, = Q4 M, (54) implies lim;_,¢ P(ﬁ,() = 1 for « o log(z™%) for every
0 < & < 1, and thus we retrieve uniqueness of solutions for the limiting problem
(1) with A = —1. — In the practical studies performed in Sect. 6 we had that all
simulations are included in ﬁ,( for some moderate k = O(1); see Fig. 2c.

6 Numerical experiments

In the previous sections, we showed stability (¢ ¢ R?), and convergence with local
rates (0 C R') for the A-scheme (28) and the defocusing nonlinearity (A = —1) in
(1) with spatially regular noise. The following example is chosen to computationally
study stability and rates of convergence for different values 6; € {%, % + /7, 1} in
the 0-scheme (28) to solve the stochastic cubic Schrodinger equation (A = —1) with
colored in space noise. In order to better clarify the interplay of nonlinearity and noise,
we scale the noise in (1) and (28) by a parameter v € R.

Example 1 Let 0 = (—1,1), T = 4—1‘, and Yo(x) = sin?(x). For 1 < L < 8, and
{Be; 1 < £ < L} a family of independent R-valued Wiener processes, consider the
real-valued Wiener process W = {W;; t > 0}, W(r) = Zle %sin(nﬂx)ﬁg(t), and
v = +/2 in (1). We use the §-scheme (28) with values 6; = %, 0 = % + /7, and
03 = 1 for the numerical approximation. Let I; = {t,; 0 < n < M} be the uniform
discretization of [0, T'] of size T > 0, and 7}, be the uniform triangulation of & of
size h = ﬁ, on which the lowest-order Hl-conforming finite element discretization
of (28) is realized. The reference values (for Fig. 1a, c) are generated for the smallest
mesh size T = 2714, Newton’s method is used, and 500 realizations are chosen to
approximate the expectations.

10 1. 10
6205 pu—— - ——L=1(0=05)
——= 12 A\ ——L=4(0=05)
0=05+1 ——L=8(0=05)
1074 ——0=1 1= 1
[Jorder 2.0 ol T esosh
_ [Jorder1.5 |— . e L=4(0=05+1"P)
5 order 1.0 5
510 ——] 3 ——L=8(0=05+1"
o L —e—L=1(0=1)
—] 10 —-L=4(0=1)
10 e L=8(0=1)
order = 1.0
[Jorder=05
107 107
10 10° 107 10° 10 10° 10
] t
@av=0 (b) Trajectories at x =0 © v=v2

T
Fig. 1 a Rates of convergence for the deterministic case in the norm ||y (T') — ¢l?1 2 d=1,T= %,
v=0h= 5.t e {277 <i < 11}). b Trajectory at x = 0 for L € {1,4,8} (0 = 1 + 7).
¢ Rates of convergence for the stochastic NLS driven by W(t) = Zfz‘z 1 % sin(;r€x)Be(¢) in the norm

(EN(@) = T12,) P @ =17 = Lv=vace:T<i< 1)
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0. 1
0.95] o9 + i
0.85f 6 :
- 5 % 3 3
g o 5 0.85| 55 ' :
g ~ g
ok 5 8
Sors ™ Sors 77 ° : :
o . B : :
or—o=05 Y 0 =2 49 : :
:Z:f.snz 0,65 7:2:? 4 —+ -
o 02 0406 08 1 02 0406 08 1 h=1128 h=1/256
time t time t
(@) t— E[l[¢"]7.) (b) > E[[|9"[17,] (¢) distribution

Fig. 2 a Squares of (averaged) L2-norm for 6 € {61,6,.63}(d =1, T = %, v=+2,L=8h= ﬁ,
T = 2_8). b Squares of the (averaged) L2-norm for § = % + 4/ and different step sizes t (d = 1,
T = % v=+2,L =8h= ﬁ t e {271; 7 <i < 11}). ¢ Distribution of maxg<p<py V@™ |l 2 for
0= % + /T, with median (5.1) and lower (4.8) and upper (5.5) quartile (d = 1, T = %, v=1+/2L=38,
= 2—10)

We consider v = O first: Fig. 1a shows order 2 for the L?-error of the §-scheme
for 0 = %; the order drops to 1.5 for 0 = % + /7, and to order 1 for (9 = 1). The

observations are different in the stochastic case (v = +/2) where different sorts of
Wiener processes depending on L are used: as is displayed in Fig. 1c, the strong order
of convergence for 6 € {01, 6,} drops from approximately 1 to 0.5 for values 1 to 8 of
L. The choice 6 = 65 is exceptional since we obtain the approximate order 0.5 for all
values of L. Fig. 1b compares typical trajectories for L € {1, 4, 8}.

The box plot in Fig. 2c complements this result: the set §K = {maxoinf Ml
Vo'l < K} is 2 for values of x exceeding approximately 6.5. Fig. 2a, b study
the conservation of mass for the three schemes: we observe a mild decrease for 6 =
% + 4/, which is far more pronounced for 6 = 1.
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