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It is well-known that a numerical method which is at the same time geometric structure-
preserving and physical property-preserving cannot exist in general for Hamiltonian partial 
differential equations. Motivated by EQUIP methods proposed in Brugnano et al. (2012) 
[13], in this paper, we present a novel class of parametric multi-symplectic Runge-Kutta 
methods, called EQUIP multi-symplectic methods, for Hamiltonian wave equations, which 
can also conserve energy simultaneously in a weaker sense with a suitable parameter. The 
existence of such a parameter, which enforces the energy-preserving property, is proved 
under certain assumptions on the fixed step sizes and the fixed initial condition. We 
compare the proposed method with the classical multi-symplectic Runge-Kutta method 
in numerical experiments, which shows the remarkable energy-preserving property of the 
proposed method and illustrates the validity of theoretical results. These theoretical and 
numerical results show that EQUIP methods can be well adapted to handle Hamiltonian 
partial differential equations.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The Hamiltonian wave equation is an important mathematical model in some scientific fields like quantum mechanics, 
plasma physics, etc. This equation is a typical example of a Hamiltonian partial differential equation (PDE) of the form:

M∂t z + K∂xz = ∇z S(z), (x, t) ∈Rd ×R+, (1)

where z ∈ Rn , M, K ∈ Rn×n are two skew-symmetric matrices, S : Rn → R is a given smooth function (at least twice 
continuously differentiable), ∇z S(z) is the classical gradient on Rn , and x, t denote the spatial and temporal directions, 
respectively.

For the Hamiltonian PDE (1), the two most prominent characteristics are multi-symplecticity, i.e.,

∂tω + ∂xκ = 0 (2)

with ω = dz ∧ Mdz, κ = dz ∧ Kdz, and conservativeness, for example, the energy conservation law (ECL):
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∂t E(z) + ∂x F (z) = 0 (3)

with the energy density and the energy flux being E(z) = S(z) − 1
2 z�K∂xz and F (z) = 1

2 z�K∂t z, respectively, and the mo-
mentum conservation law (MCL):

∂t I(z) + ∂xG(z) = 0, (4)

with the momentum density and the momentum flux being I(z) = 1
2 z�M∂xz, and G(z) = S(z) − 1

2 z�M∂t z, respectively.
A well-known principle to design numerical methods is that numerical methods should preserve as much as possible 

the intrinsic properties of the underlying system. Generally, the numerical approximations of Hamiltonian systems fall into 
two categories: geometric structure-preserving numerical methods and physical property-preserving numerical methods. We 
start from the numerical study for Hamiltonian ordinary differential equations (ODEs), which has formed a well-developed 
subject through several decades of efforts (see e.g. the monographs [1,2]). On the construction of symplectic numerical 
methods, there are several approaches, e.g., symplectic Runge-Kutta (RK) type methods ([3]), methods based on generating 
functions ([4]), variational integrators ([5]), etc., while on the construction of physical property-preserving numerical meth-
ods, different approaches, e.g., methods with projection-type techniques ([6]), discrete gradient methods ([7]), Hamiltonian 
boundary value methods ([8,9]), etc., are proposed. Except for the symplecticity-preservation, another important feature 
of symplectic numerical methods is that they can preserve exactly quadratic invariants (specially, quadratic Hamiltonian 
functions); see [3] for instance. Generally, the famous Ge-Marsden theorem ([10]) shows the nonexistence of a constant 
time stepping algorithm which is at the same time symplectic and energy conserving. The efforts towards this purpose 
on methods inheriting both features are made in a weaker sense. For example, [11] proposes the adaptive time stepping 
symplectic-energy-momentum integrators with the symplecticity being viewed in the space-time sense. The constructive 
idea by introducing a parameter in each step which can be suitably tuned in a way to enforce the energy conservation, 
is introduced in [12], and is developed refinedly and called the EQUIP method in [13–15]. More precisely, they introduce 
a family of one-step methods y1(α) = �h(y0, α) depending on a real parameter α such that this family of methods are 
symplectic for any fixed choice of α, and that a special value of the parameter can be chosen depending on y0 and h
with the conservation of energy at the same time. For a Hamiltonian PDE, the multi-symplecticity and the ECL/MCL are the 
most relevant features characterizing its intrinsic properties. A natural question arises: can one find a numerical method 
which combines the multi-symplectic structure and the ECL/MCL at the same time in certain sense? It is believed that the 
difficulties in such a problem not only come from the balance of geometric structure and physical property, but also result 
from the numerical analysis of PDEs such as the interaction of time and space, etc.

For the numerical study of Hamiltonian PDEs, the multi-symplectic structure is investigated and then a lot of reliable 
numerical methods (e.g. [16–23]) preserving the multi-symplectic structure, for instance, muti-symplectic RK/Partitioned 
RK methods, collocation methods, splitting methods, spectral methods, etc., have been developed. Especially, we refer to 
[19,24–26] and references therein for the multi-symplectic methods of the Hamiltonian wave equation. On the physical 
property-preserving aspect, as we mentioned that classical conservation laws such as the ECL (3) and the MCL (4) play an 
important role in Hamiltonian PDEs. Though they locally character the conservativeness, they are equivalent to the global 
conservation laws when an appropriate boundary condition is endowed. The conservation of quadratic ECL and MCL under 
multi-symplectic methods is proved in [19,24]. The accuracy of conservation laws of energy and momentum for Hamiltonian 
PDEs under RK discretizations is investigated in [24]. The approximate preservation of the global energy, momentum, and 
all harmonic actions over long time under temporal symplectic methods and spatial spectral methods applied to semilinear 
wave equation is rigorously proved in [27]. There have been several works on numerically preserving the local ECL and MCL 
of Hamiltonian PDEs, e.g., see [16] for a systematic framework. However, as far as we know, there are no known results 
about numerical methods which preserve the multi-symplectic structure and the ECL/MCL simultaneously for Hamiltonian 
PDEs.

The main aim of this paper is to propose a class of multi-symplectic discretizations by applying the EQUIP method 
to the Hamiltonian wave equation to share the property of energy conservation at the same time. The EQUIP method is 
proposed and analyzed in [13,15,28] for Hamiltonian ODEs to preserve symplecticity and energy simultaneously. We apply 
the parametric symplectic RK methods to Hamiltonian PDEs in space and time, respectively, with the same real parameter 
α, which is proved to be a concatenated α-RK method preserving the multi-symplectic structure for all real parameters. This 
class of methods is also called EQUIP multi-symplectic methods in this paper. The preservation of the ECL under the EQUIP 
multi-symplectic method is obtained by suitably tuning the parameter, that is, we can show that the parameter α∗ exists at 
each element domain composed by spatial and temporal step sizes, which leads to the preservation of multi-symplecticity 
and ECL. That is a weaker version of the standard conservativeness, since the existence of this parameter depends on the 
step sizes �x, �t , and on the initial data.

This paper is organized as follows. In section 2, we present the Hamiltonian wave equation and its multi-symplectic form. 
Then a family of RK methods concatenated in the spatial and temporal directions is introduced. In section 3, we propose a 
concatenated parametric RK method (also called an EQUIP multi-symplectic method) by using the W-transformation, which 
is multi-symplectic for all parameters. The preservation of the ECL of the EQUIP multi-symplectic method is investigated in 
section 4, by selecting a suitable parameter. We prove the existence of such parameter with the aid of the Lyapunov-Schmidt 
decomposition method, the homotopy continuation method and the implicit function theorem under some assumptions on 
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RK matrices, the spatial and temporal step sizes, etc. In section 5, we present some numerical experiments to show the 
effectiveness in energy-preserving of the proposed method. A short conclusion is given in section 6.

2. Multi-symplectic Runge-Kutta methods

Consider the scalar wave equation

∂tt u = ∂xxu − V ′(u), (x, t) ∈ R×R+, (5)

where V : R → R is a smooth function, which is a typical example of a Hamiltonian PDE (1). By introducing canonical 
momenta v := ∂t u, w := ∂xu and defining the state variable z = (u, v, w)� ∈R3, we rewrite the wave equation (5) as

∂t u = v,

∂xu = w, (6)

∂t v − ∂x w = −V ′(u).

Using this variable, we obtain

M =
⎛
⎝ 0 −1 0

1 0 0
0 0 0

⎞
⎠ and K =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠

as well as the Hamiltonian S(z) = 1
2 (v2 − w2) + V (u).

The multi-symplectic conservation law (2), for the wave equation (5), is equivalent to ∂t [du ∧ dv] − ∂x[du ∧ dw] = 0. We 
also obtain the ECL (3) with

E(z) = 1

2
(w2 + v2) + V (u) and F (z) = −v w (7)

and the MCL (4) with I(z) = −v w and G(z) = 1
2 (w2 + v2) − V (u), respectively.

Now, we start our study with a multi-symplectic RK method for the Hamiltonian wave equation (5). First, we recall the 
definition of multi-symplectic integrators for Hamiltonian PDEs. For the purpose of numerical approximation, following [20], 
we introduce a uniform grid (x j, tk) ∈R ×R+ , in the plan of (x, t), with a spatial step size �x and a temporal step size �t . 
The approximated value of z(x, t) at the mesh point (x j, tk) is denoted by z j,k . A numerical discretization of (1) and (2), can 
be written, respectively, as

M∂
j,k

t z j,k + K∂
j,k

x z j,k = (∇z S j,k) j,k, (8)

∂
j,k

t ω j,k + ∂
j,k

x κ j,k = 0, (9)

where S j,k := S(z j,k, x j, tk), ∂ j,k
t , ∂ j,k

x are discretizations of the derivatives ∂t and ∂x , respectively. The numerical method (8)
is called a multi-symplectic integrator of the system (1) if (9) is a discrete conservation law of (8) (see [20]).

Next, we consider multi-symplectic RK methods to solve the Hamiltonian wave equation. It is proved in [19] that Gauss-
Legendre discretizations applied to the scalar wave equation (and Schrödinger equation) in both space and time directions 
lead to multi-symplectic methods, and further in [17] that symplectic RK methods applied to the general Hamiltonian PDEs 
in both space and time directions lead to the multi-symplecticity. Applying s- and r-stage symplectic RK methods (c, A, b)

and (c̃, Ã, ̃b) to the multi-symplectic formulation (6) of the nonlinear wave equation (5) in space and time, respectively, the 
resulting discretization is as follows:

Ui,m = u[m]
0 + �x

s∑
j=1

aij∂xU j,m,

W i,m = w[m]
0 + �x

s∑
j=1

aij∂xW j,m,

u[m]
1 = u[m]

0 + �x
s∑

i=1

bi∂xUi,m,

w[m]
1 = w[m]

0 + �x
s∑

bi∂xW i,m,
i=1
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Ui,m = u0
[i] + �t

r∑
n=1

ãmn∂t Ui,n,

V i,m = v0
[i] + �t

r∑
n=1

ãmn∂t V i,n, (10)

u1
[i] = u0

[i] + �t
r∑

m=1

b̃m∂t Ui,m,

v1
[i] = v0

[i] + �t
r∑

m=1

b̃m∂t V i,m,

∂t Ui,m = V i,m,

∂xUi,m = W i,m,

∂t V i,m − ∂xW i,m = −V ′(Ui,m),

where A = (aij)
s
i, j=1, b = (b1, . . . , bs)

� , and Ã = (ãi, j)
r
i, j=1, b̃ = (b̃1, . . . , ̃br)

� are coefficients associated to the RK methods 
in space and time directions, respectively. Here we introduce the notations Ui,m ≈ u(ci�x, dm�t), u1

[i] ≈ u(ci�x, �t), u[m]
1 ≈

u(�x, dm�t), etc., with ci =∑s
j=1 aij, dm =∑r

n=1 ãmn , for i = 1, . . . , s, m = 1, . . . , r.

Remark 2.1. Recall that the conditions of multi-symplecticity of the method (10) are as follows:{
biai j + b ja ji − bib j = 0, ∀ i, j = 1,2, . . . , s,

b̃mãmn + b̃nãnm − b̃mb̃n = 0, ∀ m,n = 1,2, . . . , r,
(11)

or equivalently,{
M ≡ B A + A�B − bb� = 0,

M̃ ≡ B̃ Ã + Ã� B̃ − b̃b̃� = 0,
(11′)

where B = diag(b) and B̃ = diag(b̃). We also refer interested readers to [3] for symplectic RK methods for Hamiltonian ODEs.

We give some examples of the multi-symplectic RK methods by using the Butcher tableau.

Example 2.1. If r = s = 1 with the following Butcher tableaux, we obtain a multi-symplectic Gauss collocation method with 
midpoint in time and space respectively, i.e., the centered Preissman scheme.

1
2

1
2

1
2

1
2

1 1
.

If r = 1, s = 2 with the following Butcher tableaux, we obtain a multi-symplectic Gauss collocation method with midpoint 
in time and fourth order Gauss collocation method in space.

1
2

1
2

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1 1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

.

For the numerical method (10), the discrete ECL corresponding to (3) with (7) is

s∑
i=1

bi[E1
i − E0

i ]�x +
r∑

m=1

b̃m[F m
1 − F m

0 ]�t = 0, (12)

with

E�
i = 1

2
((w�

[i])
2 + (v�

[i])
2) + V (u�

[i]), F m
� = −v[m]

� w[m]
� , � = 0,1, (13)

and the discrete MCL can be given in the same manner. It is well-known that if the method (10) is multi-symplectic, then 
this method preserves the discrete ECL (12) for a general quadratic V . The motivation of this paper is to construct a new 
numerical method which can preserve the multi-symplectic structure and the discrete ECL for the general V simultaneously.
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3. EQUIP multi-symplectic methods

This section proposes a class of parametric multi-symplectic RK methods, called EQUIP multi-symplectic methods, by 
applying the EQUIP method to the Hamiltonian wave equation. This class of methods is multi-symplectic for all the real 
parameters, and can conserve the ECL simultaneously in a weak sense with a suitable parameter. The existence of such a 
parameter is presented in section 4.

The W-transformation is very useful in the characterization and construction of A-stable RK methods and is also practica-
ble to construct high-order symplectic RK type methods. Now we give some definitions and results on the W-transformation.

Consider the shifted and normalized Legendre polynomials Pk(x) =
√

2k+1
k!

dk

dxk (xk(x − 1)k) in [0, 1]. These polynomials 
satisfy the integration formulas:

x∫
0

P0(t)dt = ξ1 P1(x) + 1

2
P0(x),

x∫
0

Pk(t)dt = ξk+1 Pk+1(x) − ξk Pk−1(x), k = 1,2, . . .

with ξk = 1
2
√

4k2−1
.

The definition of W-transformation relies on a generalized Vandermonde matrix W = (wij)
s
i, j=1 whose elements are 

the shifted and normalized Legendre polynomials of degree j for j = 0, 1, . . . , s − 1, evaluated at ci (i = 1, 2, . . . , s), i.e., 
wij = P j−1(ci).

Definition 3.1. [29, p.81]. Let η, ξ be given integers between 0 and s − 1. We say that an s × s-matrix W satisfies T (η, ξ)

for the quadrature formula (bi, ci)
s
i=1 if

(1) W is nonsingular;
(2) wi, j = P j−i(ci), i = 1, 2, . . . , s, j = 1, 2, . . . , max(η, ξ) + 1;

(3) W �BW =
(

I 0
0 R

)
, where I is the (ξ + 1) × (ξ + 1) identity matrix and R is an arbitrary (s − ξ − 1) × (s − ξ − 1)

matrix.

If W satisfies T (η, ξ) for the quadrature formula (bi, ci)
s
i=1, then the W-transformation for an s-stage RK method is 

defined by

X = W �B AW . (14)

Further, if A is the coefficient matrix for the Gauss method of order 2s, then

X = W �B AW = W −1 AW =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2 −ξ1
ξ1 0 −ξ2

ξ2
. . .

. . .

. . . 0 −ξs−1
ξs−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where ξk = 1
2
√

4k2−1
(see Theorem 5.6 and Theorem 5.9 in [29]). Note that the multi-symplectic condition (11)′ can be 

written in the form:{
W �MW = X + X� − e1e�

1 = 0,

W̃ �M̃W̃ = X̃ + X̃� − ẽ1ẽ�
1 = 0,

(15)

where e1 = (1, 0, . . . , 0)� ∈Rs and ẽ1 = (1, 0, . . . , 0)� ∈Rr .
For two given R K methods (c, A, b) and (c̃, Ã, ̃b) with the transformation matrices X and X̃ defined by (14), we follow 

the idea of EQUIP methods in [13] to define the perturbed matrices X(α) and X̃(α) as

X(α) = X + αV , X̃(α) = X̃ + α Ṽ , (16)

where α is a real parameter and
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V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0
...

. . .
. . .

0
. . . −1

. . .
. . .

. . .

1
. . . 0

. . .
. . .

...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Nonzero elements 1 and −1 in the matrix V should be arranged such that the matrix keeps being skew-symmetric. The 
matrix Ṽ is defined similarly as V .

With the above preliminaries, we give the definition of EQUIP multi-symplectic methods.

Definition 3.2. Given a multi-symplectic RK method (10) with s- and r-stage symplectic RK methods (c, A, b) and (c̃, Ã, ̃b)

in space and time, respectively, for the Hamiltonian wave equation. The corresponding EQUIP multi-symplectic method is 
defined by using (c, A(α), b), (c̃, Ã(α), ̃b) instead, where

A(α) = (W �B)−1 X(α)W −1 = A + α(W �B)−1 V W −1, (17)

Ã(α) = (W̃ � B̃)−1 X̃(α)W̃ −1 = Ã + α(W̃ � B̃)−1 Ṽ W̃ −1. (18)

If the quadrature (b, c) has order ≥ 2s − 1 and (b̃, ̃c) has order ≥ 2r − 1, (17) and (18) are reduced, respectively, to

A(α) = W X(α)W −1 = A + αW V W −1, (19)

Ã(α) = W̃ X̃(α)W̃ −1 = Ã + αW̃ Ṽ W̃ −1. (20)

The multi-symplecticity of the method (17)-(18) is stated in the following theorem.

Theorem 3.1. Given a multi-symplectic R K method, if W (resp. W̃ ) satisfies T (η, ξ) for (bi, ci)
s
i=1 (resp. (b̃i, ̃ci)

r
i=1), then for any 

parameter α, the corresponding parametric method in (17)-(18) is also multi-symplectic.

Proof. By utilizing (15), the proof follows from the anti-symmetricity of V and Ṽ . �
Example 3.1. Based on (19)-(20), we give an example of the EQUIP multi-symplectic method with r = 1 and s = 2, whose 
Butcher tableaux are as follows:

1
2

1
2

1
2 −

√
3

6
1
4

1
4 −

√
3

6 − α

1 1
2 +

√
3

6
1
4 +

√
3

6 + α 1
4

1
2

1
2

.

Consequently, if α = 0, we retrieve the multi-symplectic Gauss collocation method with r = 1, s = 2. Note that in this 
example the method in space is exactly the EQUIP method (2.14) in [13, Example 1].

Remark 3.1. Since matrix V must be skew-symmetric, it vanishes in the case of r = 1. As is shown in the above example, it 
is sufficient to introduce the parameter α only in the spatial direction for the preservation of energy.

Similarly to the case of α = 0, by concatenating any two parametric Gauss collocation methods in spatial and temporal 
directions respectively, we can construct a EQUIP multi-symplectic method.

Remark 3.2. If the periodic boundary condition u(0, t) = u(L, t) is endowed, (3) yields the preservation of the “global” 
energy:

E(t) :=
L∫

0

E(z(x, t))dx =
L∫

0

E(z(x,0))dx =: E(0). (21)

One can also have the conservation of the “global” momentum if u(0, t) = u(L, t), i.e.,
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I(t) :=
L∫

0

I(z(x, t))dx =
L∫

0

I(z(x,0))dx =: I(0). (22)

We will show through numerical experiments that the method proposed in this paper conserves well the local and “global” 
energies in section 5.

4. Energy-preserving of EQUIP multi-symplectic RK methods

In this section, we give an existence result of the parameter α∗ which ensures the energy-preserving property of the 
proposed EQUIP multi-symplectic methods. The existence of such a parameter is in a weaker sense, which means that this 
parameter depends on the step sizes �x, �t , and on the initial data.

To find such a parameter α∗ , we need to solve a nonlinear system with 4rs + 1 unknowns:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ui,m = u[m]
0 + �x

∑s
j=1 aij(α)W j,m,

W i,m = w[m]
0 + �x

∑s
j=1 aij(α)∂xW j,m,

Ui,m = u0
[i] + �t

∑r
n=1 ãmn(α)V i,n,

V i,m = v0
[i] + �t

∑r
n=1 ãmn(α)∂t V i,n,

∂t V i,m − ∂xW i,m = −V ′(Ui,m),∑s
i=1 bi[E1

i − E0
i ]�x +∑r

m=1 b̃m[F m
1 − F m

0 ]�t = 0.

(23)

Denoting

U = (U1, U2, . . . , Ur)
�, V = (V 1, V 2, . . . , Vr)

�, W = (W1, W2, . . . , Wr)
�,

∂t V = (∂t V 1, ∂t V 2, . . . , ∂t Vr)
�, ∂xW = (∂xW1, ∂xW2, . . . , ∂xWr)

�

with Um = (U1,m, U2,m, . . . , Us,m) ∈Rs and Vm, Wm, ∂t Vm, ∂xWm ∈Rs , m = 1, 2, . . . , r being defined similarly, the nonlinear 
system (23) can be rewritten in a compact form:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U = u0 ⊗ es + �x[Ir ⊗ A(α)]W ,

W = w0 ⊗ es + �x[Ir ⊗ A(α)][∂t V + R(U )],
U = er ⊗ u0 + �t[ Ã(α) ⊗ Is]V ,

V = er ⊗ v0 + �t[ Ã(α) ⊗ Is]∂t V ,

b�(E1 − E0)�x + b̃�(F1 − F0)�t = 0,

(24)

where ⊗ denotes the Kronecker product, u0 = (u0[1], u0[2], . . . , u0[s])� , u1 = (u1[1], u1[2], . . . , u1[s])� , u0 = (u[1]
0 , u[2]

0 , . . . , u[r]
0 )� , 

u1 = (u[1]
1 , u[2]

1 , . . . , u[r]
1 )� , and v0, v1, v0, v1, w0, w1, w0, w1 have the similar definitions. In addition,

es = (1,1, . . . ,1)� ∈Rs, er = (1,1, . . . ,1)� ∈Rr,

R(U ) = (Ṽ �
1 , Ṽ �

2 , . . . , Ṽ �
r )�, Ṽm = (V ′(U1,m), . . . , V ′(Us,m))�,

A(α) = (aij(α))s
i, j=1, Ã(α) = (ãmn(α))r

m,n=1,

E1 = (E1
1, E1

2, . . . , E1
s )

�, E0 = (E0
1, E0

2, . . . , E0
s )

�,

F1 = (F 1
1 , F 2

1 , . . . , F r
1)

�, F0 = (F 1
0 , F 2

0 , . . . , F r
0)

�.

Using the above notations and the definitions of E�
i , F m

� , � = 0, 1, i = 1, . . . , s, m = 1, . . . , r in (13), we rewrite the last 
equation in (24) using notations u1, v1, w1, v1, w1 and u0, v0, w0, v0, w0 directly, which is summarized in the following 
proposition.

Proposition 4.1. The ECL, i.e., the last equation in (24), can be rewritten as[
1

2
b�diag(w1)w1 + 1

2
b�diag(v1)v1 + b�V (u1) − 1

2
b�diag(w0)w0

− 1

2
b�diag(v0)v0 − b�V (u0)

]
�x +

[
b̃�diag(v0)w0 − b̃�diag(v1)w1

]
�t = 0,

(25)

where V (u0) =
(

V (u0[1]), V (u0[2]), . . . , V (u0[s])
)�

and V (u1) =
(

V (u1[1]), V (u1[2]), . . . , V (u1[s])
)�

.
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Therefore, we rewrite (24) as{
L(�x,�t,α)Y − �xF (Y ,α) = Y0,

T (u1, v1, w1, v1, w1) − T (u0, v0, w0, v0, w0) = 0,
(26)

where Y = (U�, V �, W �, ∂t V �)� , Y0 = ((u0 ⊗ es)
�, (w0 ⊗ es)

�, (er ⊗ u0)�, (er ⊗ v0)�)� , T (x, y, z, p, q) = [ 1
2 b�diag(z)z +

1
2 b�diag(y)y + b�V (x)

]
�x − b̃�diag(p)q�t , and

L(�x,�t,α) =

⎛
⎜⎜⎝

Irs −�x(Ir ⊗ A(α)) O rs O rs

O rs O rs Irs −�x(Ir ⊗ A(α))

Irs −�t( Ã(α) ⊗ Is) O rs O rs

O rs Irs O rs −�t( Ã(α) ⊗ Is)

⎞
⎟⎟⎠ ,

F (Y ,α) =

⎛
⎜⎜⎝

0rs

(Ir ⊗ A(α))R(U )

0rs

0rs

⎞
⎟⎟⎠ ,

with O rs being an (rs × rs)-zero matrix and 0rs being an rs-zero vector.
From (10), we have

w[m]
1 = w[m]

0 + �x
s∑

i=1

bi(∂t V i,m + V ′(Ui,m)),

u1
[i] = u0

[i] + �t
r∑

m=1

b̃m V i,m,

v1
[i] = v0

[i] + �t
r∑

m=1

b̃m∂t V i,m.

Meanwhile, we introduce two auxiliary systems:

V i,m = v[m]
0 + �x

s∑
j=1

aij(α)∂x V j,m,

v[m]
1 = v[m]

0 + �x
s∑

i=1

bi∂x V i,m,

W i,m = w0
[i] + �t

r∑
n=1

ãmn(α)∂t W i,n,

w1
[i] = w0

[i] + �t
r∑

m=1

b̃m∂t W i,m = w0
[i] + �t

r∑
m=1

b̃m∂x V i,m,

where we use ∂x V i,m = ∂t W i,m in the last equation. Thus the equations for u1, v1, w1, v1, w1 can be written as

u1 = u0 + �t B̃∗V ,

v1 = v0 + �t B̃∗∂t V ,

w1 = w0 + �t B̃∗∂x V

v1 = v0 + �xB∗∂x V ,

w1 = w0 + �xB∗(∂t V + R(U )),

(27)

where B̃∗ = b̃� ⊗ Is and B∗ = Ir ⊗ b� .
Now we are in a position to show the existence of a proper parameter α∗ such that the EQUIP multi-symplectic 

method (see Definition 3.2) preserves the ECL, following the idea in [13, Section 3]. Let y1 = (u1, v1, w1, v1, w1)
� , 

y0 = (u0, v0, w0, v0, w0)
� . Define the error function in the discrete ECL as G(α) = T (y1) − T (y0). When needed, G(α)

may be written as G(α, �x, �t) to emphasize the dependence on step sizes �x and �t . The numerical solution of the 
EQUIP multi-symplectic method (17)-(18) defines a corresponding mapping of the form y1 = ��x,�t(y0, α). The nonlinear 
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system (24), in which 4rs + 1 unknowns U , V , W , ∂t V and α need to be solved in every rectangular domain composed of 
length �x and width �t , reads{

L(�x,�t,α)Y = Y0 + �xF (Y ,α),

G(α) = 0.
(28)

The solvability of this system yields the existence of the energy-preserving method. For convenience, we denote h := �x, 
τ := �t , and define the vector function

ϕ(h, τ , y1,α) =
(

y1 − �h,τ (y0,α)

T (y1) − T (y0)

)
,

then the system (28) is equivalent to ϕ(h, τ , y1, α) = 0.
From (27), we know that ϕ(0, 0, y1, α) = 0 for every y1 and α. The Jacobian of ϕ with respect to (y1, α) is

∂ϕ

∂(y1,α)
(h, τ , y1,α) =

(
I − ∂�h,τ

∂α (y0,α)

∇�T (y1) 0

)
(29)

with I being the identity matrix of dimension 3s + 2r. By using the formula on the determinant of a block matrix, we get

det

(
∂ϕ

∂(y1,α)
(h, τ , y1,α)

)
= det

(
∇�T (y1) · ∂�h,τ

∂α
(y0,α)

)
.

Since

T (y1) =
[

1

2
b�diag(w1)w1 + 1

2
b�diag(v1)v1 + b�V (u1)

]
h − b̃�diag(v1)w1τ ,

it holds that

(∇T (y1))
� =

(
b� P ′

u1(u1)h,
1

2
b�(diag(v1)v1)′v1 h,

1

2
b�(diag(w1)w1)′w1h,

− b̃�(diag(v1)w1)
′
v1

τ , −b̃�(diag(v1)w1)
′
w1

τ

)
.

Therefore, when h = 0 and τ = 0, (∇T (y1))
� is the zero vector for any α, and thus the rank of the matrix (29) is 3s + 2r.

Due to singularity of the matrix (29) when h = 0 and τ = 0, the implicit function theorem cannot be applied directly 
to prove the solvability of the nonlinear system (28). In [13], the existence of the parameter α∗ for the EQUIP method is 
proved with the aid of the Lyapunov-Schmidt decomposition method. This decomposition method restricts the nonlinear 
system to the complement of the null space and the range of the Jacobian. Thus one gets two subsystems whose Jacobians 
are nonsingular and then the implicit function theorem is applicable.

Before we give the existence of α∗ , we first state the solvability of the first system in (28), which could be proved 
similarly as in [30, Theorem 3.1].

Lemma 4.1. If h � τ 2 and the RK matrix Ã is nonsingular, then for |α| � α0 , h � h0 and τ � τ0 with α0 , h0 and τ0 small enough, 
there exists a solution Y (α) of the first system in (28).

Similar as in [13], the following assumptions are made to give the existence of α∗:

(S1) h � τ 2;
(S2) The function G is analytic in a cube Q = [−α0, α0] × [−h0, h0] × [−τ0, τ0];
(S3) G(0, h, τ ) = c0τ

d +O(τ d+1), c0 �= 0,
G(α, h, τ ) = c(α)τ d−m +O(τ d+1−m), c(α) �= 0.

The following lemma gives the existence and expansion of α∗ , whose proof follows that of [13, Theorem 3.2] for EQUIP 
methods of Hamiltonian ODEs.

Lemma 4.2. Under assumptions (S1)-(S3), there exists a function α∗ = α∗(h, τ ) defined in a rectangle (−h0, h0) × (−τ0, τ0), such 
that

(i) G(α∗(h, τ ), h, τ ) = 0, for all h ∈ (−h0, h0) and τ ∈ (−τ0, τ0);
(ii) α∗(h, τ ) = const · τm +O(τm+1) for some integer m.
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Proof. From (S2) and (S3), the expansion of G around (0, 0, 0) is

G(α,h, τ ) =
∞∑

i=0

∞∑
j=0

∞∑
k=0

1

i! j!k! · ∂ i+ j+kG

∂αi∂h j∂τ k
(0,0,0)αih jτ k. (30)

By (S1), there exists a constant β (0 < β < 1) such that h = βτ 2. Substituting this into (30) leads to

G(α,h, τ ) = G(α,h(τ ), τ ) =
∞∑

i=0

∞∑
j=0

∞∑
k=0

β j

i! j!k! · ∂ i+ j+kG

∂αi∂h j∂τ k
(0,0,0)αiτ 2 j+k

=
∞∑
j=0

∞∑
k=0

β j

j!k! · ∂ j+kG

∂h j∂τ k
(0,0,0)τ 2 j+k +

∞∑
i=1

∞∑
j=0

∞∑
k=0

β j

i! j!k! · ∂ i+ j+kG

∂αi∂h j∂τ k
(0,0,0)αiτ 2 j+k.

From (S3), the above equation can be rewritten as

G(α,h(τ ), τ ) =
∑

2 j+k�d

β j

j!k! · ∂ j+kG

∂h j∂τ k
(0,0,0)τ 2 j+k +

∞∑
i=1

∑
2 j+k�d−m

β j

i! j!k! · ∂ i+ j+kG

∂αi∂h j∂τ k
(0,0,0)αiτ 2 j+k.

In order to find a solution α∗ = α∗(h(τ ), τ ) in the form of α∗(h(τ ), τ ) = η(τ )τm with η(τ ) being a real-valued function 
of τ , we consider the change of variables α = ητm ,

G(α,h(τ ), τ )

=
∑

2 j+k�d

β j

j!k! · ∂ j+kG

∂h j∂τ k
(0,0,0)τ 2 j+k +

∞∑
i=1

∑
2 j+k�d−m

β j

i! j!k! · ∂ i+ j+kG

∂αi∂h j∂τ k
(0,0,0)ηiτmi+2 j+k

=
∑

2 j+k=d

β j

j!k! · ∂ j+kG

∂h j∂τ k
(0,0,0)τ d +O(τ d+1) +

∑
2 j+k=d−m

β j

j!k! · ∂1+ j+kG

∂α∂h j∂τ k
(0,0,0)ητ d +O(τ d+1)

= τ d

⎡
⎣ ∑

2 j+k=d

β j

j!k! · ∂ j+kG

∂h j∂τ k
(0,0,0) +

∑
2 j+k=d−m

β j

j!k! · ∂1+ j+kG

∂α∂h j∂τ k
(0,0,0)η +O(τ )

⎤
⎦ .

Denoting by G̃(η, τ ) the formula in the above bracket. If τ �= 0, then G(α, h(τ ), τ ) = 0 if and only if G̃(η, τ ) =
0. Therefore, we apply the implicit function theorem to G̃(η, τ ) = 0. By (S3), both 

∑
2 j+k=d

β j

j!k! · ∂ j+k G
∂h j∂τ k (0, 0, 0) and ∑

2 j+k=d−m
β j

j!k! · ∂1+ j+k G
∂α∂h j∂τ k (0, 0, 0) are not equal to zero. Let

η0 = −
∑

2 j+k=d
β j

j!k! · ∂ j+k G
∂h j∂τ k (0,0,0)∑

2 j+k=d−m
β j

j!k! · ∂1+ j+k G
∂α∂h j∂τ k (0,0,0)

, τ0 = 0,

then, G̃(η0, τ0) = 0. The functions G̃(η, τ ), G̃η(η, τ ) and G̃τ (η, τ ) are continuous in the neighborhood of the point (η0, τ0), 
moreover,

G̃η(η0, τ0) =
∑

2 j+k=d−m

β j

j!k! · ∂1+ j+kG

∂α∂h j∂τ k
(0,0,0) �= 0.

Hence the implicit function theorem ensures the existence of a function η = η(τ ) such that G̃(η(τ ), τ ) = 0.
From the equation

G̃(η, τ ) =
∑

2 j+k=d

β j

j!k!
∂ j+kG

∂h j∂τ k
(0,0,0) +

∑
2 j+k=d−m

β j

j!k!
∂1+ j+kG

∂α∂h j∂τ k
(0,0,0)η +O(τ ) = 0,

the solution of G(α, τ ) = 0 takes the form

α∗(h(τ ), τ ) = η(τ )τm = −
∑

2 j+k=d−m
β j

j!k!
∂ j+k G
∂h j∂τ k (0,0,0)∑

2 j+k=d−m
β j

j!k!
∂1+ j+k G
∂α∂h j∂τ k (0,0,0)

τm +O(τm+1),

which completes the proof. �
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Fig. 1. A uniform grid and the unknowns in grid points.

From Lemmas 4.1 and 4.2, we obtain the main result.

Theorem 4.1. Let assumptions (S1), (S2) and (S3) be satisfied and let the RK matrix Ã be nonsingular. Then the system (28) is solved 
uniquely, i.e., there exists a unique solution (Y �, α∗).

The assumption (S1) and the nonsingularity of Ã in Theorem 4.1 can be replaced by τ � h2 and the nonsingularity of A, 
respectively. In fact, from [30] if the RK matrix A is nonsingular, the conclusion of Lemma 4.1 still holds. And in the proof 
of Lemma 4.2, by considering the change of variables α(h) = ζ(h)hm , we can still get the solvability of the second equation 
of (28) with respect to α. The following corollary states the result.

Corollary 4.1. Let assumptions (S2) and (S3) be satisfied. Then two kinds of conditions on step sizes and nonsigularities, each of which 
guarantees the solvability of the system (28), are as follows:

(1) h � τ 2 and Ã is nonsingular,
(2) τ � h2 and A is nonsingular.

5. Numerical experiments

In this section, we present some numerical experiments to show the effectiveness in energy-preserving of the proposed 
EQUIP multi-symplectic methods. We consider the sine-Gordon equation (i.e., V (u) = − cos(u) in (5)):

∂tt u = ∂xxu − sin(u), (x, t) ∈ (−L/2, L/2) × (0, T ],
u(−L/2, t) = u(L/2, t), t ∈ [0, T ], (31)

with initial conditions:

u(x,0) = 4 tan−1(
ex−L/6√
1 − β2

) + 4 tan−1(
e−x−L/6√

1 − β2
),

∂t u(x,0) = ∂

∂t

[
4 tan−1(

ex−L/6−βt√
1 − β2

) + 4 tan−1(
e−x−L/6−βt√

1 − β2
)

]∣∣∣∣∣
t=0

.

(32)

On an infinite domain, these initial conditions could yield a soliton solution and an anti-soliton solution moving with 
speed ±β respectively. We set β = 0.5, L = 100 and T = 200.

5.1. Numerical method

The numerical solution of (31)-(32) is obtained by using the EQUIP multi-symplectic method with r = 1 (midpoint in 
time) and s = 2 (fourth order Gauss collocation method in space) with a temporal step size �t = 0.1 and a spatial step size 
�x = 1 (see Example 3.1). Below the implementation of this method is provided in details for the sake of clarity.
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First, in each domain composed of �t and �x, by letting s = 2, r = 1 in (10) with Butcher tableaux in Example 3.1, we 
obtain a nonlinear system with the discrete ECL (12)-(13):

U1,1 = u[1]
0 + �x

(
1

4
W1,1 +

(
1

4
−

√
3

6
− α

)
W2,1

)
,

U2,1 = u[1]
0 + �x

((
1

4
+

√
3

6
+ α

)
W1,1 + 1

4
W2,1

)
,

W1,1 = w[1]
0 + �x

(
1

4
∂xW1,1 +

(
1

4
−

√
3

6
− α

)
∂xW2,1

)
,

W2,1 = w[1]
0 + �x

((
1

4
+

√
3

6
+ α

)
∂xW1,1 + 1

4
∂xW2,1

)
,

u[1]
1 = u[1]

0 + �x

2
(W1,1 + W2,1),

w[1]
1 = w[1]

0 + �x

2
(∂xW1,1 + ∂xW2,1),

U1,1 = u0[1] + �t

2
V 1,1,

U2,1 = u0
[2] + �t

2
V 2,1,

V 1,1 = v0[1] + �t

2
∂t V 1,1, (33)

V 2,1 = v0
[2] + �t

2
∂t V 2,1,

u1[1] = u0[1] + �tV 1,1,

u1[2] = u0
[2] + �tV 2,1,

v1[1] = v0[1] + �t∂t V 1,1,

v1[2] = v0
[2] + �t∂t V 2,1,

∂t V 1,1 − ∂xW1,1 = − sin(U1,1),

∂t V 2,1 − ∂xW1,1 = − sin(U2,1),

�x

4

(
(w1[1])2 + (w1[2])2 + (v1[1])2 + (v1[2])2 − 2 cos(u1[1]) − 2 cos(u1[2])

)
− �tv[1]

1 w[1]
1

= �x

4

(
(w0[1])2 + (w0

[2])
2 + (v0[1])2 + (v0

[2])
2 − 2 cos(u0[1]) − 2 cos(u0

[2])
)

− �tv[1]
0 w[1]

0 ,

which has 20 unknowns U1,1, U2,1, V 1,1, V 2,1, W1,1, W2,1, ∂t V 1,1, ∂t V 2,1, ∂xW1,1, ∂xW2,1, u[1]
0 , w[1]

0 , v[1]
0 , u1[1], u1[2], v1[1], v1[2],

w1[1], w1[2] and α. Since (33) only contains 17 equations, it still needs three more equations. To this end, letting u0
0 = u(0, 0), 

we add the following equations to the above system (33) (see for instance [19, Section 3]),

u[1]
0 = u0

0 + �t

2
v[1]

0 ,

u1[1] = u1
0 + �x

(
1

4
w1[1] +

(
1

4
−

√
3

6
− α

)
w1[2]

)
,

u1[2] = u1
0 + �x

((
1

4
+

√
3

6
+ α

)
w1[1] + 1

4
w1[2]

)
,

u1
0 = u0

0 + �tv[1]
0 ,

(34)

where u1
0 ≈ u(0, �t) is another unknown. Therefore, we have the nonlinear system (33)-(34) with 21 unknowns (see Fig. 1).

Next, considering the periodic boundary condition, in each time level we put together the above individual nonlinear 
system through space axis (including M = 100 grid points), which leads to a nonlinear system with 2100 unknowns. De-
noting by X the unknowns, this nonlinear system can be rewritten as F (X) = 0, which is solved by using Newton iteration 
method with tolerance ε = 10−15.
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Fig. 2. Values of α in the EQUIP multi-symplectic method at (x, t)-plane [−50, 50] × [0, 200] with h = 1 and τ = 0.1.

Fig. 3. Values of α in the EQUIP multi-symplectic method at two fixed moments t = 50 and t = 150.

5.2. Numerical results

Fig. 2 presents the values of the parameter α in the EQUIP multi-symplectic method on (x, t)-plane [-50, 50]× [0, 200], 
which make the method preserve energy. Fig. 3 shows the values of such parameter in details, for the selected moments 
t = 50 and t = 150. Numerical results indicate that the parameter sequence exists at every calculation grid and has the 
absolute values closed to zero (about 10−7 ∼ 10−8). Fig. 4 is the cross-section plots of the wave u(x, t) at some selected 
moments during the time interval [0, 200].

We compare the errors of the total energy E (t) by using the multi-symplectic Gauss collocation (denoted by MSRK) 
method and the EQUIP multi-symplectic (denoted by α-MSRK) method, which are shown in Fig. 5. Numerical results show 
that in the conservation of the total energy E (t), the error of the MSRK method is of about 10−3, while the error of the 
α-MSRK method is of about 10−12. Both the MSRK method and the α-MSRK method conserve the total momentum I(t)
exactly, since it is a quadratic invariant.

Fig. 6 shows the comparison of the error in the local discrete ECL (12)-(13) of the MSRK method and the α-MSRK 
method, in the time intervals [0, 30] and [150, 170], respectively. Observe that the α-MSRK method (about 10−13) conserves 
the discrete ECL better than the MSRK method (about 10−3).
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Fig. 4. Time evolution of solution during the time interval t ∈ [0,200].

Fig. 5. Comparison of numerical errors in the global energy for both the MSRK method and the α-MSRK method over the time interval [0,200].

Next, we will report the error in the numerical solution. Since the exact solution of this problem (31) with initial 
conditions (32) is not known explicitly, we use the numerical solution with a smaller time step size �t0 = 0.01 as the 
reference solution (denoted by u�t0 ) to estimate the error.

The pointwise error is defined by

e�t(xi, tn) = |u�t(xi, tn) − u�t0(xi, tn)|,
where the step size �t takes the values 0.1, 0.08, 0.05, 0.02 as different step sizes, and tn = n�t0 (1 ≤ n ≤ N , N = 200/�t0). 
Fig. 7 shows the corresponding pointwise errors at some selected moments during the time interval [0, 200].

The discrete maximal (L∞) and average (L2) errors are defined as

L∞(tn) = max |e�t(xi, tn)|,

1≤i≤M
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Fig. 6. Comparison of numerical errors in the local energy for both the MSRK method and the α-MSRK method over the time intervals [0, 30] and [150, 170].

Table 1
Values of errors at some selected times in [0, 200] for different temporal step sizes.

t L∞-error L2-error

�t = 0.1 �t = 0.08 �t = 0.05 �t = 0.02 �t = 0.1 �t = 0.08 �t = 0.05 �t = 0.02

1 9.46E–04 7.24E–04 2.25E–04 7.25E–05 2.73E–03 2.01E–04 1.11E–04 3.53E–04
17 4.69E–03 4.23E–03 3.62E–03 2.51E–03 1.95E–02 1.88E–02 1.81E–02 1.12E–02
77 2.43E–02 1.70E–02 7.67E–03 3.70E–03 6.34E–02 4.20E–02 4.20E–02 2.39E–02
117 1.94E–02 1.61E–02 5.18E–03 4.25E–03 7.34E–02 4.77E–02 4.77E–02 2.25E–02
177 2.09E–02 1.75E–02 7.09E–03 3.84E–03 8.34E–02 6.68E–02 6.68E–02 2.85E–02
200 3.48E–02 2.11E–02 8.29E–03 5.55E–03 1.40E–01 9.02E–02 9.02E–02 3.77E–02

L2(tn) =
⎛
⎝�x

∑
1≤i≤M

|e�t(xi, tn)|2
⎞
⎠

1/2

.

Fig. 8 and Fig. 9 present the curves of solution errors in L∞- and L2-norms in the time interval [0, 200] when �t = 0.1, 
0.08, 0.05 and 0.02, respectively.

Table 1 shows the values of solution errors at some selected moments during the time interval [0, 200] for different 
temporal step sizes.

5.3. Comparison of computational costs

When we implement the numerical experiments to solve the problem with the periodic boundary condition by using the 
EQUIP multi-symplectic method, the major costs result from the discretization of the PDE. The nonlinear system to be solved 
in each domain (0, �x) × (0, �t) has (5s + 3)r + 3s + 2 unknowns. When α = 0, namely, the standard multi-symplectic RK 
method is applied, the nonlinear system has (5s + 2)r unknowns. Therefore when Newton iteration method is applied, the 
Jacobian matrix has dimension (5s + 2)r for the case of α = 0, while it has dimension (5s + 3)r + 3s + 2 for the case of 
α = α∗ . After assembling the individual Jacobian matrix through space axis (including M = 100 grid points), we obtain the 
matrices with M(5s + 2)r and M((5s + 3)r + 3s + 2) dimensions respectively. These matrices have approximately sparse 
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Fig. 7. Time evolution of the error for �t = 0.1.

Fig. 8. Errors in L∞-norm during the time interval [0,200] for different temporal step sizes.

band structure with bandwidth (5s + 2)r + 2 and (5s + 3)r + 3s + 4, respectively. Gauss elimination method is used in 
each iteration of Newton iteration method to solve a system of linear equations. If we denote d the bandwidth and N the 
dimension of the matrix, the calculation cost by using Gauss elimination method is as follows:

Cost = [(N − d)d2 + d3/3](forward) + (Nd − d2/2)(backward)

= Nd2 − 2d3/3 + Nd − d2/2.
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Fig. 9. Errors in L2-norm during the time interval [0,200] for different temporal step sizes.

Table 2
Computer costs for the cases of α = 0 and α = α∗ .

Computer type α = 0 α = α∗

Core two Duo 1091.47s 3283.46s
Fourth generation core i5 482.3s 1320.8s

If N � d, then Cost ≈ Nd2 + Nd ≈ Nd2. Therefore, the costs of these two methods are approximately M((5s + 2)r + 2)2

and M((5s + 3)r + 2s + 4)2, respectively. By comparing these two costs, we know that the larger s and r are, the smaller 
the difference in dimensions of the Jacobian matrices is. We compare the computational time needed to solve the sine-
Gordon equation (31)-(32) by using the EQUIP multi-symplectic method with r = 1 and s = 2 in the cases of α = 0 and 
α = α∗ . In the numerical experiments, we have used Gauss elimination method to solve the linear system in each step of 
Newton iterations. We notice from Table 2 that the costs in numerical experiments coincide approximately with the above 
theoretical results.

6. Concluding remarks

We propose a family of EQUIP multi-symplectic methods for the Hamiltonian wave equation. These methods are multi-
symplectic perturbations of the classical multi-symplectic methods with the free parameter α. The existence of a parameter 
such that the methods are energy-preserving in a weaker sense is proved. This weaker sense means that the parameter 
depends on the step sizes and the initial data, which says that the energy conservation property may fail if one changes the 
step sizes or the initial data. Numerical experiments show the effectiveness of the proposed method, and the preservation of 
both multi-symplecticity and energy. This work considers only energy-preserving property together with multi-symplecticity, 
a research on multi-symplectic method preserving both energy and momentum, and possible further invariants, will be the 
subject of future investigations.
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