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Abstract
In this paper, we consider the large deviations principles (LDPs) for the stochastic linear
Schrödinger equation and its symplectic discretizations. These numerical discretizations
are the spatial semi-discretization based on the spectral Galerkin method, and the further
full discretizations with symplectic schemes in temporal direction. First, by means of the
abstract Gärtner–Ellis theorem, we prove that the observable , 0 of the exact
solution is exponentially tight and satisfies an LDP on 2 0 . Then, we present the
LDPs for both 0 of the spatial discretization and of the full dis-

cretization , where and are the discrete approximations
of . Further, we show that both the semi-discretization and the full discretiza-
tion based on temporal symplectic schemes can weakly asymptotically preserve
the LDP of 0. These results show the ability of symplectic discretizations to pre-
serve the LDP of the stochastic linear Schrödinger equation, and first provide an effective
approach to approximating the large deviations rate function in infinite dimensional space
based on the numerical discretizations.
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1 Introduction

The stochastic Schrödinger equation, as an important stochastic Hamiltonian partial dif-
ferential equation, is widely used to model the propagation of dispersive waves in inho-
mogeneous or random media (see e.g., [12]), and possesses the infinite dimensional
stochastic symplectic geometric structure. To numerically inherit the geometric structure of
the stochastic Schrödinger equation, [2] proposes the infinite dimensional stochastic sym-
plectic algorithms and considers the semi-discretizations, such as the stochastic symplectic
Runge–Kutta methods. Moreover, the full discretizations based on the stochastic symplec-
tic methods in temporal direction are also proposed (see e.g., [2, 4, 5, 10, 11] and references
therein). The numerical experiments show that stochastic symplectic discretizations are
superior to non-symplectic ones, especially in the long-time stability. This superiority is
explained in [3] from the perspective of LDP, when stochastic symplectic discretizations are
applied to stochastic Hamiltonian ordinary differential equations.

In this paper, we aim to deepen the understanding of the long-time asymptotical behav-
ior and probabilistic characteristics of stochastic symplectic discretizations for stochastic
Hamiltonian partial differential equations. Considering the infinite dimensional stochastic
symplecticity of the stochastic linear Schrödinger equation

0 (1.1)

0 0
1
0 0

we take it as the test equation and as the observable to obtain the precise
results on the ability of symplectic discretizations to asymptotically preserve the LDP for the
original equation. Here 0, denotes the Laplace operator with the Dirichlet boundary
condition, and is an 2 0 -valued -Wiener process defined on a complete filtered
probability space F F 0 P with F 0 satisfying the usual conditions; see
Section 2 for more details on Eq. 1.1. The reasons for the choice of the observable 0
include two aspects. On one hand, the wavefunction is an important physical quantity
and it is meaningful to characterize the asymptotics of for large time , which can be
obtained based on the LDP of 0. Further, we are interested in whether stochastic
symplectic discretizations preserve this asymptotics. On the other hand, it is convenient to
compare the LDP between and its discrete versions by means of the explicit expression
of the corresponding rate functions, which can present the asymptotical preservation for the
LDP of 0 via stochastic symplectic discretizations in a direct and explicit form.

Our idea to derive the LDP of 0 on 0 is to use the abstract Gärtner–Ellis the-
orem, which involves the existence of the logarithmic moment generating function and
exponential tightness. The Gaussian property of the exact solution on 0 with the real
inner product is analyzed to give the logarithmic moment generating function of 0.
A prerequisite of the exponential tightness is to find the compact subsets of 0, under
the non-compactness of the Schrödinger semigroup, such that the probabilities of 0
hitting the complements of these compact subsets are exponentially small. This relies on
two skills: One is that the regularity of on 1 gives a series of compact sets in 0 by uti-
lizing the fact that 1 is compactly embedded into 0, and the other is that the Fernique
theorem yields the estimate of probabilities that hits these compact sets on an exponen-
tial scale. Utilizing the property of reproducing kernel Hilbert space, we obtain the explicit
expression of the large deviations rate function of 0. As an application of LDP of

0 on 0, we give the exponential decay speed of the probability P 0 ,
0 of the tail event of 0 (see Eq. 3.16 in Corollary 1 for details), which is
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more subtle than the polynomial decay rate 1 resulting from the evolution law of the mass
E 2

0 E 0
2

0
2tr (see Eq. 3.15).

The large deviations rate functions characterize the essential decay rate of the probabili-
ties of rare events. It is important for a numerical discretization to preserve the rate function
in certain sense. Thus, for a numerical discretization of Eq. 1.1, it is natural to ask:

(P1) Does the discrete approximation of 0, associated with the numerical dis-
cretization of Eq. 1.1, satisfy the LDP?

(P2) If so, which kind of numerical discretizations can preserve the LDP of the original
system, namely preserve the large deviations rate function, exactly or asymptoti-
cally?

This paper aims to deal with the above problems. We are faced with two major difficulties
in the numerical analysis. One is how to define the preservation for the LDP of an infi-
nite dimensional stochastic differential equation by its numerical discretizations, since the
spaces concerning the LDPs are different. The space concerning the LDP of a numerical dis-
cretization is finite dimensional, while that of the original equation is infinite dimensional.
Therefore one needs a reasonable definition to link these two spaces. Another difficulty
arises from the symplectic discretizations of the stochastic Schrödinger equation, including
the general formulation in high dimensional case and the combination with the theory of
large deviations.

Concerning these issues, we first apply the spectral Galerkin method to Eq. 1.1 and get
the spatial semi-discretization (see Eq. 4.1)

0 (1.2)

0 0 .

Here span 1 2 , where 1 2 are the eigenfunctions of and
form an orthonormal basis of 0. In fact, Eq. 1.2 is a symplectic discretization and can be
rewritten into a stochastic Hamiltonian system (see Eq. 5.1):

M

M Q (1.3)

where . We define by , 0 a discrete approximation of the
observable for Eq. 1.2. Following the arguments of dealing with the LDP for 0,
we prove that for each , 0 obeys an LDP on with the good rate function

. Note that and have different domains, which brings the difficulty to define and
study the preservation of the LDP for 0 by . A possibility is to transfer the
LDP of 0 on to 0. This can be solved by means of Lemma 2 which reveals
the relationship between LDPs of a stochastic process on some space and that on subspaces.
This is to say, 0 also satisfies the LDP on 0 with a rate function . However, we
also note that the valid domain, on which takes finite values, is a proper subset of the
valid domain of . Hence, we introduce the definition of weakly asymptotical preservation
for LDP (see Definition 4) in the sense that is well approximated by for some suffi-
ciently large . Further, we prove that weakly asymptotically preserves the LDP
of 0 based on the strong continuity of the projection operators.

Next, we attempt to show that the full discretization based on a large class of tempo-
ral symplectic discretization can weakly asymptotically preserve the LDP of 0. In
order to give the general formula of symplectic discretizations for the high dimensional
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system Eq. 1.3, an argument of dimensionality reduction is applied. More precisely, we
divide Eq. 1.3 into subsystems (see Eq. 5.4). Then we obtain a class of full discretiza-
tions based on the temporal symplectic discretizations of Eq. 1.3 by combining
the symplectic discretizations in [3] for every 2-dimensional subsystem. For this full dis-

cretization, we define a discrete approximation of , with being the temporal
stepsize, and give the LDP of based on the Gärtner–Ellis theorem and the con-
traction theorem. Further, we study whether can weakly asymptotically preserve
the LDP (see Definition 5) of 0, which depends on the asymptotical behavior of the
modified rate function of . Notice that is a good approximation of , it
suffices to prove that for each , can asymptotically preserve the LDP of

0, i.e., the modified rate function converges to pointwise as tends to zero.
Similar to [3], under certain convergence condition of numerical approximations, we obtain
lim 0 . Combining the asymptotical convergence of to , we deduce
our main conclusion that the full discretization , based on the the spatial spectral
Galerkin approximation and temporal symplectic discretizations, can weakly asymptotically
preserve the LDP of 0. That is to say, we obtain a good approximation of the large
deviations rate function of 0 based on the symplectic discretizations. To the best of
our knowledge, this is the first result of approximating the large deviations rate function in
infinite dimensional space based on the numerical discretizations. We partially answer the
open problem proposed by [3].

The paper is organized as follows. In Section 2, some useful notations and preliminaries
are introduced. In Section 3, we give an introduction on the LDP in general topological
vector spaces, and prove that 0 satisfies an LDP on 0. The weakly asymptotical
preservations of LDP for 0 by the spectral Galerkin approximation and the further
full discretizations based on the temporal symplectic discretizations are given in Sections 4
and 5, respectively. Section 6 generalizes the LDP of 0 to the case of complex-valued
noises. Future work is discussed in Section 7.

2 Preliminaries

We begin with some notations. Throughout this paper, denote by 0 and
0 , the classical Sobolev space of complex-valued functions and the classi-

cal Sobolev space of real-valued functions, respectively. In particular, denote 0

2 0 , 1
0 0 1 0 0 0 , 0 2 0

and 1 1 0 0 0 . Endow 1 with the inner
product 1 0 0 for any 1. For a linear operator
from some Hilbert space onto itself, let be the th eigenvalue of . For a com-
plex number , let and be its real part and imaginary part, respectively. And denote
by the imaginary unit. Let and be two separable
Hilbert spaces. Denote by L the operator norm of a bounded linear operator

, and especially set L L for short. Let 2 denote the
Banach space consisting of all the Hilbert–Schmidt operators from to , with the norm

L2 1
2

1
2 , where is any orthonormal basis of . Denote

the real inner product by 0 , and the complex inner product by

0 for , 0.
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For a given , denotes the space of -dimensional complex-valued vectors.

Define the inner product on by
1

, and the norm by

for any 1 2 , 1 2 . O
stands for , for all sufficiently small 0. means that and
are equivalent infinitesimal. For the random variables , Var denotes the covariance
operator of and Cor denotes the correlation operator of and .

In order to investigate the stochastic Schrödinger Eq. 1.1, we introduce the definition and

properties of the noise. Let 2 sin , then forms an orthonormal basis of

both 0 and 0 . Assume that is a nonnegative symmetric operator on
0 with finite trace such that for some non-increasing sequence . Then
has the expansion 1 . can be extended to 0 by defining

for every 0 and the extended operator is still denoted by ,
if no confusion occurs. Noting that 2 , 1 2 , we have that .

Let be the unitary 0-group generated by . The 1-regularity of the exact
solution of Eq. 1.1 is given below (see [1, Propositions 3.1 and 3.5]), which will be used to
establish the exponential tightness of 0 in Theorem 2.

Proposition 1 Assume that
1
2 2

0 1 . Then Eq. 1.1 admits a unique mild solution
in 1

0 0 such that for any 0,

0
0

(2.1)

and
E 2

1 1

where is a constant dependent on the initial value 0 and .

Next, we give some results about the property of the distribution of the exact solution
Eq. 2.1. These results are based on the following proposition.

Proposition 2 [7, Proposition 4.28] Let be a -valued -Wiener process and
NW 0 2

0 denote the set

[0 ] L2
1
2 is predicable and

E
0

1
2

2

L2

where is a separable Hilbert space. Assume that 1 2 NW 0 2
0 , then the

correlation operators

Cor 1 2 0

are given by the formula

E
0

2 1 .

Here, the operator is defined by

E 1 2 .
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It follows from Eq. 2.1 that

0
0

cos sin

0
0
sin

0
cos

0 sin cos .

Noting that , we have that for each 0,

0 sin cos . (2.2)

Hence,

E 0 . (2.3)

It follows from Proposition 2 that

sin N 0
0
sin2 cos N 0

0
cos2

(2.4)

Cor sin cos
0
sin cos .

Using the above formulas and , one has

Var 2

0
sin2

2

0
cos2

2 2

0
sin cos . (2.5)

Since is invertible, we have

0
sin2

1

2 0
cos 2

2

1

4
sin 2 (2.6)

0
cos2

1

2 0
cos 2

2

1

4
sin 2 (2.7)

0
sin 2

1

2
[ cos 2 ] . (2.8)

Combining Eqs. 2.5, 2.6, 2.7 and 2.8 leads to

Var
2

2

2

4
1 sin 2

1 sin 2 (2.9)

2

2
1 cos 2 . (2.10)
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3 LDP for BT of Stochastic Linear Schrödinger Equation

The theory of large deviations has been applied to many other branches of sciences, for
example statistical physics, finance, engineering information theory ([15, 16]). It is con-
cerned with the exponential decay of probabilities of very rare events, where the decay
rate is characterized by the large deviations rate function. In some cases, large devia-
tions rate functions describe steady rate and fluctuations of physical quantities, such as
the entropy or free energy of statistical systems (see e.g., [9]). In this section, we study
the LDP for 0 by means of the abstract Gärtner–Ellis theorem. As a corollary,
we give the exponential tail estimate of the mass of Eq. 1.1. Throughout this section,
let X be a locally convex Hausdorff topological vector space and X be its dual
space.

3.1 Introduction to LDP

In this part, we recall some concepts upon LDP and useful theorems and lemmas in studying
the LDP of a family of probability measures. First we introduce the definitions of rate
function and LDP (see e.g., [3]).

Definition 1 A real-valued function X 0 is called a rate function, if it is lower
semicontinuous, i.e., for each 0 , the level set 1 0 is a closed subset of X .
If all level sets 1 0 , 0 , are compact, then is called a good rate function.

Definition 2 Let be a rate function and 0 be a family of probability measures on
X . We say that 0 satisfies an LDP on X with the rate function if

LDP 1 lim inf
0

ln inf for every open X

LDP 2 lim sup
0

ln inf for every closed X .

Analogously, we say that a family of random variables 0 valued on X satis-
fies an LDP with the rate function if the family of distributions P 1

0 satisfies
the lower bound LDP (LDP1) and upper bound LDP (LDP2) in Definition 2 for the rate
function .

Generally speaking, we need to investigate the logarithmic moment generating function
and the exponential tightness of 0, when we derive the LDP of 0. Especially,
if the state space X is finite dimensional, the existence of logarithmic moment generating
function implies the exponential tightness. However, when X is infinite dimensional, the
exponential tightness of 0 can not be ignored.

Definition 3 [8, Page 8] A family of probability measures onX is exponentially tight
if for every , there exists a compact set X such that

lim sup
0

ln . (3.1)

We say that a family of random variables 0 valued on X is exponentially tight if
the family of distributions P 1

0 satisfies Eq. 3.1.
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Remark 1 If is a family of pre-compact sets such that Eq. 3.1 holds, then is still
exponential tight. In fact, in this case for any , is a compact set of X , and by

one has

lim sup
0

ln lim sup
0

ln .

Here is the closure of .

Theorem 1 [8, Corollary 4.6.14] Let 0 be an exponentially tight family of Borel
probability measures on the locally convex Hausdorff topological vector space X . Sup-
pose lim 0 is finite valued and Gateaux differentiable. Then 0
satisfies the LDP in X with the convex, good rate function .

Note that in the above theorem is called the logarithmic moment generating function
of 0. Here, ln X , X , and sup

X

X is the Fenchel–Legendre transform of . Theorem 1 can be viewed
as the abstract Gärtner–Ellis theorem. The following two lemmas are useful to derive new
LDPs based on a given LDP. The first lemma is also called the contraction principle, which
produces a new LDP on another space based on the known LDP via a continuous mapping.
The second one gives the relationship between the LDP of 0 on X and that on the
subspaces of X .

Lemma 1 [8, Theorem 4.2.1] Let Y be another Hausdorff topological space, X
Y be a continuous function, and X 0 be a good rate function.

(a) For each Y , define

inf X .

Then is a good rate function on Y , where as usual the infimum over the empty set
is taken as .

(b) If controls the LDP associated with a family of probability measures on
X , then controls the LDP associated with the family of probability measures

1 on Y .

Lemma 2 [8, Lemma 4.1.5] Let be a measurable subset of X such that 1
for all 0. Suppose that is equipped with the topology induced by X . If is a
closed subset of X and 0 satisfies the LDP on with the rate function , then

0 satisfies the LDP on X with the rate function such that on and
on .

Proposition 3 [8, Lemma 1.2.15] Let be a fixed integer. Then, for every 0,

lim sup
0

ln
1

max
1

lim sup
0

ln .

Proposition 3 is an important tool in deriving (LDP1) and (LDP2). Furthermore, we need
to make use of the following proposition in stochastic calculus.
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Proposition 4 [6, Propostition 1.13] Assume that is a nonnegative symmetric operator
on a real separable Hilbert space with finite trace. Let 1 2
be the eigenvalues of . Define the determinant of 2 by setting det 2
lim 1 1 2 1 1 2 . Let N 0 be the symmetric
Gaussian measure on . Then for every ,

2 det 2
1 2

if 1
2 1

otherwise.
(3.2)

3.2 LDP for BT T 0

In this subsection, we show the LDP for 0 of Eq. 1.1 by using Theorem 1, where
with being the solution of Eq. 1.1 at time . The regime of Gärtner–

Ellis theorem is applicable to the real Banach space. Given that the exact solution 0
takes values in 0, the space of complex-valued functions, we use the real inner product to
establish the LDP of 0 on 0.

Theorem 2 Assume that
1
2 2

0 1 . Then 0 satisfies an LDP on 0 with
the good rate function

1
2

1
2

2

0
if

1
2 0

otherwise
(3.3)

where
1
2 is the pseudo inverse of

1
2 .

Proof We divide the proof into three steps based on Theorem 1.
Step 1: The logarithmic moment generating function of 0 on 0

For any 0 , by the Riesz representation theorem, there is a unique 0 such
that , 0. Since is Gaussian, it follows from Eqs. 2.3 and
2.9 that for any 0 ,

lim
1
lnE R lim

1
lnE R

lim
1

E
1

2
Var

2

4
2

4

1
2

2

0
(3.4)

where we use the facts sin L 0 1, cos L 0 1 and 1
L 0 1.

Thus,
2

4
1
2 2

L 0
2

0 for any 0 . In addition, is Fréchet

differentiable with the derivative beingD
2

2 for any 0 , which
implies that is also Gateaux differentiable.
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Step 2: Exponential tightness of 0 on 0

By the definition of the exponential tightness (see Definition 3) and Remark 1, it suffices to
show that there exists a family of pre-compact sets 0 of 0 such that

lim lim sup
1
lnP . (3.5)

Since
1
2 2

0 1 , the exact solution is well-posed in 1 by Proposition 1. Define

0
1

0 0

which is a family of closed sets of 1. Since 1 is compactly embedded into 0 (see e.g.,
[13, Theorem 12.30]), 0 is a family of pre-compact sets of 0. Hence, in order to
verify the exponential tightness of 0 on 0, it suffices to prove that Eq. 3.5 holds
for such 0.

Recall that 0 sin cos , which gives

P P 1

P 0 1
3

P sin 1
3

P cos 1
3

. (3.6)

Since the first term in Eq. 3.6 is 0 for sufficiently large , we only need to estimate the
second and third terms in Eq. 3.6.

Denote 1

1 2
, 1 2 It is known that is an orthonormal basis

of 1
1 . Define the operator L 1 by 1 2 , 1 2

Then is a nonnegative symmetric operator on 1. Since
1
2 L2

0 1 , we have

1

1 2

1

2
1

1

1
2 2

1

1
2 2

L2
0 1 (3.7)

which means that the trace of is finite. Notice that for any 0,

1 1

1 2

1

1
2

and the series on the right-hand side of the above formula converges in 2 F P 1

due to Eq. 3.7. Therefore, the 0-valued -Wiener process coincides with the 1-valued
-Wiener process. Then it follows Proposition 2 that

sin N 0
0

sin2 N 0
2

1 sin 2

4
on 1.

Further, it holds that

sin
N 0

2

1 sin 2

4
on 1. (3.8)
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By Markov’s inequality, for each 0,

P sin 1
3

P sin

1 3

P exp sin
2

1
exp

2

9 2

2

9 2 E exp sin
2

1
. (3.9)

Using the fact sin and Eq. 3.7, we have that 2

1 sin 2
4

1
2

sin 2 2

4 2 1 2 , 1 2 , for some positive constant

. It follows from Proposition 4 that for each 0 1
2 ,

E exp sin
2

1
det 2

2

1 sin 2

4

1
2

1

1 2
2

1 sin 2

4

1
2

1

1 2

1
2

[det 2 ]
1
2 . (3.10)

Combining Eq. 3.10 with Eq. 3.9 yields

lim sup
1
lnP sin 1

3
lim sup

1
ln

2

9 2

2

9 2
. (3.11)

In addition, it holds that

cos
N 0

2

1 sin 2

4
on 1.

Then 2

1 sin 2
4

1
2 1 sin 2 2

2 2 . Analo-

gous to the proof of Eq. 3.11, one has that for any 0 1
2 ,

lim sup
1
lnP cos 1

3

2

9 2
. (3.12)

Combining Eqs. 3.11, 3.12, 3.6 and Proposition 3, we obtain

lim sup
1
lnP max

2

9 2

2

9 2

2

9 2
.
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Accordingly, we have

lim lim sup
1
lnP (3.13)

which proves the exponential tightness of 0 on 0.
Due to Theorem 1, 0 satisfies an LDP on 0 with the good rate function

sup
X

X , i.e., the Fenchel–Legendre transform of . It remains to

give the explicit expression of the rate function .
Step 3: The explicit expression of

We will show that the rate function is given by Eq. 3.3, whose valid domain
1
2 0

is identified by means of the properties of the reproducing kernel Hilbert space (RKHS)
associated to the Gaussian measure 0 . For this end, we recall the concept of
reproducing kernel Hilbert space. Let be a centered Gaussian measure on a separable
Banach space . An arbitrary can be identified with an element of the Hilbert

space 2 2 B . Denote by
2

the closure of in 2 .
Define a mapping by setting

.

Then the image H of in , H is the RKHS of with the scalar product

H .

Further, if N 0 is a Gaussian measure on some Hilbert space with being a

nonnegative symmetric operator with finite trace, then the RKHSH of isH
1
2

with the norm H
1
2 . We refer to [7, Section 2.2.2] for more details of the

RKHS.

In our case, N 0 on 0
0 . The mapping 0

2
0 is

0
.

Then H 0
2 1

2 0 . It follows from the properties of Gaussian

measure that

2
2

0

2 1
2

2

0
.

Thus,
2

4
1
2

2

0

2

4
2
2 . Recall that

sup
0

.

For a given 0, if , then there exists a constant such

that
2

4
2
2 for any 0 . Define the linear functional on

0
2 0

2

by , for every 0 . Then we have

sup
0

2 1

2

4 . It means that is a bounded linear functional on
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0
2 . By Hahn–Banach theorem and the fact that 0

2 is dense in

0
2

, can be uniquely extended to 0
2

. (In fact, for each 0
2

,
take 0 such that in the norm 2 . Then the extended functional
is lim .) The extended functional is still denoted by . In this
way, for every 0 satisfying , we obtain a bounded linear functional

on 0
2

such that for each 0 . By Riesz representation

theorem, there exists some 0
2

such that 2 for each

0
2

. Hence, 2 for each 0 . Further, we have that

0 0

0 .

By the arbitrariness of , . Hence, implies that H

0
2 1

2 , where
1
2 is the image of

1
2 .

On the other hand, if 0 for some 0
2

, then

sup
0

2

4
2
2

sup
0

2

2

4
2
2 .

Noting the continuity of 2

2

4
2
2 with respect to in the norm 2 ,

and that 0
2 is dense in 0

2

, we have

sup
0

2
2

2

4
2
2

sup
0

2

1

2

2

2
2
2

2
2

2
2

2

4
2
2

1
2

2
2 .

Taking 2
2 leads to 1

2
2
2 . Thus, we obtain

1
2

2
2

1
2

2
H

1
2

1
2

2

0
(3.14)

which gives Eq. 3.3.
Combining the results in Steps 1-3, we complete the proof.

Similar to the proof of [1, Proposition 3.1], we obtain E 2
0 E 0

2
0

2tr , where tr 1 . Then, by Markov’s inequality, one has that for each
0 and sufficiently large

P 2
0

2 2
E 2

0

2 2
(3.15)



C. Chen et al.

for some constant independent of . In what follows, we show that the probability of the
tail event of the mass 2

0 in Eq. 3.15 can be exponentially small. More precisely, by

Lemma 1 and Theorem 2, we immediately obtain the LDP of 0 0, which yields
the following corollary.

Corollary 1 Let the assumptions of Proposition 1 hold. If is an injection, then it holds
that

(1) 0 0 satisfies an LDP on 0 with the good rate function

1
2

inf
0

1
2

0

2
0 0.

(2) For every 0 and 0, there is some 0 such that

P 2
0

2 2 P 0

exp inf 0 (3.16)

and inf 0 .

Proof (1) Since the mapping 0
0 is continuous, it follows from Lemma 1

and Theorem 2 that 0 0 satisfies an LDP on with the good rate function

inf
0

0

inf
1
2 0

0

1
2

inf
1
2 0

0

1
2

2

0

1
2

inf
0

1
2

0

2
0

where we have used the assumption that is an injection in the last step. This proves the
first conclusion.

(2) Clearly, the set 0 1
2

0
is nonempty for every 0. Hence,

for every 0. Accordingly, inf for each 0. In addition,

we claim 0 for each 0. In fact, if for some 0 0, 0 0, then there

is a sequence 0 such that
1
2

0 0 and lim 0 0. Noting

that
1
2 is a continuous operator, then we have 0 lim

1
2

0
0, which yields

a contradiction. Hence, we prove the claim. Using the fact that a good rate function can
achieve its infimum on every nonempty closed set (see e.g., [8, Page 4]), we have that for
each 0, there is some such that inf 0. It remains to prove

Eq. 3.16. Since 0 0 satisfies the LDP with the rate function , we obtain that for
each fixed 0,

lim sup
1
lnP

0
inf .
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The above formula implies that for every 0, there is a 0 0 such that

1
lnP

0
inf 0.

Hence we have that

P 2
0

2 2 P
0

exp inf 0.

This completes the proof.

Remark 2 For sufficiently large 0, one can always find and such that 2 2

. Then by Eq. 3.16 one has that P 2
0 P 2

0
2 2

exp inf . This indicates that the probability of the tail event of the mass
of Eq. 1.1 is exponentially small on a sufficiently large time.

4 LDP for the Spatial Spectral Galerkin Approximation

In the previous section, we derive the LDP of 0 for the continuous system Eq. 1.1. In
order to obtain a valid approximation for the rate function of 0, we apply the spatial
spectral Galerkin method to Eq. 1.1, and study the LDP of 0 of spectral Galerkin
approximation. Here, is a discrete approximation of , which will be specified later.
For , we define the finite dimensional subspace span 1 2 of

0 and the projection operator 0 by 1 for
each 0. Then is also a projection operator from 0 onto such that

1 for each 0. Denote . Using the above notations,
we get the following spectral Galerkin approximation:

0 (4.1)

0 0 .

It is verified that Eq. 4.1 admits a unique mild solution on given by

0
0

(4.2)

where is the unitary 0-group generated by .

For the spatial discretization Eq. 4.1, we define which is viewed as a
discrete approximation for . In what follows, we study the LDP of 0 and whether

can asymptotically preserve the LDP of .

4.1 LDP for BM
T T 0

Following the ideas of deriving the LDP of 0, in this part, we give the LDP of
0. For this end, we first consider the logarithmic moment generating function

lim 1 lnE exp , for each . Then, we study the expo-

nential tightness of 0. Finally, by means of Theorem 1, we obtain the LDP of
0. Hereafter we use the notation 1 to denote some constant dependent

on the parameters 1 but independent of and , which may vary from one line
to another.
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Theorem 3 For each fixed , 0 satisfies an LDP on 0 with the good rate

function given by

1
2

1
2

2

0
if

1
2 0

otherwise
(4.3)

where and
1
2 is the pseudo inverse of

1
2 on , i.e.,

1
2

0

1
2 for every .

Proof Noting that cos sin , we have

0
0

sin

0
cos

0 sin cos . (4.4)

Notice that for each 0, sin is a Gaussian random variable taking values on
. By Proposition 2, the covariance operator Var sin of sin is

Var sin
0

sin2

2 0
[ cos 2 ]

2

1

4
sin 2 (4.5)

where . Similarly, we have that

cos N 0 Var cos on (4.6)

with Var cos 2
1
4

1 sin 2 . And the correlation operator
Cor sin cos is

Cor sin cos

1

4
[ cos 2 ] . (4.7)

For each , we write it as with , . Then by Eq. 4.4,

0 sin cos . (4.8)

Hence, we obtain

E 0 . (4.9)
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It follows from Eqs. 4.5, 4.6, 4.7 and 4.8 that

Var
2Var sin

2Var cos

2 2Cor sin cos

2 Var sin
2 Var cos

2 2 Cor sin cos

2

2

2

2

2

4
1 sin 2

2

4
1 sin 2

2

2
1 cos 2

2

2

2

2
(4.10)

with . Using Eqs. 4.9 and 4.10, we have that, for every ,

lim
1
lnE R lim

1
lnE R

lim
1

E
1

2
Var

1

2

2

2

2

2
2

4

1
2

2

0
.

Analogous to the proof of Eq. 3.14, we have

sup
1
2

1
2

2

0
if

1
2

otherwise.

Next, we show that 0 is exponentially tight. Define 0

, then is the compact subset of . It follows from Eq. 4.4 that

P P 0

P 0 0
3

P sin 0
3

P cos 0
3

. (4.11)

By Eq. 4.5, we have

sin N 0
2

1 sin 2

4
on . (4.12)
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Hence, we obtain

Var sin 1

2

sin 2 2

4 2

1

2
1

sin 2 2

2 2

1 2 .

For every 0 1
2 1

, it follows from Proposition 4 that

E exp sin
2

0

det 2 Var sin

1
2

[det 2 ]
1
2

.

The above formula yields

P sin 0
TL

3
P exp sin

2

0

exp
2

9 2

2

9 2 E exp sin
2

0

2

9 2 . (4.13)

Similarly, one has

P cos 0
3

2

9 2 . (4.14)

According to Proposition 3, Eqs. 4.13 and 4.14, we have

lim sup
1
lnP

2

9 2
0

1

2 1

where we have used the fact that P 0 0 3 0 for sufficiently large .
Then, we obtain

lim lim sup
1
lnP

which implies the exponential tightness of 0.

Notice that is Fréchet differentiable and D
2

2 for each
. Then it follows from Theorem 1 that 0 satisfies an LDP on with the

good rate function

1
2

1
2

2

0
if

1
2

1
2 .

Clearly, is the closed subspace of 0 and for each 0, P 1. Thus,

using Lemma 2 and the fact
1
2

1
2 0 , we conclude that 0 satisfies an

LDP on 0 with the good rate function

1
2

1
2

2

0
if

1
2 0

otherwise.
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The proof is complete.

4.2 Weakly Asymptotical Preservation for the LDP of BT T 0

In the last subsection, we obtain the LDP for 0 of the spectral Galerkin approxi-
mation 0. It is natural to consider whether converges to pointwise as
tends to infinity. In [3], authors give the definition of asymptotical preservation for the LDP
of the original system, i.e., the discrete rate functions of numerical methods converge to

that of the original system in the pointwise sense. In our case, since generally
1
2 0

1
2 0 , it can not be assured that converges to pointwise. However, the sequence

1
2 0 of sets converges to

1
2 0 in the sense that lim

1
2 1

2 for

each 0. It is hoped that is a good approximation of when is large enough.
Thus, we give the following definition.

Definition 4 For a spatial semi-discretization of Eq. 1.1, denote .
Assume that 0 satisfies an LDP on 0 with the rate function for all sufficiently
large . Then we say that weakly asymptotically preserves the LDP of 0

if for each
1
2 0 and 0, there exist 0

0 and such that

0 0 0 (4.15)

where is the rate function of 0.

Theorem 4 Let the assumption of Theorem 2 hold. For the spectral Galerkin approximation
Eq. 4.1, weakly asymptotically preserves the LDP of 0, i.e., Eq. 4.15 holds.

Proof This problem is discussed in the following two cases. Note that are the
eigenvalues of .

Case 1: There are infinitely many 0 in , i.e., for some , 1 2
0.

For this case, degenerates to a finite-rank operator. If , then . Hence, it
holds that for every 0, which implies Eq. 4.15. We say that
exactly preserves the LDP of 0 for this case (see [3, Definition 4.1]).

Case 2: There are finitely many 0 in .

Notice that for each finite , 1 2 0. We denote
1
2 and

define
1
2 . Further, we have

1
2

0

1
2

0
1
2

1
2

0 1 2

.
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The above formula yields

lim
1
2

lim 2
0

2
0 0. (4.16)

In addition, it holds that

lim lim
1
2 lim

1
2

1
2 . (4.17)

Thus, it follows from Eqs. 4.16 and 4.17 that for each
1
2 0 and 0, there exist

sufficiently large and 0

1
2 1

2 such that Eq. 4.15 holds.

Combining Case 1 and Case 2, we complete the proof.

Remark 3 As is seen in the proof of Theorem 4, for every
1
2 0 and sufficiently

large ,
1
2 1

2 is a good approximation of .

5 LDP by Spatio-Temporal Full Discretization

In this section, we investigate the LDP for the full discretizations, spatially by the spectral
Galerkin method and temporally by the symplectic methods or non-symplectic ones. We
show that the full discretization weakly asymptotically preserves the LDP of 0 when
using a symplectic method in temporal direction, while it does not share this property for
a temporal non-symplectic method. These results indicate that the modified rate function
of the full discretization, based on the spatial spectral Galerkin method and a temporal
symplectic method, is a good approximation of .

5.1 Full Discretization

Since the spectral Galerkin approximation 0 takes values in , it holds that

1 . Denote 1 2

. Let be the th component of . It follows from Eq. 4.1 that

2 1 2 .

Then, we obtain a -valued SDE

M Q

where M diag 1 22 2 , Q diag 2 ,
and 1 2 . Further, using the notation

with and , we obtain a 2 -
dimensional stochastic Hamiltonian system

M 0 0

M Q 0 0 (5.1)

which is equivalent to the system Eq. 4.1 with , where
and are the th arguments of and , respectively. In fact, the phase flow

of Eq. 5.1 preserves the stochastic symplecticity, i.e.,

d d d d 0 . . (5.2)
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which means that the oriented area of the projections of the phase flow onto the coordinate
planes is invariant. Note that the differentials in Eqs. 5.1 and 5.2 have differ-
ent meanings. In Eq. 5.1, are treated as functions of time, and are fixed
vectors, while in Eq. 5.2 the differential is made with respect to the coordinate .
A stochastic numerical method preserving the stochastic symplectic structure is called the
stochastic symplectic discretization. We refer interested readers to [2, 4, 10, 11] and ref-
erences therein for more discussions on stochastic symplectic discretizations of stochastic
Schrödinger equations.

In order to obtain the numerical method for Eq. 4.1, we only need to consider discretizing
the equivalent system Eq. 5.1. Denote by the numerical approximation of

0. Let be the linear function from to 0 defined by

1

1 2 . (5.3)

Then we obtain the numerical solution with . Further, we

define (see [3]), where is the temporal stepsize. Then is a discrete approx-
imation of . To give the LDP for , our idea is to first investigate the LDP of

, where . Then noting that , combining the LDP of
on and the contraction principle (Lemma 1), we derive the LDP of .

More precisely, we divide Eq. 5.1 into the following subsystems

2 0 1
1 0

0
1

1 2 (5.4)

where , 1 2 . For each 1 2 , we consider the general
numerical method in the following form

1

1

11
2

12
2

21
2

22
2

1
2

2
2

(5.5)

where 1 with , 1 2 , and functions
0 , 1 2 are continuous and determined by a concrete numerical method.
In addition, we require 2

1
2
2 0 for all sufficiently small . Hence, we finally

obtain the numerical solution generated by Eq. 5.5, with
being the th component of , 1 2 By defining functions

11 12

21 22

1

2

0 (5.6)

we rewrite Eq. 5.5 as

1

1

2 2 0 1 2 (5.7)

with 0 0 0 .
Next we introduce some concrete temporal discretizations taking the form of Eq. 5.7.
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Example 1 (Midpoint Scheme) Applying the midpoint scheme to Eq. 4.1 yields

1
1

2 1 0 1 2

with

1 1

4 2
4 2 4

4 4 2
1 2

4 2 2
0.

Here 1 .

Example 2 (Exponential Euler Method) The exponential Euler method for Eq. 4.1 is

1 0 1 2

with

2 cos sin
sin cos

2 sin
cos

0.

Example 3 (Implicit Euler–Maruyama Scheme) The implicit Euler–Maruyama scheme
for Eq. 4.1 reads

1 1 0 1 2

with

3 1

1 2
1

1
3 1

1 2 1
0.

Next, we give our main assumptions on functions and , which will be used to derive
the LDP of .

Assumption 1 There is some 1 0 such that

4 det tr 2 0 1

where tr and det denote the trace and the determinant of , respectively.

We will use Assumption 1 to give the general expression of of the

method Eq. 5.5, following the idea of [3]. Hereafter, we always fix some 1 2
without extra statement. It follows from the recurrence formula Eq. 5.7 that

2 0

0

1

0

2
1

2 0 1 2

Let 0 be the parameter such that

cos
tr 2

2 det 2
sin

4 det 2 tr 2 2

2 det 2
. (5.8)

Then under Assumption 1, one has (also see [3, Sect. 3]) that for sufficiently small ,

2
det 2

1 11
2

12
2

21
2

1 11
2



Large Deviations Principles for Symplectic Discretizations...

where det 2
1

2 sin sin . In this way, we obtain the following

expression of the general formula of

det 1 0 11 0 12 0

1

0

det 2 1 11 1 12 2 1 (5.9)

and

21 0 1 0 11 0

1

0

21 1 11 2 1 2 (5.10)

where det , , 1 2, are computed at 2 . For convenience, when no confusion
occurs, we always omit the argument 2 in det , , 1 2.

Assumption 2 There is some 2 0 such that for all 2, det 1.

One can show that the numerical method generated by Eq. 5.5 is symplectic if and only
if Assumption 2 holds. In fact, generated by Eq. 5.5 is symplectic for all
sufficiently small 0 if and only if for all sufficiently small 0, d 1 d 1
d d , i.e.,

1

d 1 d 1
1

d d 1 2

According to Eq. 5.5, it holds that d 1 d 1 11
2

22
2

12
2

21
2 d d . Hence, the method generated by Eq. 5.5 is symplectic for all

sufficiently small 0 if and only if for all sufficiently small 0, 1 2 ,

11
2

22
2

12
2

21
2 1

which is equivalent to that there is some 0 0 such that

11 22 12 21 1 0

i.e., Assumption 2 holds.

Assumption 3 There exist 0 1 and 3 0 such that

1 3.

Here, functions , , 0 are defined by

11 1 12 2 1
2

1 11 1 12 2 2 tr

21 1 11 2 2
2

2 21 1 11 2 2 tr
1

2
21 1 11 2 1tr 1 2

1

2
tr 2 1

11 1 12 2 21 1 11 2
1

2
tr 11 1 12 2 2.
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Assumption 3 is used to give the explicit expression of the rate functions of
and . In fact, 0 for sufficiently small , whose proof is similar to
those of Lemmas 3.3 and 5.1 in [3]. In addition, we have the following property.

Remark 4 Under Assumption 2, 11 22
2 12

2
2 21

2
1 1 2 11 22 .

This is because underAssumption 2, det 11 22 12 21 1. Then it follows that

2
1

1

2
21tr 11 21

2
2 11 12

1

2
12tr

1 2
1

2
tr 2 1 12 21

2
11 11tr

2
1

1

2
21tr 11 21

2
2 11 12

1

2
12tr

1 2
1

2
11 22

2
11 22 12 21 1

11 22

2
12

2
2 21

2
1 1 2 11 22 .

When we investigate the LDP of via temporal non-symplectic methods, we give
the following assumption (see [3]).

Assumption 4 There is some 4 0 such that for all 4, det 1.

In addition, when investigating the asymptotical preservation of for the LDP
of 0, we give the following assumption concerning the convergence of the numerical
method.

Assumption 5 11 1 22 1 12 21 O 2 and 1 2 1
O .

One can prove that under Assumption 5, corresponding to Eq. 5.5
converges to Eq. 5.1 with at least mean-square order 1. For more details, one refers to [3].

It is verified that the methods in Examples 1 and 2 are symplectic and satisfy Assump-
tions 1-3 and 5. And the method in Example 3 is non-symplectic satisfying Assumptions 1
and 4.

To characterize the asymptotical preservation of for the LDP of 0,
we give the following definition (see [3] for the similar definition).

Definition 5 For a spatio-temporal full discretization of Eq. 1.1 with temporal

stepsize , denote . Assume that for each fixed , satisfies an

LDP on 0 with the rate function . We call the modified rate function.
Then is said to weakly asymptotically preserve the LDP of 0 if for each

1
2 0 and 0, there exist 0

0, 0 and 0 such that

0 0 0 . (5.11)
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With the above preparation, we give our main results of this paper. That is, for the full dis-
cretization with , where is the numerical
solution corresponding to Eq. 5.5, when the temporal discretization is symplectic, it weakly
asymptotically preserves the LDP of 0, while it does not possess this property for a
temporal non-symplectic discretization.

Theorem 5 If Assumptions 1, 2 and 5 hold, then

(1) For each fixed with 0, we have that for all sufficiently small stepsize ,
satisfies an LDP on 0 with the good rate function given by

(5.12)

1
4 tr 2 2

4[ 2 2 2 2 ] 2
2 2 2 2

2 2 if

otherwise.

(2) For each fixed with 0, asymptotically preserves the LDP of

0, i.e., the modified rate function satisfies

lim
0

. (5.13)

(3) Under the assumption of Theorem 2, weakly asymptotically preserves the
LDP for 0 of Eq. 1.1, i.e., Eq. 5.11 holds.

Theorem 6 If Assumptions 1 and 4 hold, then for each , satisfies an LDP
on 0 with the good rate function

0 if 0

otherwise.

Moreover, can not weakly asymptotically preserve the LDP for 0 of
Eq. 1.1, i.e., Eq. 5.11 does not hold.

By Eq. 5.12, Theorem 6 and the expressions of , , 1 2 3 in Examples 1-
3, one can directly compute the rate functions of of the numerical methods in
Examples 1–3.

– Midpoint Scheme
The rate function of is

1
2

2 2

4

1
2

0
if

1
2

0

otherwise.

Hence, lim
0 1 lim

0 1 for each 0. These indicate

that the full discretization, spatially by a spatial Galerkin method and temporally by the
midpoint scheme, weakly asymptotically preserve the LDP of 0.
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– Exponential Euler Method
The rate function of is

2
2

1
2

0
if

1
2

0

otherwise.

In particular, we note that if is a finite rank operator, i.e., there is such 1

2 0, then 2 . This indicates that when noise takes values in finite
dimensional space, this full discretization preserves exactly the LDP of 0.

– Implicit Euler–Maruyama Scheme
The rate function of is

3
0 if 0

otherwise.

We obtain that the implicit Euler–Maruyama scheme can not weakly asymptotically
preserve the LDP of 0.

5.2 Proof of Theorem 5

In this part, we consider the LDP of for the full discretizations of Eq. 1.1, spa-
tially by the spectral Galerkin method Eq. 4.1 and temporally by symplectic methods.
To this end, we let Assumption 2 hold throughout this part. Firstly, for every fixed

1 2 , we derive the limit lim 1 lnE exp 1 for

, to give the expression of the logarithmic moment generating function
lim 1 lnE exp , of . Then using Theorem 1, we obtain

the LDP of for symplectic methods. Further, the contraction principle (Lemma
1) leads to the LDP of with . Finally combining the convergence
condition (Assumption 5), we prove that weakly asymptotically preserves the
LDP of 0, which completes the proof of Theorem 5.

Lemma 3 If Assumptions 1 and 2 hold, then for each fixed , we have that for all
sufficiently small stepsize and any ,

1 1

2

4 sin2
2 2 2 2

2 2 (5.14)

where are given in Assumption 3. Moreover, is finite valued and Gateaux
differentiable.

Proof For each 1 2 , we have

1 1

.
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Thus, the logarithmic moment generating function for is

lim
1
lnE exp

lim
1
lnE exp

1

lim
1
lnE exp

1

1

lim
1
ln

1

E exp
1

1

lim
1
lnE exp

1

1

(5.15)

where we have used the fact that , 1 2 , are mutually indepen-

dent stochastic processes as a result of the independence of 0, 1 2 .
Since Assumption 2 holds,

cos
tr 2

2
sin

4 tr 2 2

2

sin

sin
. (5.16)

It follows from Eqs. 5.9, 5.10 and 5.16 that

E 1 0 11 0 12 0

1

sin
sin 1 0 sin 11 0 12 0 (5.17)

and

E 1 0 21 0 11 0

1

sin
sin 1 0 sin 21 0 11 0 . (5.18)

In addition, we obtain

Var 2
1

0
2 1 11 1 12 2 1

2

2

sin2

1

0

2
1 sin

2 1 11 1 12 2
2 sin2

2 11 1 12 2 1 sin sin 1 ] .

Using the fact that 2 sin sin cos cos , we have

Var
2

2 sin2
2
1 11 1 12 2

2 2 11 1 12 2 1 cos 1

(5.19)
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where

1

2

sin2

1

0

2
1

2
cos 2 1 11 1 12 2

2

2
cos 2

11 1 12 2 1 cos 2 1 .

By the facts that 1 cos 2 1 sin 2 2 sin 2
2 sin and 1 cos 2

sin 2 1 sin
2 sin , we have 1

0 cos 2 1 1
0 cos 2

(Recall that we use the notation to denote the constant dependent on , but
independent of ). Hence, we obtain 1 . Similarly, one has

Var
2

2 sin2
2
2 21 1 11 2

2 2 21 1 11 2 2 cos 2 (5.20)

with 2 , and

Cor
2

2 sin2
[ 21 1 11 2 1 cos 1 2 cos 2

11 1 12 2 21 1 11 2

11 1 12 2 2 cos ] 3 (5.21)

with 3 . It follows from Eqs. 5.17 and 5.18 that

E E E . (5.22)

Further, Eqs. 5.19, 5.20 and 5.21 give

Var

2Var 2Var 2 Cor

2 2

2 sin2
2
1 11 1 12 2

2 2 11 1 12 2 1 cos

2 2

2 sin2
2
2 21 1 11 2

2 2 21 1 11 2 2 cos

2

sin2
[ 21 1 11 2 1 cos 1 2 cos 2

11 1 12 2 21 1 11 2 11 1 12 2 2 cos ] (5.23)
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with . Noting that is Gaussian, we have that for

each ,

lim
1
lnE exp

1

lim
1 1

E
1

2 2
Var

2 2

4 sin2
2
1 11 1 12 2

2 2 11 1 12 2 1 cos

2 2

4 sin2
2
2 21 1 11 2

2 2 21 1 11 2 2 cos

2

2 sin2
21 1 11 2 1 cos 1 2 2 cos 2 1

11 1 12 2 21 1 11 2 11 1 12 2 2 cos ] . (5.24)

Then, noting that tr 2 2 cos , we rewrite Eq. 5.24 as

2

4 sin2
2 2 2 2 2 2 . (5.25)

By Eq. 5.15, we get the expression Eq. 5.14.
In addition, for each , , the Gateaux derivative of is given by

D
1

2

4 sin2
2 2 2 2

2 2 .

This finishes the proof.

According to Theorem 1, in order to give the LDP of , it remains to show that
is exponentially tight. As is mentioned in Section 3, we will use the finiteness

of logarithmic moment generating function to derive the exponential tightness. In fact, we
have the following lemma.

Lemma 4 If Assumptions 1 and 2 hold, then for each fixed , we have that for
all sufficiently small stepsize , satisfies an LDP with the good rate function

sup .

Proof It follows from Lemma 3 that for each ,

lim
1
lnE exp . (5.26)

In particular, we take 0 0 1 0 0 in Eq. 5.26 with 1 being its th component.
Then we obtain

1 lim
1
lnE exp (5.27)
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where is the th argument of . Taking 0 0 1 0 0 in Eq. 5.26
with 1 being its th component yields

2 lim
1
lnE exp . (5.28)

For each 0, using Markov’s inequality, one has

P
2

P exp exp
NL

2
exp

NL

2
E exp

and

P
2

P exp exp
2

exp
2

E exp .

Hence, Eq. 5.27 leads to

lim sup
1
lnP

2 2
1

and Eq. 5.28 leads to

lim sup
1
lnP

2 2
2.

Combining the above formulas and Proposition 3, we have

lim sup
1
lnP

2
max

2
1

2
2

2
(5.29)

with max 1 2 . By taking 0 0 0 0 resp. 0 0
0 0 in Eq. 5.26 with (resp. ) being its th component, and repeating the above

procedure, we have

lim sup
1
lnP

2 2
(5.30)

for some .
Further, it holds that for every 1 2 ,

P P
2

P
2
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which together with Eq. 5.29, Eq. 5.30 and Proposition 3 yields

lim sup
1
lnP

2
(5.31)

with max . For 0, defineK , which is a compact
subset of . Then it holds that

P Kc
L P P

1

P
1

1

P . (5.32)

Substituting Eq. 5.31 into Eq. 5.32 and using Proposition 3, one has

lim sup
1
lnP Kc

L 2
max
1 2

.

Then, one immediately has

lim lim sup
1
lnP Kc

L

which implies the exponential tightness of . By Lemma 3, the exponential
tightness of and Theorem 1, we complete the proof.

Lemma 5 Let Assumptions 1, 2 and 3 hold. For each fixed with 0, we have
that for all sufficiently small stepsize ,

1

4 tr 2 2

4 2 2 2 2 2

2 2 2 2 2 2 . (5.33)

Proof It follows from Eq. 5.14 that the Fenchel–Legendre transform of is

sup

sup
1

sup
2

sup
1

1

sup
1

. (5.34)
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According to Eq. 5.25,

sup

sup
2

2

4 sin2

2 2 2 2 2 2

sup
2

2

4 sin2
2 2 2 2 2 2

sup
2

.

Under Assumption 3, if is sufficiently small, then for each 1 2 and
,

2 2

2 2 2 2
1

2 2 2

2 2 2 2

1
2 2 2 2

2 2 2 2
1

which implies 1 2 2

2 2 2 2 for every , . Then, we have

lim lim 2 2 2 2
2 2 2 2

2

4 sin2
1

2 2

2 2 2 2

which along with the continuity of , implies that there exist satisfying
such that sup 2 . Then, it holds that

2

4 sin2
2 2 2 2 0

2

4 sin2
2 2 2 2 0.

For a given with 0, 0, 1 2 . Then, we obtain

2 sin2 2 2

2 2 2 2 2

2 sin2 2 2

2 2 2 2 2
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which leads to

2 sin2

2 2

2 sin2

2 2

2

4 sin2
4 2 sin4 2

2 2 4

4 2 sin4 2

2 2 4

2
4 2 sin4

2 2 4

2 sin2

2 2
2 2 2

sin2

2 2 2
[ 2

2 2 ] .

Direct computations give
2 2 2

2 2 2 2 .

In this way, we have

sin2

2 2 2 2 2

2 2 2 2 2 2 . (5.35)

By Eqs. 5.16, 5.34 and 5.35, we complete the proof.

Now we give the proof of Theorem 5.

Proof of Theorem 5 (1) It follows from Assumptions 2 and 5 that 12 , 21 and
2 tr 1 11 22 12 21 11 22 11 1 22 1 12 21

2. Hence
4 tr 2 2 tr 2 tr 4 2. In addition, it holds that 11 1 12 2 1

11 1 1 12 2 . These imply 2. Further, 21 1 11 2 2 O 2 ,
21 1 2 2 tr O 4 , 11

2
2 2 tr 2, and hence 2. Similarly, we

have O 3 , which leads to 2 4. These mean that under Assumptions 2 and
5, Assumptions 3 holds.

Clearly, is a continuous mapping from to 0, and also a bijection from to
(see Eq. 5.3). By Lemmas 1, 4 and 5, we deduce that , with ,

satisfies an LDP on 0 with the good rate function

inf
1

1
4 tr 2 2

4[ 2 2 2 2 ] 2
2 2 2 2

2 2 if

otherwise.
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(2) Denote . Then 1 , and
, . Accordingly, it follows from Eq. 5.33 that for each ,

lim
0

lim
0

1

4 tr 2

4 2 2 2 2 2

2 2 2 2 2 2

1

lim
0

4 2 4 2 2 O 5

4 2 4 2
1

2

2
. (5.36)

Hence,

lim
0

lim
0

1

1

2

2
.

Note that for each ,

1

2

2

1
2

1

2 1
2

1
2

2

0

1
2

1
2

2

0
.

In this way, we have

lim
0

1
2

1
2

2

0
if

otherwise.
(5.37)

Since 1 2 0,
1
2 0 . Hence becomes

1
2

1
2

2

0
if

otherwise.

By the above formula and Eq. 5.37, lim
0

.

(3) Case 1: There are infinitely many 0 in , i.e., for some , 1

2 0.
For this case, we take and obtain that (see the first case in the proof
of Theorem 4). Then, it follows from Eq. 5.13 that Eq. 5.11 holds.

Case 2: There are finitely many 0 in .
In this case, for each , 1 2 0. Thus, Eq. 5.13 and the second

case in the proof of Theorem 4 yield Eq. 5.11.

5.3 Proof of Theorem 6

In this part, we consider the LDP of for full discretizations of Eq. 1.1, based on the
spatial spectral Galerkin method Eq. 4.1 and temporal non-symplectic methods. Theorem 6
indicates that can not weakly asymptotically preserve the LDP of 0.

Proof of Theorem 6 Recall det 2
1

2 sin sin . Under Assumption
4, for sufficiently small , 1 sin for some constant 1,
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1 2 . Denote max 1 2 and then 1. By Eqs. 5.9 and 5.10,
we have

E det 1 0 11 0 12 0

1

sin 0
2 1

11
1

sin 0 12
1

.

Similarly, one has E . It follows from Eq. 5.9 that

Var 2
1

0

det 2 1 11 1 12 2 1

2
.

Then, Hölder’s inequality and the fact 1 sin yield that for sufficiently small
0,

Var
1

0
2

2

1

2

1

0

2 2 2 1

1

0

2 2 1

where we use the fact 1
0

1
1 for each 0 1 . Analogously, we obtain

Var Cor .

Thus, combining the above estimates, we have

E Var 1 2 .

Following the proof of Lemma 3, one can show that the logarithmic moment generating
function for is 0. Then, we conclude that satisfies an LDP on

with the good rate function

0 if 0

otherwise.
(5.38)

Combining Eq. 5.38 and Lemma 1, we have that satisfies an LDP on 0 with the
good rate function

inf
1

0 if 0

otherwise.
(5.39)

It can be verified that Eq. 5.11 does not hold.



C. Chen et al.

6 Extension to the Case of Complex-Valued Noises

In this part, we study the LDP of 0 for the stochastic Schrödinger Eq. 1.1 driven by
complex-valued noises. Let 1 be a 0-valued 1-Wiener process and 2 a 0-valued 2-

Wiener process, such that 1 1

1
2
1

1 and 2 1

1
2
2

2 .
Here 1 and 2 are two nonnegative symmetric operators on 0 with finite traces.

1

0
, 1 2 are mutually independent standard Brownian motions, and

2

0
, 1 2 is another family of mutually independent standard Brownian

motions. In addition, we assume that 1

0
and 2

0
are mutually indepen-

dent for all 1 2 with . Also assume that for all , 0,
1 1 2 2 obeys the two-dimensional normal distribution with

expectation 0 0 and covariance matrix

for some constant 1 1 . The driving process for stochastic Schrödinger Eq. 1.1 is
1 2 .

Let N 2
1
0 2

0 denote the set

[0 ] L2

1
2
1

0 0 is predicable and

E
0

1
2
1

2

L2
0 0

and N 2
2
0 2

0 denote the set

[0 ] L2

1
2
2

0 0 is predicable and

E
0

1
2
2

2

L2
0 0

.

Before giving the LDP of 0, we first give the following proposition.

Proposition 5 Assume that 1 N 2
1
0 2

0 , 2 N 2
2
0 2

0 . Then the
correlation operators

Cor 1 1 2 2 0

are given by the formula

E
0

2

1
2
2

1
2
1 1 .
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Proof For simplicity, we take . For each 1 2
0 and 0, it follows from

the independence of 1

0
and 2

0
with that

E 1 1 1 0 2 2 2 0

E
1

1 1
1
2
1 1

0
1

2 2
1
2
2 2

0

1

E 1 1 2 2
1
2
1 1

0

1
2
2 2

0

1
2
1 1

1
2
2 2

0

1
2
2

1
2
1 1 2

0
. (6.1)

We first prove that the conclusion holds in the case that both 1 and 2 are elementary
processes. For this end, assume that there is a partition 0 0 1 , ,
such that

1

1

0
1 1 1 2

1

0
2 1 1

where L 0 0 is F -measurable, and takes only a finite number of
values in L 0 0 , 1 2, 0 1. Then we have that for each 1 2

0,

E
0

1 1 1
0 0

2 2 2
0

E
1

0
1 1 1 1 1 0

1

0
2 2 1 2 2 0

1

0

1

0

E 1 1 1 1 1 0 2 1 2 2 2 0

1

0

E . (6.2)

If , we claim E 0. For this end, we may assume that without loss

of generality. Then 1 1 1 1 1 0
and 2 are F -measurable. In addi-

tion 2 1 2 is F -independent. It follows from the properties of conditional
expectation that

E F

1 1 1 1 1 0
E 2 1 2 2 2 0

F

1 1 1 1 1 0
E 2 1 2 0

2 2
0

which leads to

E E E F 0 . (6.3)
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Similarly, using Eq. 6.1 we obtain

E F

E 1 1 1 0 2 1 2 0

1 1 2 2

1

1
2
2

1
2
1

0
1 1 2 2

1 2

1
2
2

1
2
1 1 1 2

0
.

Hence, it holds that

E 1 E 2

1
2
2

1
2
1 1 1 2

0
. (6.4)

Substituting Eq. 6.3 and Eq. 6.4 into Eq. 6.2 yields

E
0

1 1 1
0 0

2 2 2
0

1

0

1 E 2

1
2
2

1
2
1 1 1 2

0

E
0

2

1
2
2

1
2
1 1 1 2

0

which proves the conclusion when , 1 2, are elementary processes.
If , 1 2, are general processes, one can take elementary processes such that

lim E
0

1
2

2

L2
0 0

0 1 2.

Then by a standard argument of approximation, one can prove that the conclusion holds
for any 1 N 2

1
0 2

0 , 2 N 2
2
0 2

0 (see also the proof of [7, Proposition
4.28]).

Similar to the case of real-valued noises, we assume that
1
2 L2

0 1 , 1 2.
Then, we have the following results.

Theorem 7 Under the above conditions, 0 satisfies an LDP on 0 with the good
rate function

1
2

1
2

2

0
if

1
2 0

otherwise

where 1 2.
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Proof This proof is analogous to that of Theorem 2. Hence we only give the sketch of the
proof. The main difference lies in the computation of the variance Var . In fact, it
holds that

0
0
sin 1

0
cos 2

0
cos 1

0
sin 2 .

Hence, for each 0,

0
0
sin 1

0
cos 2

0
cos 1

0
sin 2 .

Using Proposition 5, one has

Var

2

0
sin2 1

2

0
cos2 2

2

0
cos2 1

2

0
sin2 2

2 2

0
sin cos

1
2
2

1
2
1

2 2

0
sin cos 1

2 2

0
sin2

1
2
2

1
2
1

2 2

0
cos2

1
2
2

1
2
1

2 2

0
sin cos 2

2 2

0
sin cos

1
2
2

1
2
1

2

2
2

2

1
2

2

0

where 1 2 with 1 2 independent of . Similar to the proof of
Theorem 2, we finish the proof by means of Theorem 1.

Remark 5 In Theorem 7, we give the LDP of 0. Similarly, the LDP for
of the numerical method can also be obtained in the case of complex-valued noises.
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7 FutureWork

The calculation of large deviations rate functions is an interesting and important problem.
One of the common techniques of approximating the large deviations rate functions is by the
Legendre transform of the approximated logarithmic moment generating functions which
may be obtained by, e.g., Monte–Carlo methods provided that the prior distributions of
observables are known ([14]). For a stochastic system, the prior distributions of the consid-
ered observables are generally unknown, the approximated logarithmic moment generating
functions can be obtained by the combination of numerical discretizations and Monte–Carlo
methods. Do all of numerical discretizations work? Theorem 5 of this paper shows that the
full discretizations , based on the temporal symplectic discretizations and the
spatial spectral Galerkin approximation, can weakly asymptotically preserve the LDP of

0. This result indicates that for an observable associated with a stochastic Hamil-
tonian partial differential equation, the symplectic discretization is a prior choice. What is
the convergence between the rate functions and their numerical approximations? How to
combine other techniques, e.g., the adaptive sampling algorithm (see [9]) and multi-level
Monte–Carlo methods, to improve the computational efficiency?
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